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Abstract : Recently, Edely and Mursaleen [1] defined statistically A-summability
of a sequence z = (zx). In this paper we define B-statistically A-summability
of z, that is, x is said to be B-statistically A-summable if Ax is B-statistically
convergent; where A and B are non-negative regular matrices. We study here
other related concepts and provide some interesting examples.
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1 Introduction and Preliminaries

Let I and ¢ denote the spaces of all bounded and convergent sequences,
respectively. Let A = (ank), ,—; be an infinite matrix and = (x1),—, be a
number sequence. By Az = (A, (z)), we denote the A-transform of the sequence
x = (xx), where A,, (x) = >, | ankzy. For any two sequence spaces X and Y, we
denote by (X,Y) a class of matrices A such that Az € Y for z € X, provided that
the series 220:1 ankxy converges for each n. If in addition lim Az = lim z, then we
denote such a class by (X,Y), .. A matrix A is called regular, i.e. A € (¢, ¢)yeq if
A € (¢,¢) and lim, A, (x) = limy a2y, for all € ¢. The well-known necessary and
sufficient conditions (Silverman-Toeplitz) for A to be regular are

(1) [[A[l = supy, >y |ank| < o003

(i) lim, ang = 0, for each k;
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(ili) limp >, ank = 1.

The concept of statistical convergence was first introduced by Fast [2]. In 1953,
the concept arises as an example of convergence in density as introduced by Buck
[3]. Schoenberg [4] studied statistical convergence as a summability method and
Zygmund [5] established a relation between it and strong summability. This idea
has grown a little fast after the paper of Salat [6], Fridy [7], Connor [8], Kolk [9],
Mursaleen [10], Mursaleen and Edely [11] and many others.

Let K C N, the set of natural numbers. Then the natural density of K is
defined by

5(K):liml|{k§n:k€K}|,
non

if the limit exists, where the vertical bars denote the cardinality of the enclosed
set. Notice that

S(K) = lim = | K, | = Hm(Chy o ),
n n n

where Cy = (C, 1) is the Cesaro matrix of order 1 and x, denotes the characteristic
sequence of K given by

(0, if i¢K,
(XK>i_{ 1, if i€ K.

A sequence x = (xy) of real numbers is said to be statistically convergent to
the number L provided that for every € > 0 the set K(¢) = {k € N: |zy — L| > ¢}
has natural density zero; in this case we write st-limxz = L. By the symbol
st we denote the set of all statistically convergent sequences. Notice that every
convergent sequence is statistically convergent to the same limit but not conversely,
for example let

o = { k; if k is a square,
0; otherwise,

here z is unbounded even so it is statistically convergent to zero.
Freedmann and Sember [12] generalized the natural density by replacing C4
with an arbitrary non-negative regular matrix A. A subset K of N has A-density

if
da(K) = 117rln Z Ank
keK
exists. Connor [13, 14] and Kolk [9] extended the idea of statistical convergence
to A-statistical convergence by using the notion of A-density.

A sequence z is said to be A-statistically convergent to L if §4(K (e)) = 0 for
every € > 0. In this case we write st4-limx, = L. By the symbol st4 we denote
the set of all A-statistically convergent sequences.

The idea of statistical (C, 1)-summability was introduce by Moricz [15]. In [1],
Edely and Mursaleen generalized these statistical summability methods by defin-
ing the statistical A-summability and studied its relationship with A-statistical
convergence. For more general case of A-statistical convergence, we refer to [16].
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Let A = (a;;) be a non-negative regular matrix. A sequence z is said to be
statistically A-summable to L if for every € > 0, 0({i <n:|y; — L| > €}) =0, i.e.

1
lim—|{i <n:|y; — L| >e€}| =0,
non

where y; = A;(x). Thus z is statistically A-summable to L if and only if Ax is
statistically convergent to L. In this case we write L = (A)g-limz = st-lim Ax.
By (A)s: we denote the set of all statistically A-summable sequences.

2 Some New Definitions and Examples

In this section we define B-statistically A-summable for a non-negative regular
matrices A and B.

