${f T}$ HAI ${f J}$ OURNAL OF ${f M}$ ATHEMATICS VOLUME 11 (2013) NUMBER 1 : 21–34

http://thaijmath.in.cmu.ac.th

Convergence Theorems of Three-Step Iterations Scheme with Errors for *I*-Asymptotically Nonexpansive Mappings

Seyit Temir

Department of Mathematics, Art and Science Faculty Harran University, Sanliurfa 63200, Turkey e-mail: temirseyit@harran.edu.tr

Abstract : The purpose of this paper is to establish weak and strong convergence theorems of three-step iterations with errors for I-asymptotically nonexpansive mappings in Banach space. The results obtained in this paper extend and improve the recent ones announced by Jeong [1], Takahashi and Tamura [2], Nammanee et al. [3] and many others.

Keywords: I-asymptotically nonexpansive mappings; common fixed point; convergence theorems.

2010 Mathematics Subject Classification: 47H09; 47H10.

1 Introduction

Let X be a real normed space and K be a nonempty closed convex subset of X. Let T be a self-mapping of K. Let $F(T) = \{x \in K : Tx = x\}$ be denoted as the set of fixed points of a mapping T.

A mapping $T: K \longrightarrow K$ is called *nonexpansive* mapping if

$$||Tx - Ty|| \le ||x - y||$$

for all $x, y \in K$. T is called asymptotically nonexpansive mapping if there exists a sequence $\{k_n\} \subset [1, \infty)$ with $\lim_{n\to\infty} k_n = 0$ such that

Copyright $\odot\,$ 2013 by the Mathematical Association of Thailand. All rights reserved.

$$||T^n x - T^n y|| \le k_n ||x - y||$$

for all $x, y \in K$ and $n \ge 1$.

The class of asymptotically nonexpansive maps which an important generalization of the class nonexpansive maps was introduced by Goebel and Kirk [4]. They proved that every asymptotically nonexpansive self-mapping of a nonempty closed convex bounded subset of a uniformly convex Banach space has a fixed point.

We introduce the following definitions and statements which will be used in our main results (see [5, 6, 7]).

Let $T, I: K \longrightarrow K$. Then T is called I-nonexpansive on K if

$$||Tx - Ty|| \le ||Ix - Iy||$$

for all $x, y \in K$.

T is called I- asymptotically nonexpansive on K if there exists a sequence $\{k_n\} \subset [1,\infty)$ with $\lim_{n\to\infty} k_n = 1$ such that

$$||T^n x - T^n y|| \le k_n ||I^n x - I^n y||$$

for all $x, y \in K$ and $n \ge 1$.

Recently, in [5], [6] and [7], the convergence theorems for I-nonexpansive and I-asymptotically quasi-nonexpansive mapping defined for some iterative schemes in Banach spaces were proved. In this paper, we consider the new type of three step iterative process for I-asymptotically nonexpansive mapping.

In 2000, Noor [8] introduced a three-step iterative scheme and studied the approximate solutions of variational inclusion in Hilbert spaces. Glowinski and Le Tallec [9] used three-step iterative schemes to find the approximate solutions of the elastoviscoplasticity problem, liquid crystal theory, and eigenvalue computation. It has been shown in [9] that the three-step iterative scheme gives better numerical results than the Mann-type (one-step) and the Ishikawa-type (two-step) approximate iterations. Xu and Noor [10] introduced and studied a three-step iterative for asymptotically nonexpansive mappings and they proved weak and strong convergence theorems for asymptotically nonexpansive mappings in a Banach space.

Very recently, Suantai [11] introduced the following iterative scheme and used it for the weak and strong convergence of fixed points in an uniformly convex Banach space. The scheme is defined as follows.

$$\begin{cases} x_{1} = x \in K \\ z_{n} = a_{n}T^{n}x_{n} + (1 - a_{n})x_{n} \\ y_{n} = b_{n}T^{n}z_{n} + c_{n}T^{n}x_{n} + (1 - b_{n} - c_{n})x_{n} \\ x_{n+1} = \alpha_{n}T^{n}y_{n} + \beta_{n}T^{n}z_{n} + (1 - \alpha_{n} - \beta_{n})x_{n}, \forall n \geq 1, \end{cases}$$

$$(1.1)$$

where $\{a_n\}$, $\{b_n\}$, $\{c_n\}$, $\{\alpha_n\}$, $\{\beta_n\}$ in [0,1] satisfy certain conditions. The iterative scheme (1.1) is called the modified Noor iterative scheme for asymptotically

nonexpansive mappings. If $\{c_n\} = \{\beta_n\} = 0$, then (1.1) reduces to Noor iterations defined by Xu and Noor [10] as follows:

$$\begin{cases} x_1 = x \in K \\ z_n = a_n T^n x_n + (1 - a_n) x_n \\ y_n = b_n T^n z_n + (1 - b_n) x_n \\ x_{n+1} = \alpha_n T^n y_n + (1 - \alpha_n) x_n, \forall n \ge 1. \end{cases}$$

$$(1.2)$$

If $\{a_n\} = \{c_n\} = \{\beta_n\} = 0$, then (1.1) reduces to modified Ishikawa iterations [12] as follows:

$$\begin{cases} x_1 = x \in K \\ y_n = b_n T^n x_n + (1 - b_n) x_n \\ x_{n+1} = \alpha_n T^n y_n + (1 - \alpha_n) x_n, \forall n \ge 1. \end{cases}$$
 (1.3)

If $\{a_n\} = \{b_n\} = \{c_n\} = \{\beta_n\} = 0$, then (1.1) reduces to Mann iterative process [13] as follows:

$$\begin{cases} x_1 = x \in K \\ x_{n+1} = \alpha_n T^n x_n + (1 - \alpha_n) x_n, \forall n \ge 1. \end{cases}$$
 (1.4)

Many authors starting from Das and Debata [14] and including Takahashi and Tamura [2] and Khan and Takahashi [15] have studied the two mappings case of iterative schemes for different types of mappings. Note that two mappings case has a direct link with the minimization problem. A generalization of Mann and Ishikawa iterative schemes was given by Das and Debata [14] and Takahashi and Tamura [2]. This scheme dealt with two nonexpansive mappings as follows:

$$\begin{cases} x_1 = x \in K \\ y_n = b_n T x_n + (1 - b_n) x_n \\ x_{n+1} = a_n S y_n + (1 - a_n) x_n, \forall n \ge 1, \end{cases}$$
 (1.5)

where $\{a_n\}$, $\{b_n\}$ in [0,1] satisfy certain conditions.

