B-Statistically A-Summability

Osama H. H. Edely
Department of Mathematics and Computer, Tafila Technical University
P.O. Box 179, Tafila-66110, Jordan
e-mail : osamaedely@yahoo.com

Abstract

Recently, Edely and Mursaleen [1] defined statistically A-summability of a sequence $x=\left(x_{k}\right)$. In this paper we define B-statistically A-summability of x, that is, x is said to be B-statistically A-summable if $A x$ is B-statistically convergent; where A and B are non-negative regular matrices. We study here other related concepts and provide some interesting examples.

Keywords : statistical convergence; A-statistical convergence; A-summability; statistical A-summability; B-statistical A-summability.
2010 Mathematics Subject Classification : 40C $05 ; 40 \mathrm{H} 05$.

1 Introduction and Preliminaries

Let l_{∞} and c denote the spaces of all bounded and convergent sequences, respectively. Let $A=\left(a_{n k}\right)_{n, k=1}^{\infty}$ be an infinite matrix and $x=\left(x_{k}\right)_{k=1}^{\infty}$ be a number sequence. By $A x=\left(A_{n}(x)\right)$, we denote the A-transform of the sequence $x=\left(x_{k}\right)$, where $A_{n}(x)=\sum_{k=1}^{\infty} a_{n k} x_{k}$. For any two sequence spaces X and Y, we denote by (X, Y) a class of matrices A such that $A x \in Y$ for $x \in X$, provided that the series $\sum_{k=1}^{\infty} a_{n k} x_{k}$ converges for each n. If in addition $\lim A x=\lim x$, then we denote such a class by $(X, Y)_{\text {reg }}$. A matrix A is called regular, i.e. $A \in(c, c)_{\text {reg }}$ if $A \in(c, c)$ and $\lim _{n} A_{n}(x)=\lim _{k} x_{k}$ for all $x \in c$. The well-known necessary and sufficient conditions (Silverman-Toeplitz) for A to be regular are
(i) $||A||=\sup _{n} \sum_{k}\left|a_{n k}\right|<\infty$;
(ii) $\lim _{n} a_{n k}=0$, for each k;

Copyright © 2013 by the Mathematical Association of Thailand. All rights reserved.

(iii) $\lim _{n} \sum_{k} a_{n k}=1$.

The concept of statistical convergence was first introduced by Fast [2]. In 1953, the concept arises as an example of convergence in density as introduced by Buck [3]. Schoenberg [4] studied statistical convergence as a summability method and Zygmund [5] established a relation between it and strong summability. This idea has grown a little fast after the paper of Salat [6], Fridy [7], Connor [8], Kolk [9], Mursaleen [10], Mursaleen and Edely [11] and many others.

Let $K \subseteq \mathbb{N}$, the set of natural numbers. Then the natural density of K is defined by

$$
\delta(K)=\lim _{n} \frac{1}{n}|\{k \leq n: k \in K\}|,
$$

if the limit exists, where the vertical bars denote the cardinality of the enclosed set. Notice that

$$
\delta(K)=\lim _{n} \frac{1}{n}\left|K_{n}\right|=\lim _{n}\left(C_{1} \chi_{K}\right)_{n},
$$

where $C_{1}=(C, 1)$ is the Cesàro matrix of order 1 and χ_{K} denotes the characteristic sequence of K given by

$$
\left(\chi_{K}\right)_{i}= \begin{cases}0, & \text { if } \\ 1 \notin K, & \text { if } \\ i \in K .\end{cases}
$$

A sequence $x=\left(x_{k}\right)$ of real numbers is said to be statistically convergent to the number L provided that for every $\epsilon>0$ the set $K(\epsilon)=\left\{k \in \mathbb{N}:\left|x_{k}-L\right| \geq \epsilon\right\}$ has natural density zero; in this case we write $s t-\lim x=L$. By the symbol st we denote the set of all statistically convergent sequences. Notice that every convergent sequence is statistically convergent to the same limit but not conversely, for example let

$$
x_{k}= \begin{cases}k ; & \text { if } k \text { is a square, } \\ 0 ; & \text { otherwise },\end{cases}
$$

here x is unbounded even so it is statistically convergent to zero.
Freedmann and Sember [12] generalized the natural density by replacing C_{1} with an arbitrary non-negative regular matrix A. A subset K of \mathbb{N} has A-density if

$$
\delta_{A}(K)=\lim _{n} \sum_{k \in K} a_{n k}
$$

exists. Connor $[13,14]$ and Kolk [9] extended the idea of statistical convergence to A-statistical convergence by using the notion of A-density.