Definition 2.1. Let A = (a;5) and B = (bnx) be two non-negative regular matri-
ces. A sequence z = (xy) of real numbers is said to be B-statistically A-summable
to L, if for every € > 0, the set K. = {i : |y; — L| > €} has B-density zero, thus

0 (K¢) =lim > bpg = lim (Bxk,) = im) barxk. (k) =0,
" keK. n nok

where y; = A;(z) = }_;a;;7;. In this case we denote by L = (A4), -limz = stp-
lim Az. The set of all B-statistically A-summable sequences will be denoted by
(4)
Remark 2.2.

1. If B = (C,1) matriz, then (A),, . is reduced to the set of statistically A-
summable sequences due to Edely and Mursaleen [1].

2. If A= B = (C,1) matriz, then (A),, is reduced to the set of statistically
(C,1)-summable sequences due to Moricz [15].

stp

3. If a sequence is convergent then it is B-statistically A-summable, since Ax
converge and has B-density zero, but not conversely.

4. The spaces st, stp, (A),, and (A),,, are not comparable, even if A =
B(#(C,1)).
5. If a sequence is A-summable then it is B-statistically A-summable.

6. If a sequence is bounded and A-statistically convergent, then it is A-summable
and hence statistically A-summable (see [1, Theorem 2.1]) and B-statistically
A-summable but not conversely.

Example 2.3.
1. Let us define A = (a;;), B = (bnx) and x = (zx) by
a2
aij_{ L if j=i?,

0; otherwise,
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and
| 1; if k is an odd,
R T if k is an even.

Then
(o] . . .
Za v — 1; if @ is an odd,
— Y9I 0; if 4 ds an even.
=

Here v ¢ st, v ¢ (A),,, & sta, x ¢ (A),,, but x is B-statistically A-summable
to 1, since 0p{i:|yi — 1| > €} = 0. On the other hand we can see that x is B-
summable and hence x is B-statistically B-summable, A-statistically B-summable,
B-statistically convergent and statistically B-summable.

2. Let A = (ank) and x = (xy) be defined as

1/2; if n is a nonsquare and k = n% k =n? +1,

Ak = 1; if n is a square and k = n?,
0; otherwise,
and
1; if k =n?,
T = .
k; otherwise,
then

> { 1/2; if n is a nonsquare,

Zankxk = 2. . .

Pt n®; if n is a square.
Here x is unbounded but statistically A-summable to 1/2, also x is statistically
A-bounded, since 6{i : ly;| > 3} =0 but x is not A-summable. Now if we take B
as in Example 2.3(1), we see that x is not B-statistically A-summable.

3. Let A = (ank) and x = (xy) be defined as Example 2.3(2) and define the
matriz B as
1; n=k,n is a nonsquare,
bk = 1; n=k—1,n is a square,
0; otherwise,

here x is B-statistically A-summable to %
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3 B-Statistically A-Cluster and Limit Points

The following definitions are analogue of statistical limit points, cluster points
defined by Fridy [17].

Definition 3.1. The number 7 is said to be B-statistically A-cluster point of a
sequence z if for every € > 0 the set {i : | y; — v | < &} does not have B-density
Z€ro.

Definition 3.2. The number A is said to be B-statistically A-limit point of a
sequence z if there is a subsequence of (y;) which converges to A such that whose
indices do not have B-density zero.

We denote by T 4., (B) the set of B-statistically A-cluster points and by A4, (B)
the set of B-statistically A-limit points of x.

Like Fridy and Orhan [18], Demirci [19] has defined A-statistical limit superior
(inferior) and statistical bounded. Here we define B-statistically A-limit superior
(inferior) and B-statistically A-bounded.

Definition 3.3. Let us write

G={geR:0p({i:yi>g}) #0}and F ={f e R:op({i:y; < f}) # 0},

for a number sequence x = (z1). Then we define the B-statistically A-limit supe-
rior and B-statistically A-limit inferior of = as follows:

sup G, G # o,
, G =9,

—00

stg — limsup Ax = {

and
inf F, F+g,

stgp — liminf Az = { +o00, reo

Definition 3.4. The number sequence z is said to be B-statistically A-bounded
if there is a number M such that ép({i: | y; | > M}) =0.

Example 3.5.