Further generalization of the iterative scheme (1.5) for two asymptotically nonexpansive mappings was given Jeong [1] as follows:

$$\begin{cases} x_{1} = x \in K \\ z_{n} = a_{n}S^{n}x_{n} + (1 - a_{n})x_{n} \\ y_{n} = b_{n}T^{n}z_{n} + c_{n}T^{n}x_{n} + (1 - b_{n} - c_{n})x_{n} \\ x_{n+1} = \alpha_{n}S^{n}y_{n} + \beta_{n}S^{n}z_{n} + (1 - \alpha_{n} - \beta_{n})x_{n}, \forall n \geq 1, \end{cases}$$

$$(1.6)$$

where $\{a_n\}$, $\{b_n\}$, $\{c_n\}$, $\{\alpha_n\}$, $\{\beta_n\}$, $\{b_n+c_n\}$ and $\{\alpha_n+\beta_n\}$ in [0,1] satisfy certain conditions.

The aim of this paper is to introduce and study convergence problem of the three-step iterative sequence with errors for *I*-asymptotically nonexpansive mappings in an uniformly convex Banach space. The results presented in this paper generalize and extend some recent Jeong [1], Takahashi and Tamura [2], Nammanee et al.[3] and many others.

2 Preliminaries

Let X be a Banach space with dimension $X \geq 2$. The modulus of X is function $\delta_X : (0,2] \to [0,1]$ defined by

$$\delta_X(\varepsilon) = \inf \left\{ 1 - \frac{\|x + y\|}{2} : \|x\| = 1, \|y\| = 1, \|x - y\| = \varepsilon \right\}.$$

A Banach space X is uniformly convex if and only if $\delta(\varepsilon) > 0$ for all $\varepsilon \in (0, 2]$. Recall that a Banach space X is said to satisfy Opial's condition [16] if, for each sequence $\{x_n\}$ in X, the condition $x_n \rightharpoonup x$ implies that

$$\liminf_{n \to \infty} ||x_n - x|| < \liminf_{n \to \infty} ||x_n - y||$$

for all $y \in X$ with $y \neq x$. It is well known from [16] that all l_r spaces for $1 < r < \infty$ have this property. However, the L_r space do not have unless r = 2.

Lemma 2.1 ([17]). Let X be a uniformly convex Banach space, K a nonempty closed convex subset of X and $T: K \longrightarrow K$ be a asymptotically nonexpansive mapping. Then E - T(E is identity mapping) is demiclosed at zero.

Lemma 2.2 ([18]). Let $\{s_n\}$, $\{t_n\}$ and $\{\sigma_n\}$ be sequences of nonnegative real sequences satisfying the following conditions: $\forall n \geq 1$, $s_{n+1} \leq (1+\sigma_n)s_n + t_n$, where $\sum_{n=1}^{\infty} \sigma_n < \infty$ and $\sum_{n=1}^{\infty} t_n < \infty$. Then $\lim_{n\to\infty} s_n$ exists.

Lemma 2.3 ([19]). Let p > 1, r > 0 be two fixed numbers. Then a Banach space X is uniformly convex if and only if there exists a continuous strictly increasing convex function $g: [0, \infty) \longrightarrow [0, \infty)$ with g(0) = 0 such that

$$\|\lambda x + (1 - \lambda)y\|^p \le \lambda \|x\|^p + (1 - \lambda)\|y\|^p - w_p(\lambda)g(\|x - y\|)$$

for all $x, y, z \in B_r := \{x \in X : ||x|| \le r\}$ and $\lambda \in [0, 1]$, where $w_p(\lambda) = \lambda (1 - \lambda)^p + \lambda^p (1 - \lambda)$.

Lemma 2.4 ([3]). Let X be a uniformly convex Banach space and $B_r := \{x \in X : ||x|| \le r\}, r > 0$. Then there exists a continuous strictly increasing convex function $g : [0, \infty) \longrightarrow [0, \infty)$ with g(0) = 0 such that

$$\|\lambda x + \mu y + \nu z + \kappa w\|^2 \le \lambda \|x\|^2 + \mu \|y\|^2 + \nu \|z\|^2 + \kappa \|w\|^2 - (\lambda \mu)g(\|x - y\|)$$

for all $x, y, z, w \in B_r$ and $\lambda, \mu, \nu, \kappa \in [0, 1]$ with $\lambda + \mu + \nu + \kappa = 1$.

Lemma 2.5 ([11, Lemma 2.7]). Let X be a Banach space which satisfies Opial's condition and let x_n be a sequence in X. Let $q_1, q_2 \in X$ be such that $\lim_{n\to\infty} \|x_n - q_1\|$ and $\lim_{n\to\infty} \|x_n - q_2\|$ exist. If $\{x_{n_k}\}$ and $\{x_{n_j}\}$ are the subsequences of $\{x_n\}$ which converge weakly to q_1 and q_2 , respectively. Then $q_1 = q_2$.

3 Main Results

Let X be a real uniformly convex Banach space and K be a nonempty closed, bounded and convex subset of X. In this section, we prove theorems of weak and strong of the three-step iterative scheme with errors given in (3.1) to a fixed point for I-asymptotically nonexpansive mappings in a uniformly convex Banach space. Let $T: K \to K$ be a I-asymptotically nonexpansive mapping and $I: K \to K$ be an asymptotically nonexpansive mapping. In order to prove our main results the following iteration scheme is studied:

$$\begin{cases} x_{1} = x \in K \\ z_{n} = a_{n}I^{n}x_{n} + (1 - a_{n} - \mu_{n})x_{n} + \mu_{n}u_{n} \\ y_{n} = b_{n}T^{n}z_{n} + c_{n}T^{n}x_{n} + (1 - b_{n} - c_{n} - \nu_{n})x_{n} + \nu_{n}v_{n} \\ x_{n+1} = \alpha_{n}I^{n}y_{n} + \beta_{n}I^{n}z_{n} + (1 - \alpha_{n} - \beta_{n} - \lambda_{n})x_{n} + \lambda_{n}w_{n}, \forall n \geq 1, \end{cases}$$

$$(3.1)$$

where $\{a_n\}$, $\{b_n\}$, $\{c_n\}$, $\{\alpha_n\}$, $\{\beta_n\}$, $\{\mu_n\}$, $\{\nu_n\}$, $\{\lambda_n\}$, $\{a_n+\mu_n\}$, $\{b_n+c_n+\nu_n\}$ and $\{\alpha_n+\beta_n+\lambda_n\}$ are appropriate sequences in [0,1], and $\sum_{n=1}^{\infty}\mu_n<\infty$, $\sum_{n=1}^{\infty}\nu_n<\infty$, $\sum_{n=1}^{\infty}\lambda_n<\infty$, and $\{u_n\}$, $\{v_n\}$ are bounded sequences in K.