A sequence x is said to be A-statistically convergent to L if $\delta_{A}(K(\epsilon))=0$ for every $\epsilon>0$. In this case we write $s t_{A}$ - $\lim x_{k}=L$. By the symbol $s t_{A}$ we denote the set of all A-statistically convergent sequences.

The idea of statistical ($C, 1$)-summability was introduce by Moricz [15]. In [1], Edely and Mursaleen generalized these statistical summability methods by defining the statistical A-summability and studied its relationship with A-statistical convergence. For more general case of A-statistical convergence, we refer to [16].

Let $A=\left(a_{i j}\right)$ be a non-negative regular matrix. A sequence x is said to be statistically A-summable to L if for every $\epsilon>0, \delta\left(\left\{i \leq n:\left|y_{i}-L\right| \geq \epsilon\right\}\right)=0$, i.e.

$$
\lim _{n} \frac{1}{n}\left|\left\{i \leq n:\left|y_{i}-L\right| \geq \epsilon\right\}\right|=0
$$

where $y_{i}=A_{i}(x)$. Thus x is statistically A-summable to L if and only if $A x$ is statistically convergent to L. In this case we write $L=(A)_{s t}-\lim x=s t$ - $\lim A x$. By $(A)_{s t}$ we denote the set of all statistically A-summable sequences.

2 Some New Definitions and Examples

In this section we define B-statistically A-summable for a non-negative regular matrices A and B.

Definition 2.1. Let $A=\left(a_{i j}\right)$ and $B=\left(b_{n k}\right)$ be two non-negative regular matrices. A sequence $x=\left(x_{k}\right)$ of real numbers is said to be B-statistically A-summable to L, if for every $\epsilon>0$, the set $K_{\epsilon}=\left\{i:\left|y_{i}-L\right| \geq \epsilon\right\}$ has B-density zero, thus

$$
\delta_{B}\left(K_{\epsilon}\right)=\lim _{n} \sum_{k \in K_{\epsilon}} b_{n k}=\lim _{n}\left(B \chi_{K_{\epsilon}}\right)=\lim _{n} \sum_{k} b_{n k} \chi_{K_{\epsilon}}(k)=0,
$$

where $y_{i}=A_{i}(x)=\sum_{j} a_{i j} x_{j}$. In this case we denote by $L=(A)_{s t_{B}}-\lim x=s t_{B^{-}}$ $\lim A x$. The set of all B-statistically A-summable sequences will be denoted by $(A)_{s t_{B}}$.

Remark 2.2.

1. If $B=(C, 1)$ matrix, then $(A)_{\text {st }_{B}}$ is reduced to the set of statistically A summable sequences due to Edely and Mursaleen [1].
2. If $A=B=(C, 1)$ matrix, then $(A)_{\text {st }_{B}}$ is reduced to the set of statistically ($C, 1$)-summable sequences due to Moricz [15].
3. If a sequence is convergent then it is B-statistically A-summable, since $A x$ converge and has B-density zero, but not conversely.
4. The spaces st, st ${ }_{B},(A)_{s t}$ and $(A)_{s t_{B}}$ are not comparable, even if $A=$ $B(\neq(C, 1))$.
5. If a sequence is A-summable then it is B-statistically A-summable.
6. If a sequence is bounded and A-statistically convergent, then it is A-summable and hence statistically A-summable (see [1, Theorem 2.1]) and B-statistically A-summable but not conversely.

Example 2.3.

1. Let us define $A=\left(a_{i j}\right), B=\left(b_{n k}\right)$ and $x=\left(x_{k}\right)$ by

$$
a_{i j}=\left\{\begin{array}{l}
1 ; \text { if } j=i^{2} \\
0 ; \text { otherwise }
\end{array}\right.
$$

$$
b_{n k}=\left(\begin{array}{ccccccccccccc}
1 & 0 & 0 & 0 & 0 & . & . & . & . & . & . & . & . \\
\frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 & . & . & . & . & . \\
\frac{1}{3} & 0 & \frac{1}{3} & 0 & \frac{1}{3} & 0 & 0 & 0 & . & . & . & . & . \\
\frac{1}{4} & 0 & \frac{1}{4} & 0 & \frac{1}{4} & 0 & \frac{1}{4} & 0 & 0 & 0 & 0 & . & . \\
\frac{1}{5} & 0 & 0 & . & . \\
. & . & . & . & . & . & . & . & . & . & . & . & . \\
. & . & . & . & . & . & . & . & . & . & . & . & .
\end{array}\right),
$$

and

$$
x_{k}=\left\{\begin{array}{lll}
1 ; & \text { if } k & \text { is an odd } \\
0 ; & \text { if } k & \text { is an even } .
\end{array}\right.
$$