1. From Ezample 2.3(1) we see that Aa,(B) = {1} = Ta4(B), also stp-
limsup Az = 1 = stp-liminf Az, since G = (—o0,1) and F = (1,00) . Moreover x
is bounded and Ax is also bounded and hence x is B-statistically A-bounded.

2. From Ezample 2.3(2) we see that Aus(B) = {3} = Tas(B), also stp-

limsup Az = oo, stg-liminf Az = %, since G =R and F = (%, oo) . Moreover x is

not B-statistically A-bounded, since 0 ({7 : |yi| > M}) # 0 for every number M.

3. From Ezample 2.3(3) we see that Aay(B) = {1} = Tas(B), also stp-
limsup Az = stg-liminf Az = %, since G = (—oo, %) and F = (%, oo) . Moreover
x is B-statistically A-bounded, since the set {z sy > %} has B-density zero.
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The following result can be proved by straightforward least upper bound
argument.

Theorem 3.6.

(a) If Iy = stp-limsup Ax is finite, then for every positive number e
53({1 LY > 1 — E}) 75 0 and 53({1 LY > I + E}) =0. (31)

Conversely, if (3.1) holds for every e > 0 then |1 = stp-limsup Ax.

(b) If lo = stp-liminf Az is finite, then for every positive number &
(SB({Z ty < lo + E}) 75 0 and (SB({Z sy < lg — E}) =0. (32)
Conversely, if (3.2) holds for every e > 0 then ly = stg-liminf Ax.

From the definition we see that the above theorem can be interpreted as saying
that stp-limsup Ax and stp-liminf Ax are the greatest and least B-statistical A-
cluster points of .

Note that B-statistical A-boundedness implies that stp-limsup Az and stpg-
lim inf Az are finite, so that properties (3.1) and (3.2) of Theorem 3.6 hold good.

Now we produce B-analogue of the results of Fridy and Orhan [18]. By
dp(K) # 0 we mean that either dp(K) > 0 or K fails to have B-density.

Theorem 3.7. For any real number sequence x
stg-liminf Az < stg-limsup Ax.

Proof. First consider the case in which stg-limsup Ax = —oo. This implies that
G = (). Therefore for every g € R, dp({i : y; > g}) = 0, which implies that
dp({i : y; < g}) = 1. So that for every f € R, dg({k : zx < f}) # 0. Hence
stp-liminf Ax = —oo0.

Now consider stp-limsupz = 4o00. This implies that for every g € R, d5({i :
y; > g}) # 0. This means that dp({i : y; < g}) = 0. Therefore for every f €
R,6p({¢:y; < f}) = 0, which implies that F' = 0. Hence stp-liminf Az = +o0.

Next we assume that [y = stg-limsup Az < oo and let lo = stg-liminf Az.
Given £ > 0 we show that I; + & € F, so that lo <y +¢. By Theorem 3.6, i ({i :
yi > li+¢/2}) =0, since I3 = lub G. This implies that ép({i : y; <11 +€/2}) =1,
which in turn gives dp({i : v; < 1 +¢}) = 1. Hence l; + ¢ € F and so that
lo <11 +¢,ie. Iy <l since € was arbitrary. O

Remark 3.8. For any number sequence x,
liminf z < liminf Az < stg-liminf Ax < stg-limsup Az < limsup Az < limsup z.

Theorem 3.9. The B-statistically A-bounded sequence x is B-statistically A-
summable if and only if

stg-liminf Ax = stp-limsup Ax.
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Proof. Let [y = stp-limsup Az and Iy = stp-liminf Az. First assume that stp-
limAx =1 and € > 0. Then 6p({i : | yi —1 | > ¢}) = 0, so that op({i : yv; >
[ +e}) =0, which implies that I3 < 1. Also ép({i: y; <! —e}) =0, which implies
that [ < l5. By Theorem 3.7, we finally have {1 = [5.

Conversely, suppose that [y = lo = | and x are B-statistically A-bounded.
Then for € > 0, by Theorem 3.6, we have dp({i : v; > [ +¢/2}) = 0, and
dp({i:y; <l—¢/2})=0. Hence stp-lim Az = I. O

4 Relation Between (A),;, (4),,, and B-Summability

Now we establish some relations between B-summability, B-statistically A-
summability and statistically A-summability.