The iterative scheme (3.1) is called the modified Noor iterative scheme with errors for asymptotically nonexpansive mappings. If T = I and $\mu_n = \nu_n = \lambda_n = 0$, then (3.1) reduces to the (1.1) defined by [11].

In order to prove our main results, the following lemmas are needed.

Lemma 3.1. $\{a_n\}$, $\{b_n\}$, $\{c_n\}$ and $\{\nu_n\}$ are in sequences in [0,1] such that $\limsup_{n\to\infty}(b_n+c_n+\nu_n)<1$ and $\{k_n\}$ and $\{\ell_n\}$ are sequences of real numbers with $\ell_n, k_n \geq 1$ for all $n\geq 1$ and $\lim_{n\to\infty}k_n=1$, $\lim_{n\to\infty}\ell_n=1$, then there exists a positive integer N_1 and $\gamma\in(0,1)$ such that $a_nc_n\ell_n^2k_n<\gamma$ for all $n\geq N_1$.

Proof. By $\limsup_{n\to\infty} (b_n + c_n + \nu_n) < 1$, there exists a positive integer N_0 and $\delta \in (0,1)$ such that

$$a_n c_n \le c_n \le b_n + c_n + \nu_n < \delta, \quad \forall n \ge N_0.$$

Let $\delta' \in (0,1)$ with $\delta' > \delta$. From $\lim_{n\to\infty} k_n = 1$, $\lim_{n\to\infty} \ell_n = 1$, then there exists a positive integer $N_1 \geq N_0$ such that

$$\ell_n^2 k_n - 1 < \frac{1}{\delta'} - 1, \quad \forall n \ge N_1,$$

from which we have $\ell_n^2 k_n < \frac{1}{\delta'}$, $\forall n \geq N_1$. Put $\gamma = \frac{\delta}{\delta'}$. Then we have $a_n c_n \ell_n^2 k_n < \gamma$ for all $n \geq N_1$.

Lemma 3.2. Let X be a real uniformly convex Banach space and K be a nonempty closed, bounded and convex subset of X. Let $T: K \to K$ be a I-asymptotically nonexpansive mapping with $\{k_n\}$ a sequence of real numbers such that $k_n \ge 1$ and $\sum_{n=1}^{\infty} (k_n - 1) < \infty$ and $I: K \to K$ be an asymptotically nonexpansive mapping with $\{\ell_n\}$ a sequence of real numbers such that $\ell_n \ge 1$ and $\sum_{n=1}^{\infty} (\ell_n - 1) < \infty$. Suppose further that the set $F(T) \cap F(I)$ (i.e., $F(T) := \{x \in K : x = Tx\}, F(I) :=$

 $\{x \in K : x = Ix\}\)$ is nonempty. Let $\{a_n\}$, $\{b_n\}$, $\{c_n\}$, $\{\mu_n\}$, $\{\nu_n\}$, $\{\alpha_n\}$, $\{\beta_n\}$ and $\{\lambda_n\}$ be real sequences in [0,1], such that $\{a_n + \mu_n\}$, $\{b_n + c_n + \nu_n\}$ and $\{\alpha_n + \beta_n + \lambda_n\}$ in [0,1] for all $n \geq 1$, and $\sum_{n=1}^{\infty} \mu_n < \infty$, $\sum_{n=1}^{\infty} \nu_n < \infty$, $\sum_{n=1}^{\infty} \lambda_n < \infty$, and $\{u_n\}$, $\{v_n\}$ and $\{w_n\}$ are bounded sequences in K. Let $\{x_n\}$, $\{y_n\}$, $\{z_n\}$ be the sequences in K defined by (3.1), then we have the following conclusions:

- (1) If q is a common fixed point of T and I, then $\lim_{n\to\infty} ||x_n-q||$ exists.
- (2) If $0 < \liminf_{n \to \infty} b_n \le \limsup_{n \to \infty} (b_n + c_n + \nu_n) < 1$, then $\lim_{n \to \infty} ||T^n z_n x_n|| = 0$.
- (3) $0 < \liminf_{n \to \infty} \alpha_n \le \limsup_{n \to \infty} (\alpha_n + \beta_n + \lambda_n) < 1$, then $\lim_{n \to \infty} ||I^n y_n x_n|| = 0$.

Proof. Let $q \in F(T) \cap F(I)$. Since $\{u_n\}$, $\{v_n\}$ and $\{w_n\}$ are bounded sequences in K, there exists $\vartheta > 0$ such that $\max\{\sup_{n \geq 1} \|u_n - q\|^2, \sup_{n \geq 1} \|v_n - q\|^2, \sup_{n \geq 1} \|w_n - q\|^2\} \leq \vartheta$. Then

$$||z_{n} - q||^{2} = ||a_{n}I^{n}x_{n} + (1 - a_{n} - \mu_{n})x_{n} + \mu_{n}u_{n} - q||^{2}$$

$$\leq ||a_{n}(I^{n}x_{n} - q) + (1 - a_{n} - \mu_{n})(x_{n} - q) + \mu_{n}(u_{n} - q)||^{2}$$

$$\leq a_{n}||I^{n}x_{n} - q||^{2} + (1 - a_{n} - \mu_{n})||x_{n} - q||^{2} + \mu_{n}||u_{n} - q||^{2}$$

$$- w_{2}(a_{n})g(||I^{n}x_{n} - x_{n}||)$$

$$\leq a_{n}\ell_{n}^{2}||x_{n} - q||^{2} + (1 - a_{n} - \mu_{n})||x_{n} - q||^{2} + \mu_{n}||u_{n} - q||^{2}$$

$$\leq (1 + a_{n}\ell_{n}^{2} - a_{n} - \mu_{n})||x_{n} - q||^{2} + \mu_{n}\vartheta$$

$$= (1 + a_{n}(\ell_{n}^{2} - 1) - \mu_{n})||x_{n} - q||^{2} + \mu_{n}\vartheta,$$

$$\begin{aligned} \|y_n - q\|^2 &= \|(b_n T^n z_n + c_n T^n x_n + (1 - b_n - c_n - \nu_n) x_n + \nu_n v_n) - q\|^2 \\ &\leq b_n \|T^n z_n - q\|^2 + c_n \|T^n x_n - q\|^2 + (1 - b_n - c_n - \nu_n) \|x_n - q\|^2 \\ &+ \nu_n \|v_n - q\|^2 - b_n (1 - b_n - c_n) g_2 (\|T^n z_n - x_n\|) \\ &\leq b_n k_n^2 \|T^n z_n - q\|^2 + c_n k_n^2 \|T^n x_n - q\|^2 + (1 - b_n - c_n - \nu_n) \|x_n - q\|^2 \\ &+ \nu_n \|v_n - q\|^2 - b_n (1 - b_n - c_n) g_2 (\|T^n z_n - x_n\|) \\ &\leq b_n k_n^2 \ell_n^2 \|z_n - q\|^2 + c_n k_n^2 \ell_n^2 \|x_n - q\|^2 + (1 - b_n - c_n - \nu_n) \|x_n - q\|^2 \\ &+ \nu_n \vartheta - b_n (1 - b_n - c_n) g_2 (\|T^n z_n - x_n\|) \\ &\leq b_n k_n^2 \ell_n^2 \left(1 + a_n \left(\ell_n^2 - 1\right) - \mu_n\right) \|x_n - q\|^2 \\ &+ \left(c_n k_n^2 \ell_n^2 + (1 - b_n - c_n - \nu_n)\right) \|x_n - q\|^2 \\ &+ b_n k_n^2 \ell_n^2 \mu_n \vartheta + \nu_n \vartheta - b_n (1 - b_n - c_n - \nu_n) g(\|T^n z_n - x_n\|), \end{aligned}$$