Then

$$
\sum_{j=1}^{\infty} a_{i j} x_{j}= \begin{cases}1 ; & \text { if } i \text { is an odd } \\ 0 ; & \text { if } i \text { is an even }\end{cases}
$$

Here $x \notin s t, x \notin(A)_{s t}, x \notin s t_{A}, x \notin(A)_{s t_{A}}$ but x is B-statistically A-summable to 1 , since $\delta_{B}\left\{i:\left|y_{i}-1\right| \geq \epsilon\right\}=0$. On the other hand we can see that x is B summable and hence x is B-statistically B-summable, A-statistically B-summable, B-statistically convergent and statistically B-summable.
2. Let $A=\left(a_{n k}\right)$ and $x=\left(x_{k}\right)$ be defined as

$$
a_{n k}= \begin{cases}1 / 2 ; & \text { if } n \text { is a nonsquare and } k=n^{2}, k=n^{2}+1, \\ 1 ; & \text { if } n \text { is a square and } k=n^{2} \\ 0 ; & \text { otherwise }\end{cases}
$$

and

$$
x_{k}= \begin{cases}1 ; & \text { if } k=n^{2} \\ k ; & \text { otherwise }\end{cases}
$$

then

$$
\sum_{k=1}^{\infty} a_{n k} x_{k}= \begin{cases}1 / 2 ; & \text { if } n \text { is a nonsquare } \\ n^{2} ; & \text { if } n \text { is a square }\end{cases}
$$

Here x is unbounded but statistically A-summable to $1 / 2$, also x is statistically A-bounded, since $\delta\left\{i:\left|y_{i}\right|>\frac{1}{2}\right\}=0$ but x is not A-summable. Now if we take B as in Example 2.3(1), we see that x is not B-statistically A-summable.
3. Let $A=\left(a_{n k}\right)$ and $x=\left(x_{k}\right)$ be defined as Example 2.3(2) and define the matrix B as

$$
b_{n k}=\left\{\begin{array}{l}
1 ; n=k, n \text { is a nonsquare } \\
1 ; n=k-1, n \text { is a square } \\
0 ; \text { otherwise }
\end{array}\right.
$$

here x is B-statistically A-summable to $\frac{1}{2}$.

$3 \quad B$-Statistically A-Cluster and Limit Points

The following definitions are analogue of statistical limit points, cluster points defined by Fridy [17].

Definition 3.1. The number γ is said to be B-statistically A-cluster point of a sequence x if for every $\varepsilon>0$ the set $\left\{i:\left|y_{i}-\gamma\right|<\varepsilon\right\}$ does not have B-density zero.

Definition 3.2. The number λ is said to be B-statistically A-limit point of a sequence x if there is a subsequence of $\left(y_{i}\right)$ which converges to λ such that whose indices do not have B-density zero.

We denote by $\Gamma_{A x}(B)$ the set of B-statistically A-cluster points and by $\Lambda_{A x}(B)$ the set of B-statistically A-limit points of x.

Like Fridy and Orhan [18], Demirci [19] has defined A-statistical limit superior (inferior) and statistical bounded. Here we define B-statistically A-limit superior (inferior) and B-statistically A-bounded.

Definition 3.3. Let us write

$$
G=\left\{g \in \mathbb{R}: \delta_{B}\left(\left\{i: y_{i}>g\right\}\right) \neq 0\right\} \text { and } F=\left\{f \in \mathbb{R}: \delta_{B}\left(\left\{i: y_{i}<f\right\}\right) \neq 0\right\}
$$

for a number sequence $x=\left(x_{k}\right)$. Then we define the B-statistically A-limit superior and B-statistically A-limit inferior of x as follows:

$$
s t_{B}-\limsup A x= \begin{cases}\sup G, & G \neq \varnothing \\ -\infty, & G=\varnothing\end{cases}
$$

and

$$
s t_{B}-\liminf A x= \begin{cases}\inf F, & F \neq \varnothing \\ +\infty, & F=\varnothing\end{cases}
$$

Definition 3.4. The number sequence x is said to be B-statistically A-bounded if there is a number M such that $\delta_{B}\left(\left\{i:\left|y_{i}\right|>M\right\}\right)=0$.

Example 3.5.