Theorem 4.1. Let x be bounded sequence and x is statistically A-summable to l.
Then Az is B-summable to | if B is a non-negative reqular matriz satisfies

limank =0 for every set K C N, such that §(K) = 0. (4.1)
keK

Proof. Let x € l. Since A is regular then Az € [, and let = be statistically
A-summable to I and K. = {i: |y; — | > €}. Then

((By)n =1 < D baklys = D]+ | D bakye — 1)
kg K KEK
< Ezbnk + sup |yk - l| ank
kK k kEK

Now by using the definition of statistically A-summability and the condition (4.1)
we get lim,, |(Bx),-l| = 0, since € was arbitrary. O

Remark 4.2. We can not replace x € loo by weaker assumption of a statistical

bounded.
Example 4.3. Let

1; if n is nonsquare, k = n2,
Gnk = %; if n is a square, k =n?k=n%+1,
0; otherwise,
and
0; if k=n?,
xp=< k; ifk=n%+1,
1; otherwise,
then

o0 ) )
AT { 0; if n is nonsquare,

E nkTh =3 1 2 A

k=1 2 (” + 1) ; if n is a square.
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Here x is statistically bounded since the set {k : |xi| > 1} has density zero, also x
is statistically A-summable to zero. Take B = Cy the Cesaro matriz of order 1.
1t is clear that Cy satisfies all the conditions of B in Theorem 4.1, but Az is not
B-summable.

Corollary 4.4. Let x be bounded sequence and x be B-statistically A-summable
tol. Then Ax is B-summable to [.

Theorem 4.5. If the number sequence Az is bounded above and B-summable to
the number | = stg-limsup Az, then x is B-statistically A-summable to [.

Proof. Suppose that Ax is not B-statistically A-summable tol. Then stp-liminf Az
< I, so there is a number M < [ such that 6p({i : yv; < M}) # 0. Let
Ky = {i:y;, < M}. Then for every ¢ > 0, ép({i : y; > I +¢€}) = 0. Write
Ko={i:M<y <l+e} ,Ks={i:y;>l+¢€}, and let G = sup, y; < oo.
Since dp(K1) # 0, there are many n such that

lim sup Z bpr > d >0,
" keK,

and for each n

oo
Z | bnkyk | < 00.
k=1

Now

gbnkyk— <Z +> + Z)bnkyk

keKq keKo keKs

keK, keKso keKs
=MD b+ (1+6)D b —(+2) D b +0(1)
keK, k=1 ke K,

= _ Z bnk(—M+(l+s))+(l+a)§:bnk+O(1)

keK’ k=1
<1 b —d(l—M)+e (ank —d) +0(1).
k=1 k=1

Since ¢ is arbitrary, it follows that
liminf By <l —-d(l— M) <.
Hence Az is not B-summable to [. O

The following is the dual statement of Theorem 4.5.
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Theorem 4.6. If the number sequence Ax is bounded below and B-summable to
the number | = stp-liminf Az, then = is B-statistically A-summable to l.

Remark 4.7. The above Theorems 4.5 and 4.6, the boundedness of Ax can not
be omitted or even replaced by the B-statistical boundedness.

Example 4.8. Define the sequence © = (xy) by

1, if k is an even nonsquare,

0, if k is an odd nonsquare,

T = PR
k k, if k is an even square,

1, if k is an odd square,

and
1, if n is nonsquare and k =n? + 1,
Ank = 1, if n is a square and k = n?,
0, otherwise,
then

1, ifismn an odd nonsquare,
5 1, ifn is an odd square,
kTl — . .
i 0, ifn is an even square,
n?, if n is an even square.

Now let us define a matrix B = (bni) as

1, if n =k, n is an even nonsquare,
1, ifn=k—2,n is an even square,
b — 1, if n ==k, n is an odd square,
"N 1, ifn=k+1, nis an odd and (n — 1) nonsquare,
1,ifn=k—1,nis an odd and (n—1) square,
0, otherwise.
We can see that Az is B-statistically bounded since the set {i: |y;| > 1} has B-
density zero, also Ax is B-summable to 1, but Az is not B-statistically summable
to any number L.
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