$$\begin{split} \|x_{n+1} - q\|^2 &= \|\alpha_n I^n y_n + \beta_n I^n z_n + (1 - \alpha_n - \beta_n - \lambda_n) x_n + \lambda_n w_n - q\|^2 \\ &\leq \alpha_n \|I^n y_n - q\|^2 + \beta_n \|I^n z_n - q\|^2 + (1 - \alpha_n - \beta_n - \lambda_n) \|x_n - q\|^2 \\ &+ \lambda_n \|w_n - q\|^2 - (1 - \alpha_n - \beta_n - \lambda_n) (\alpha_n g(\|I^n y_n - x_n\|)) \\ &\leq \alpha_n \ell_n^2 \|y_n - q\|^2 + \beta_n \ell_n^2 \|z_n - q\|^2 + (1 - \alpha_n - \beta_n - \lambda_n) \|x_n - q\|^2 \\ &+ \lambda_n \|w_n - q\|^2 - \alpha_n (1 - \alpha_n - \beta_n - \lambda_n) g(\|I^n y_n - x_n\|) \\ &\leq \alpha_n \ell_n^2 \Big[b_n k_n^2 \ell_n^2 \|x_n - q\|^2 + c_n k_n^2 \ell_n^2 \|x_n - q\|^2 + (1 - b_n - c_n - \nu_n) \|x_n - q\|^2 \\ &+ \alpha_n \ell_n^2 \left(b_n k_n^2 \ell_n^2 \|w_n \vartheta + \nu_n \vartheta\right) - b_n (1 - b_n - c_n - \nu_n) g(\|T^n z_n - x_n\|) \Big] \\ &+ \beta_n \ell_n^2 \|z_n - q\|^2 + (1 - \alpha_n - \beta_n - \lambda_n) \|x_n - q\|^2 + \lambda_n \vartheta \\ &- \alpha_n (1 - \alpha_n - \beta_n - \lambda_n) g(\|I^n y_n - x_n\|) \Big] \\ &\leq \alpha_n \ell_n^2 \Big[b_n k_n^2 \ell_n^2 (1 + a_n \ell_n^2 - a_n - \mu_n) \|x_n - q\|^2 + c_n k_n^2 \ell_n^2 \|x_n - q\|^2 \\ &+ (1 - b_n - c_n - \nu_n) \|x_n - q\|^2 - b_n (1 - b_n - c_n - \nu_n) g_2 (\|T^n z_n - x_n\|) \Big] \\ &+ \beta_n \ell_n^2 (1 + a_n \ell_n^2 - a_n - \mu_n) \|x_n - q\|^2 + (1 - \alpha_n - \beta_n - \lambda_n) \|x_n - q\|^2 \\ &+ \lambda_n \vartheta + \alpha_n \ell_n^2 \left(b_n k_n^2 \ell_n^2 \mu_n \vartheta + \nu_n \vartheta\right) + \beta_n \mu_n \ell_n^2 \vartheta \\ &- \alpha_n (1 - \alpha_n - \beta_n - \lambda_n) g(\|I^n y_n - x_n\|) \Big] \\ &\leq \Big[1 + c_n \alpha_n \ell_n^2 [k_n^2 \ell_n^2 - 1] + \alpha_n [\ell_n^2 - 1] + \beta_n [\ell_n^2 - 1] + \beta_n a_n \ell_n^2 [\ell_n^2 - 1] \\ &+ (1 - b_n - c_n - \nu_n) g(\|T^n z_n - x_n\|) \Big] \\ &\leq \Big(1 + c_n \alpha_n \ell_n^2 [(k_n^2 - 1) (\ell_n^2 - 1) + (k_n^2 - 1) + (\ell_n^2 - 1)] + \alpha_n [\ell_n^2 - 1] \\ &+ \beta_n (\ell_n^2 - 1] + \beta_n a_n \ell_n^2 [\ell_n^2 - 1] + \alpha_n a_n b_n k_n^2 \ell_n^4 [\ell_n^2 - 1] \\ &+ \lambda_n \vartheta + \alpha_n \ell_n^2 [b_n k_n^2 \ell_n^2 \mu_n \vartheta + \nu_n \vartheta) + \beta_n \mu_n \ell_n^2 \vartheta \\ &- \alpha_n \ell_n^2 b_n (1 - b_n - c_n - \nu_n) g(\|T^n z_n - x_n\|) \\ &- \alpha_n \ell_n^2 b_n (1 - b_n - c_n - \nu_n) g(\|T^n z_n - x_n\|) \\ &- \alpha_n \ell_n^2 b_n (1 - b_n - c_n - \nu_n) g(\|T^n z_n - x_n\|) \\ &- \alpha_n \ell_n^2 b_n (1 - b_n - c_n - \nu_n) g(\|T^n z_n - x_n\|) \Big].$$

Thus we obtain

$$||x_{n+1} - q||^{2} \leq ||x_{n} - q||^{2} + \{(k_{n}^{2} - 1)\{c_{n}\alpha_{n}\ell_{n}^{2} + \alpha_{n}b_{n}\ell_{n}^{2}\}$$

$$+ (\ell_{n}^{2} - 1)\{c_{n}\alpha_{n}\ell_{n}^{2} + \alpha_{n} + \beta_{n} + \beta_{n}a_{n}\ell_{n}^{2} + \alpha_{n}a_{n}b_{n}k_{n}^{2}\ell_{n}^{4} + \alpha_{n}b_{n}\ell_{n}^{2}\}$$

$$+ (k_{n}^{2} - 1)\{\ell_{n}^{2} - 1\}\{c_{n}\alpha_{n}\ell_{n}^{2} + \alpha_{n}b_{n}\ell_{n}^{2}\}\}||x_{n} - q||^{2}$$