1. From Example 2.3(1) we see that $\Lambda_{A x}(B)=\{1\}=\Gamma_{A x}(B)$, also st B^{-} $\limsup A x=1=s t_{B}-\lim \inf A x$, since $G=(-\infty, 1)$ and $F=(1, \infty)$. Moreover x is bounded and $A x$ is also bounded and hence x is B-statistically A-bounded.
2. From Example 2.3(2) we see that $\Lambda_{A x}(B)=\left\{\frac{1}{2}\right\}=\Gamma_{A x}(B)$, also st B_{B} $\limsup A x=\infty$, st $\sin _{B}-\lim \inf A x=\frac{1}{2}$, since $G=\mathbb{R}$ and $F=\left(\frac{1}{2}, \infty\right)$. Moreover x is not B-statistically A-bounded, since $\delta_{B}\left(\left\{i:\left|y_{i}\right|>M\right\}\right) \neq 0$ for every number M.
3. From Example 2.3(3) we see that $\Lambda_{A x}(B)=\left\{\frac{1}{2}\right\}=\Gamma_{A x}(B)$, also st B^{-} $\limsup A x=s t_{B}-\lim \inf A x=\frac{1}{2}$, since $G=\left(-\infty, \frac{1}{2}\right)$ and $F=\left(\frac{1}{2}, \infty\right)$. Moreover x is B-statistically A-bounded, since the set $\left\{i:\left|y_{i}\right|>\frac{1}{2}\right\}$ has B-density zero.

The following result can be proved by straightforward least upper bound argument.

Theorem 3.6.

(a) If $l_{1}=s t_{B}-\lim \sup A x$ is finite, then for every positive number ε

$$
\begin{equation*}
\delta_{B}\left(\left\{i: y_{i}>l_{1}-\varepsilon\right\}\right) \neq 0 \text { and } \delta_{B}\left(\left\{i: y_{i}>l_{1}+\varepsilon\right\}\right)=0 . \tag{3.1}
\end{equation*}
$$

Conversely, if (3.1) holds for every $\varepsilon>0$ then $l_{1}=s t_{B}-\limsup A x$.
(b) If $l_{2}=s t_{B}-\lim \inf A x$ is finite, then for every positive number ε

$$
\begin{equation*}
\delta_{B}\left(\left\{i: y_{i}<l_{2}+\varepsilon\right\}\right) \neq 0 \text { and } \delta_{B}\left(\left\{i: y_{i}<l_{2}-\varepsilon\right\}\right)=0 . \tag{3.2}
\end{equation*}
$$

Conversely, if (3.2) holds for every $\varepsilon>0$ then $l_{2}=s t_{B}-\lim \inf A x$.
From the definition we see that the above theorem can be interpreted as saying that $s t_{B}$ - $\lim \sup A x$ and $s t_{B}$-liminf $A x$ are the greatest and least B-statistical A cluster points of x.

Note that B-statistical A-boundedness implies that $s t_{B^{-}} \lim \sup A x$ and $s t_{B^{-}}$ $\lim \inf A x$ are finite, so that properties (3.1) and (3.2) of Theorem 3.6 hold good.

Now we produce B-analogue of the results of Fridy and Orhan [18]. By $\delta_{B}(K) \neq 0$ we mean that either $\delta_{B}(K)>0$ or K fails to have B-density.

Theorem 3.7. For any real number sequence x

$$
s t_{B}-\liminf A x \leq s t_{B}-\lim \sup A x .
$$

Proof. First consider the case in which $s t_{B}$-limsup $A x=-\infty$. This implies that $G=\emptyset$. Therefore for every $g \in \mathbb{R}, \delta_{B}\left(\left\{i: y_{i}>g\right\}\right)=0$, which implies that $\delta_{B}\left(\left\{i: y_{i} \leq g\right\}\right)=1$. So that for every $f \in \mathbb{R}, \delta_{B}\left(\left\{k: x_{k}<f\right\}\right) \neq 0$. Hence $s t_{B}$-liminf $A x=-\infty$.

Now consider $s t_{B}$-limsup $x=+\infty$. This implies that for every $g \in \mathbb{R}, \delta_{B}(\{i$: $\left.\left.y_{i}>g\right\}\right) \neq 0$. This means that $\delta_{B}\left(\left\{i: y_{i} \leq g\right\}\right)=0$. Therefore for every $f \in$ $\mathbb{R}, \delta_{B}\left(\left\{i: y_{i}<f\right\}\right)=0$, which implies that $F=\emptyset$. Hence st $t_{B} \lim \inf A x=+\infty$.