$$+ \lambda_{n}\vartheta + \alpha_{n}\ell_{n}^{2}(b_{n}k_{n}^{2}\ell_{n}^{2}\mu_{n}\vartheta + \nu_{n}\vartheta) + \beta_{n}\mu_{n}\ell_{n}^{2}\vartheta$$

$$- \alpha_{n}\ell_{n}^{2}b_{n}(1 - b_{n} - c_{n} - \nu_{n})g(||T^{n}z_{n} - x_{n}||)$$

$$- \alpha_{n}(1 - \alpha_{n} - \beta_{n} - \lambda_{n})g(||T^{n}y_{n} - x_{n}||).$$

$$(3.2)$$

Since $\{k_n\}$, $\{\ell_n\}$ and K are bounded, there exists a constant $\Psi > 0$ such that

$$(c_n \alpha_n \ell_n^2 + \alpha_n b_n \ell_n^2) \|x_n - q\|^2 < \Psi,$$

$$(c_n \alpha_n \ell_n^2 + \alpha_n + \beta_n + \beta_n a_n \ell_n^2 + \alpha_n a_n b_n k_n^2 \ell_n^4 + \alpha_n b_n \ell_n^2) \|x_n - q\|^2 < \Psi,$$

for all $n \ge 1$. By (3.2), we have

$$||x_{n+1} - q||^{2} \leq ||x_{n} - q||^{2} + \Psi\{(k_{n}^{2} - 1) + (\ell_{n}^{2} - 1) + (k_{n}^{2} - 1)(\ell_{n}^{2} - 1)\}$$

$$+ \lambda_{n} + A\nu_{n} + A((k_{n}^{2} - 1)(\ell_{n}^{2} - 1) + B)\mu_{n}$$

$$- \alpha_{n}\ell_{n}^{2}b_{n}(1 - b_{n} - c_{n} - \nu_{n})g(||T^{n}z_{n} - x_{n}||)$$

$$- \alpha_{n}(1 - \alpha_{n} - \beta_{n} - \lambda_{n})g(||I^{n}y_{n} - x_{n}||),$$

$$(3.3)$$

where $A=\sup\{\ell_n^2\vartheta:n\geq 1\}$ and $B=\sup\{(\ell_n^2+k_n^2)\vartheta:n\geq 1\}.$ It follows that

$$\alpha_n \ell_n^2 b_n (1 - b_n - c_n - \nu_n) g(\|T^n z_n - x_n\|)$$

$$\leq \|x_n - q\|^2 - \|x_{n+1} - q\|^2 + \Psi\{(k_n^2 - 1) + (\ell_n^2 - 1) + (k_n^2 - 1)(\ell_n^2 - 1)\}$$

$$+ \lambda_n + A\nu_n + A((k_n^2 - 1)(\ell_n^2 - 1) + B)\mu_n$$
(3.4)

and

$$\alpha_{n}(1 - \alpha_{n} - \beta_{n} - \lambda_{n})g(\|I^{n}y_{n} - x_{n}\|)$$

$$\leq \|x_{n} - q\|^{2} - \|x_{n+1} - q\|^{2} + \Psi\{(k_{n}^{2} - 1) + (\ell_{n}^{2} - 1) + (k_{n}^{2} - 1)(\ell_{n}^{2} - 1)\}$$

$$+ \lambda_{n} + A\nu_{n} + A((k_{n}^{2} - 1)(\ell_{n}^{2} - 1) + B)\mu_{n}. \tag{3.5}$$

- (1) If q is a common fixed point of T and I, the assumption $\sum_{n=1}^{\infty}(k_n^2-1)<\infty$, $\sum_{n=1}^{\infty}(\ell_n^2-1)<\infty$ implies that $\sum_{n=1}^{\infty}(k_n^2-1)<\infty$, $\sum_{n=1}^{\infty}(\ell_n^2-1)<\infty$, then it follows from (3.3) and Lemma 2.2 that $\lim_{n\to\infty}\|x_n-q\|$ exists.
- (2) If $0 < \liminf_{n \to \infty} \alpha_n$ and $0 < \liminf_{n \to \infty} b_n \le \limsup_{n \to \infty} (b_n + c_n + \nu_n) < 1$, then there exists a positive integer n_0 and $\eta, \delta, \delta \in (0, 1)$ such that $0 < \delta < b_n, 0 < \eta < \alpha_n$ and $b_n + c_n + \nu_n < \delta < 1$ for all $n \ge n_0$.

This implies by (3.4) that

$$\eta \delta(1 - \delta) g(\|T^n z_n - x_n\|)$$

$$\leq \|x_n - q\|^2 - \|x_{n+1} - q\|^2 + \Psi\{(k_n^2 - 1) + (\ell_n^2 - 1) + (k_n^2 - 1)(\ell_n^2 - 1)\}$$

$$+ \lambda_n + A\nu_n + A((k_n^2 - 1)(\ell_n^2 - 1) + B)\mu_n$$
(3.6)

for all $n \geq n_0$. It follows from (3.6) that

$$\sum_{n=n_0}^{m} g(\|T^n z_n - x_n\|) \le \frac{1}{\eta \delta(1-\delta)} \sum_{n=n_0}^{m} (\|x_n - q\|^2 - \|x_{n+1} - q\|^2)
+ \Psi \sum_{n=n_0}^{m} \{(k_n^2 - 1) + (\ell_n^2 - 1) + (k_n^2 - 1)(\ell_n^2 - 1)\}
+ \sum_{n=n_0}^{m} (\lambda_n + A\nu_n + A((k_n^2 - 1)(\ell_n^2 - 1) + B)\mu_n). (3.7)$$

Let $m \to \infty$ in (3.7). Since $\sum_{n=1}^{\infty} (k_n^2 - 1) < \infty$ and $\sum_{n=1}^{\infty} (\ell_n^2 - 1) < \infty$, then we get $\sum_{n=n_0}^{m} g(\|T^n z_n - x_n\|) < \infty$. Therefore $\lim_{n \to \infty} g(\|T^n z_n - x_n\|) = 0$. Since g is strictly increasing and continuous at 0 with g(0) = 0, it follows that $\lim_{n \to \infty} \|T^n z_n - x_n\| = 0$.

(3) If $0 < \liminf_{n \to \infty} \alpha_n \le \limsup_{n \to \infty} (\alpha_n + \beta_n + \lambda_n) < 1$, then by using a similar method together with inequality (3.5), it is easy seen that $\lim_{n \to \infty} ||I^n y_n - x_n|| = 0$.

Lemma 3.3. Let X be a real uniformly convex Banach space and K be a nonempty closed, bounded and convex subset of X. Let $T: K \to K$ be a I-asymptotically nonexpansive mapping with $\{k_n\}$ a sequence of real numbers such that $k_n \geq 1$ and $\sum_{n=1}^{\infty} (k_n - 1) < \infty$ and $I: K \to K$ be an asymptotically nonexpansive mapping with $\{\ell_n\}$ a sequence of real numbers such that $\ell_n \geq 1$ and $\sum_{n=1}^{\infty} (\ell_n - 1) < \infty$. Suppose further that the set $F(T) \cap F(I)$ (i.e., $F(T) := \{x \in K: x = Tx\}, F(I) := \{x \in K: x = Ix\}$) is nonempty. Let $\{a_n\}$, $\{b_n\}$, $\{c_n\}$, $\{\mu_n\}$, $\{\nu_n\}$, $\{\alpha_n\}$, $\{\beta_n\}$ and $\{\lambda_n\}$ be real sequences in [0,1], such that $\{a_n + \mu_n\}$, $\{b_n + c_n + \nu_n\}$ and $\{\alpha_n + \beta_n + \lambda_n\}$ in [0,1] for all $n \geq 1$, and $\sum_{n=1}^{\infty} \mu_n < \infty$, $\sum_{n=1}^{\infty} \nu_n < \infty$, $\sum_{n=1}^{\infty} \lambda_n < \infty$, and $\{u_n\}$, $\{v_n\}$ and $\{w_n\}$ are bounded sequences in K. Let $\{x_n\}$, $\{y_n\}$, $\{z_n\}$ be the sequences in K defined by (3.1), then we have the following conclusions:

- (1) If $0 < \liminf_{n \to \infty} b_n \le \limsup_{n \to \infty} (b_n + c_n + \nu_n) < 1$, and
- (2) $0 < \liminf_{n \to \infty} \alpha_n \le \limsup_{n \to \infty} (\alpha_n + \beta_n + \lambda_n) < 1$,

then $\lim_{n\to\infty} ||I^n x_n - x_n|| = 0 = \lim_{n\to\infty} ||T^n x_n - x_n||.$

Proof. By Lemma 3.2 (2) and (3), we have

$$\lim_{n \to \infty} ||T^n z_n - x_n|| = 0, \tag{3.8}$$

and

$$\lim_{n \to \infty} ||I^n y_n - x_n|| = 0. (3.9)$$

From $z_n = a_n I^n x_n + (1 - a_n - \mu_n) x_n + \mu_n u_n$ and $y_n = b_n T^n z_n + c_n T^n x_n + (1 - b_n - c_n - \nu_n) x_n + \nu_n v_n$, we have

$$||x_n - z_n|| = ||a_n I^n x_n + (1 - a_n - \mu_n) x_n + \mu_n u_n - x_n||$$

$$\leq a_n ||I^n x_n - x_n|| + \mu_n ||u_n - x_n||, \tag{3.10}$$

$$||x_n - y_n|| = ||b_n T^n z_n + c_n T^n x_n + (1 - b_n - c_n - \nu_n) x_n + \nu_n v_n - x_n||$$

$$< b_n ||T^n z_n - x_n|| + c_n ||T^n x_n - x_n|| + \nu_n ||v_n - x_n||.$$
(3.11)

From (3.10), we have

$$||T^{n}x_{n} - x_{n}|| \leq ||T^{n}x_{n} - T^{n}z_{n}|| + ||T^{n}z_{n} - x_{n}||$$

$$\leq k_{n}||T^{n}x_{n} - T^{n}z_{n}|| + ||T^{n}z_{n} - x_{n}||$$

$$\leq k_{n}\ell_{n}||x_{n} - z_{n}|| + ||T^{n}z_{n} - x_{n}||$$

$$\leq k_{n}\ell_{n}a_{n}||T^{n}x_{n} - x_{n}|| + k_{n}\ell_{n}\mu_{n}||u_{n} - x_{n}|| + ||T^{n}z_{n} - x_{n}||. (3.12)$$

Thus, from (3.11), we have

$$||I^{n}x_{n} - x_{n}|| \leq ||I^{n}x_{n} - I^{n}y_{n}|| + ||I^{n}y_{n} - x_{n}||$$

$$\leq \ell_{n}||x_{n} - y_{n}|| + ||I^{n}y_{n} - x_{n}||$$

$$\leq \ell_{n}b_{n}||T^{n}z_{n} - x_{n}|| + \ell_{n}^{2}k_{n}c_{n}a_{n}||I^{n}x_{n} - x_{n}|| + \ell_{n}c_{n}||T^{n}z_{n} - x_{n}||$$

$$+ ||I^{n}y_{n} - x_{n}|| + \ell_{n}^{2}k_{n}c_{n}\mu_{n}||u_{n} - x_{n}|| + \ell_{n}\nu_{n}||v_{n} - x_{n}||$$

$$\leq \ell_{n}(b_{n} + c_{n})||T^{n}z_{n} - x_{n}|| + \ell_{n}^{2}k_{n}c_{n}a_{n}||I^{n}x_{n} - x_{n}|| + ||I^{n}y_{n} - x_{n}||$$

$$+ \ell_{n}^{2}k_{n}c_{n}\mu_{n}||u_{n} - x_{n}|| + \ell_{n}\nu_{n}||v_{n} - x_{n}||.$$
(3.13)

By Lemma 3.1, there exists a positive integer N_1 and $\gamma \in (0,1)$ such that $a_n c_n \ell_n^2 k_n < \gamma$ for all $n \geq N_1$. This together with (3.13) implies that for $n \geq N_1$

$$(1 - \gamma) \| I^{n} x_{n} - x_{n} \| < (1 - \ell_{n}^{2} k_{n} c_{n} a_{n}) \| I^{n} x_{n} - x_{n} \|$$

$$\leq \ell_{n} (b_{n} + c_{n}) \| T^{n} z_{n} - x_{n} \| + \| I^{n} y_{n} - x_{n} \|$$

$$+ \ell_{n}^{2} k_{n} c_{n} \mu_{n} \| u_{n} - x_{n} \| + \ell_{n} \nu_{n} \| v_{n} - x_{n} \|.$$

$$(3.14)$$

Taking limit of both sides (3.14), it follows from (3.8) and (3.9) that

$$\lim_{n \to \infty} ||I^n x_n - x_n|| = 0 \tag{3.15}$$

and taking limit of both sides (3.12), it follows from (3.8) and (3.15) that

$$\lim_{n \to \infty} ||T^n x_n - x_n|| = 0. (3.16)$$

Next, in order to prove the main result we need the following statement. Since

$$||I^{n}z_{n} - x_{n}|| \leq ||I^{n}z_{n} - I^{n}x_{n}|| + ||I^{n}x_{n} - x_{n}||$$

$$\leq \ell_{n}||x_{n} - z_{n}|| + ||I^{n}x_{n} - x_{n}||$$

$$= \ell_{n}a_{n}||I^{n}x_{n} - x_{n}|| + ||I^{n}x_{n} - x_{n}|| + \ell_{n}\mu_{n}||u_{n} - x_{n}||,$$
 (3.17)

taking limit of both sides (3.17), it follows from (3.15) that

$$\lim_{n \to \infty} ||I^n z_n - x_n|| = 0.$$
 (3.18)

Theorem 3.4. Let X be a real uniformly convex Banach space and K be a non-empty closed, bounded and convex subset of X. Let T, I be completely continuous asymptotically nonexpansive mappings with $\{k_n\} \subset [1,\infty)$, $\{\ell_n\} \subset [1,\infty)$ and $\sum_{n=1}^{\infty} (k_n-1) < \infty$, $\sum_{n=1}^{\infty} (\ell_n-1) < \infty$. Let $\{a_n\}$, $\{b_n\}$, $\{c_n\}$, $\{\mu_n\}$, $\{\nu_n\}$, $\{\alpha_n\}$, $\{\beta_n\}$ and $\{\lambda_n\}$ be sequences of real numbers in [0,1], such that $\{a_n+\mu_n\}$, $\{b_n+c_n+\nu_n\}$ and $\{\alpha_n+\beta_n+\lambda_n\}$ in [0,1] for all $n\geq 1$, and $\sum_{n=1}^{\infty} \mu_n < \infty$, $\sum_{n=1}^{\infty} \nu_n < \infty$, $\sum_{n=1}^{\infty} \lambda_n < \infty$, and $\{u_n\}$, $\{v_n\}$ and $\{w_n\}$ are bounded sequences in K and

- (1) If $0 < \liminf_{n \to \infty} b_n \le \limsup_{n \to \infty} (b_n + c_n + \nu_n) < 1$, and
- (2) $0 < \liminf_{n \to \infty} \alpha_n \le \limsup_{n \to \infty} (\alpha_n + \beta_n + \lambda_n) < 1$,

Let $\{x_n\}$, $\{y_n\}$, $\{z_n\}$ be the sequences in K defined by (3.1). If $F(T) \cap F(I) \neq \emptyset$, then $\{x_n\}$, $\{y_n\}$, $\{z_n\}$ converge strongly to a common fixed point of T and I.

Proof. By (3.8), (3.9), (3.15), (3.16) and (3.18) in Lemma 3.3, we have

$$\lim_{n \to \infty} ||T^n z_n - x_n|| = 0, \lim_{n \to \infty} ||I^n y_n - x_n|| = 0, \lim_{n \to \infty} ||I^n x_n - x_n|| = 0,$$

$$\lim_{n \to \infty} ||T^n x_n - x_n|| = 0, \lim_{n \to \infty} ||I^n z_n - x_n|| = 0.$$

Since $x_{n+1} - x_n = \alpha_n(I^n y_n - x_n) + \beta_n(I^n z_n - x_n) + \lambda_n(w_n - x_n)$, we have

$$||x_{n+1} - I^n x_{n+1}|| \le ||x_{n+1} - x_n|| + ||I^n x_n - I^n x_{n+1}|| + ||x_n - I^n x_n||$$

$$\le (1 + \ell_n) ||x_{n+1} - x_n|| + ||x_n - I^n x_n||$$

$$\le (1 + \ell_n) \alpha_n ||I^n y_n - x_n|| + (1 + \ell_n) \beta_n ||I^n z_n - x_n||$$

$$+ (1 + \ell_n) \lambda_n ||w_n - x_n|| + ||x_n - I^n x_n||$$

and

$$||x_{n+1} - T^n x_{n+1}|| \le ||x_{n+1} - x_n|| + ||T^n x_n - T^n x_{n+1}|| + ||x_n - T^n x_n||$$

$$\le (1 + k_n \ell_n) ||x_{n+1} - x_n|| + ||x_n - T^n x_n||$$

$$\le (1 + k_n \ell_n) \alpha_n ||I^n y_n - x_n|| + (1 + k_n \ell_n) \beta_n ||I^n z_n - x_n||$$

$$+ (1 + k_n \ell_n) \lambda_n ||w_n - x_n|| + ||x_n - I^n x_n||.$$

It follows from (3.9), (3.15), (3.16) and (3.18) in Lemma 3.3 that we obtain

$$\lim_{n \to \infty} ||x_{n+1} - I^n x_{n+1}|| = 0 \text{ and } \lim_{n \to \infty} ||x_{n+1} - T^n x_{n+1}|| = 0.$$

Thus

$$||x_{n+1} - Ix_{n+1}|| \le ||x_{n+1} - I^{n+1}x_{n+1}|| + ||Ix_{n+1} - I^{n+1}x_{n+1}||$$

$$\le ||x_{n+1} - I^{n+1}x_{n+1}|| + \ell_n ||x_{n+1} - I^nx_{n+1}||$$

$$\to 0 \text{ as } n \to \infty$$

and

$$||x_{n+1} - Tx_{n+1}|| \le ||x_{n+1} - T^{n+1}x_{n+1}|| + ||Tx_{n+1} - T^{n+1}x_{n+1}||$$

$$\le ||x_{n+1} - T^{n+1}x_{n+1}|| + k_1\ell_1||x_{n+1} - T^nx_{n+1}||$$

$$\to 0 \quad as \quad n \to \infty$$

which imply that

$$\lim_{n \to \infty} ||x_n - Ix_n|| = 0 \tag{3.19}$$

and

$$\lim_{n \to \infty} ||x_n - Tx_n|| = 0. {(3.20)}$$

Since I,T are completely continuous and $\{x_n\}\subseteq K$ is bounded, there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $\{Tx_{n_k}\}$ converges. Therefore, from (3.19), (3.20), $\{x_{n_k}\}$ converges. Let $\lim_{k\to\infty}x_{n_k}=q$. By the continuity of T,I and (3.19), (3.20) we have Tq=q and Iq=q, so q is a common fixed point T and I. By Lemma 3.2 (1), $\lim_{n\to\infty}\|x_n-q\|$ exists. But $\lim_{k\to\infty}\|x_{n_k}-q\|=0$. Thus $\lim_{n\to\infty}\|x_n-q\|=0$. Since

$$||y_n - x_n|| \le b_n ||T^n z_n - x_n|| + c_n ||T^n x_n - x_n|| + \nu_n ||v_n - x_n|| \to 0 \text{ as } n \to \infty$$

and

$$||z_n - x_n|| \le a_n ||I^n x_n - x_n|| + \mu_n ||u_n - x_n|| \to 0 \text{ as } n \to \infty,$$

it follows that $\lim_{n\to\infty} y_n = q$ and $\lim_{n\to\infty} z_n = q$.

Finally, we prove the weak convergence of the iterative scheme (3.1) for *I*-asymptotically nonexpansive mappings in a uniformly convex Banach space satisfying Opial's condition.

Theorem 3.5. Let X be a real uniformly convex Banach space satisfying Opial's condition and K be a nonempty closed, bounded and convex subset of X. Let $T: K \to K$ be a I-asymptotically nonexpansive mapping with $\{k_n\}$ a sequence of real numbers such that $k_n \geq 1$ and $\sum_{n=1}^{\infty} (k_n - 1) < \infty$ and $I: K \to K$ be an asymptotically nonexpansive mapping with $\{\ell_n\}$ a sequence of real numbers such that $\ell_n \geq 1$ and $\sum_{n=1}^{\infty} (\ell_n - 1) < \infty$. Let $\{a_n\}$, $\{b_n\}$, $\{c_n\}$, $\{\mu_n\}$, $\{\nu_n\}$, $\{\alpha_n\}$, $\{\beta_n\}$

and $\{\lambda_n\}$ be sequences of real numbers in [0,1], such that $\{a_n + \mu_n\}$, $\{b_n + c_n + \nu_n\}$ and $\{\alpha_n + \beta_n + \lambda_n\}$ in [0,1] for all $n \geq 1$, and $\sum_{n=1}^{\infty} \mu_n < \infty$, $\sum_{n=1}^{\infty} \nu_n < \infty$, $\sum_{n=1}^{\infty} \lambda_n < \infty$, and $\{u_n\}$, $\{v_n\}$ and $\{w_n\}$ are bounded sequences in K and

- (1) If $0 < \liminf_{n \to \infty} b_n \le \limsup_{n \to \infty} (b_n + c_n + \nu_n) < 1$, and
- (2) $0 < \liminf_{n \to \infty} \alpha_n \le \limsup_{n \to \infty} (\alpha_n + \beta_n + \lambda_n) < 1$,

Let $\{x_n\}$, $\{y_n\}$, $\{z_n\}$ be the sequences in K defined by (3.1). If $F(T) \cap F(I) \neq \emptyset$, then $\{x_n\}$, $\{y_n\}$, $\{z_n\}$ converge weakly to a common fixed point of T and I.

Proof. It follows from Theorem 3.4 that $\lim_{n\to\infty} \|x_n - Tx_n\| = \lim_{n\to\infty} \|x_n - Ix_n\| = 0$. Since X is uniformly convex and $\{x_n\}$ is bounded, we may assume that $x_n \to q_1$ weakly as $n \to \infty$, without loss of generality. By Lemma 2.1, we have $q_1 \in F(T) \cap F(I)$. We assume that q_1 and q_2 are weak limits of the subsequences $\{x_{n_k}\}$, $\{x_{n_j}\}$ of $\{x_n\}$, respectively. By (3.19), (3.20) and E-T and E-I are demiclosed by Lemma 2.1, $Tq_1 = q_1$, $Iq_1 = q_1$ and in the same way, $Tq_2 = q_2$, $Iq_2 = q_2$. Therefore, we have $q_1, q_2 \in F(T) \cap F(I)$. By Lemma 3.2 (1), $\lim_{n\to\infty} \|x_n - q_1\|$ and $\lim_{n\to\infty} \|x_n - q_2\|$ exist. It follows from Lemma 2.5 that $q_1 = q_2$. Therefore $\{x_n\}$ converges weakly to a common fixed point of T and T. Moreover, $\lim_{n\to\infty} \|y_n - x_n\| = 0 = \lim_{n\to\infty} \|z_n - z_n\|$ as proved in Theorem 3.4 and $x_n \to q_1$ weakly as $n \to \infty$, therefore $y_n \to q_1$ weakly as $n \to \infty$ and $z_n \to q_1$ weakly as $n \to \infty$. This completes the proof.

References

- [1] J.U. Jeong, Weak and strong convergence of the Noor iteration process for two asymptotically nonexpansive mappings, J. Appl. Math. Computing 23 (1-2) (2007) 525–536.
- [2] W. Takahashi, T. Tamura, Convergence theorems for pair of nonexpansive mappings, J. Convex Anal. 5 (1) (1998) 45–48.
- [3] K. Nammanee, M.A. Noor, S. Suantai, Convergence criteria of modified Noor iterations with errors for asymptotically nonexpansive mappings, J. Math. Anal. Appl. 314 (2006) 320–334.
- [4] K. Goebel, W.A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35 (1972) 171–174.
- [5] B.E. Rhoades, S. Temir, Convergence theorems for *I*-nonexpansive mapping, IJMMS, Volume 2006, Article ID 63435, Pages 1–4.
- [6] S. Temir, O. Gul, Convergence theorem for *I*-asymptotically quasinonexpansive mapping in Hilbert space, J. Math. Anal. Appl. 329 (2007) 759–765.
- [7] S. Temir, On the convergence theorems of implicit iteration process for a finite family of *I*-asymptotically nonexpansive mappings, J. Comp. Appl. Math. 225 (2009) 398–405.

- [8] M.A. Noor, New approximation schemes for general variational inequalities, J. Math. Analy. Appl. 251 (2000) 217–229.
- [9] R. Glowinski, P. Le Tallec, Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics, SIAM, Philadelphia, 1989.
- [10] B.L. Xu, M.A. Noor, Fixed point iterations for asymptotically nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 267 (2002) 444–453.
- [11] S. Suantai, Weak and strong convergence criteria of Noor iterations for asymptotically nonexpansive mappings, J. Math. Anal. Appl. 311 (2) (2005) 506–517.
- [12] I. Ishikawa, Fixed point by a new iteration method, Proc. Amer. Math. Soc. 44 (1974) 147–150.
- [13] W.R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953) 506–510.
- [14] G. Das, J.P. Debata, Fixed points of quasi-nonexpansive mapping, Indian J. Pure Appl. Math. 17 (1986) 1263–1269.
- [15] S.H. Khan, W. Takahashi, Approximating common fixed points of two asymptotically nonexpansive mappings, Sci. Math. Japon 53 (1) (2001) 143–148.
- [16] Z. Opial, Weak convergence of successive approximations for nonexpansive mappings. Bull. Amer. Math. Soc. 73 (1967) 591–597.
- [17] J. Gornicki, Weak convergence theorems for asymptotically nonexpansive mappings in uniformly Banach spaces, Comment. Math. Univ. Carolin. 301 (1989) 249–252.
- [18] K.K. Tan, H.K. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa iterative process, J. Math. Anal. Appl. 178 (1993) 301–308.
- [19] H.K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal. 16 (1991) 1127–1138.

(Received 9 November 2010) (Accepted 19 March 2012)

 $T{\rm HAI}~J.~M{\rm ATH}.~Online~@$ http://thaijmath.in.cmu.ac.th