Next we assume that $l_{1}=s t_{B}-\lim \sup A x<\infty$ and let $l_{2}=s t_{B}-\lim \inf A x$. Given $\varepsilon>0$ we show that $l_{1}+\varepsilon \in F$, so that $l_{2} \leq l_{1}+\varepsilon$. By Theorem $3.6, \delta_{B}(\{i$: $\left.\left.y_{i}>l_{1}+\varepsilon / 2\right\}\right)=0$, since $l_{1}=l u b G$. This implies that $\delta_{B}\left(\left\{i: y_{i} \leq l_{1}+\epsilon / 2\right\}\right)=1$, which in turn gives $\delta_{B}\left(\left\{i: y_{i}<l_{1}+\varepsilon\right\}\right)=1$. Hence $l_{1}+\varepsilon \in F$ and so that $l_{2} \leq l_{1}+\varepsilon$, i.e. $l_{2} \leq l_{1}$ since ε was arbitrary.

Remark 3.8. For any number sequence x,
$\lim \inf x \leq \lim \inf A x \leq s t_{B}-\lim \inf A x \leq s t_{B}-\lim \sup A x \leq \lim \sup A x \leq \lim \sup x$.
Theorem 3.9. The B-statistically A-bounded sequence x is B-statistically A summable if and only if

$$
s t_{B^{-}}-\liminf A x=s t_{B^{-}}-\limsup A x
$$

Proof. Let $l_{1}=s t_{B}-\limsup A x$ and $l_{2}=s t_{B^{-}} \lim \inf A x$. First assume that $s t_{B^{-}}$ $\lim A x=l$ and $\varepsilon>0$. Then $\delta_{B}\left(\left\{i:\left|y_{i}-l\right| \geq \varepsilon\right\}\right)=0$, so that $\delta_{B}\left(\left\{i: y_{i}>\right.\right.$ $l+\varepsilon\})=0$, which implies that $l_{1} \leq l$. Also $\delta_{B}\left(\left\{i: y_{i}<l-\varepsilon\right\}\right)=0$, which implies that $l \leq l_{2}$. By Theorem 3.7 , we finally have $l_{1}=l_{2}$.

Conversely, suppose that $l_{1}=l_{2}=l$ and x are B-statistically A-bounded. Then for $\varepsilon>0$, by Theorem 3.6, we have $\delta_{B}\left(\left\{i: y_{i}>l+\varepsilon / 2\right\}\right)=0$, and $\delta_{B}\left(\left\{i: y_{i}<l-\varepsilon / 2\right\}\right)=0$. Hence $s t_{B}-\lim A x=l$.

4 Relation Between $(A)_{s t},(A)_{s t_{B}}$ and B-Summability

Now we establish some relations between B-summability, B-statistically A summability and statistically A-summability.

Theorem 4.1. Let x be bounded sequence and x is statistically A-summable to l. Then $A x$ is B-summable to l if B is a non-negative regular matrix satisfies

$$
\begin{equation*}
\lim _{n} \sum_{k \in K} b_{n k}=0 \text { for every set } K \subseteq \mathbb{N} \text {, such that } \delta(K)=0 \tag{4.1}
\end{equation*}
$$

Proof. Let $x \in l_{\infty}$. Since A is regular then $A x \in l_{\infty}$, and let x be statistically A-summable to l and $K_{\epsilon}=\left\{i:\left|y_{i}-l\right| \geq \epsilon\right\}$. Then

$$
\begin{aligned}
\left|(B y)_{n}-l\right| & \leq\left|\sum_{k \notin K} b_{n k}\left(y_{k}-l\right)\right|+\left|\sum_{k \in K} b_{n k}\left(y_{k}-l\right)\right| \\
& \leq \epsilon \sum_{k \notin K} b_{n k}+\sup _{k}\left|y_{k}-l\right| \sum_{k \in K} b_{n k} .
\end{aligned}
$$

Now by using the definition of statistically A-summability and the condition (4.1) we get $\lim _{n}\left|(B x)_{n}-l\right|=0$, since ϵ was arbitrary.

Remark 4.2. We can not replace $x \in l_{\infty}$ by weaker assumption of a statistical bounded.

Example 4.3. Let

$$
a_{n k}=\left\{\begin{array}{l}
1 ; \quad \text { if } n \text { is nonsquare }, k=n^{2}, \\
\frac{1}{2} ; \quad \text { if } n \text { is a square, } k=n^{2}, k=n^{2}+1, \\
0 ; \quad \text { otherwise }
\end{array}\right.
$$

and

$$
x_{k}= \begin{cases}0 ; & \text { if } k=n^{2} \\ k ; & \text { if } k=n^{2}+1 \\ 1 ; & \text { otherwise }\end{cases}
$$

then

$$
\sum_{k=1}^{\infty} a_{n k} x_{k}= \begin{cases}0 ; & \text { if } n \text { is nonsquare } \\ \frac{1}{2}\left(n^{2}+1\right) ; & \text { if } n \text { is a square }\end{cases}
$$

Here x is statistically bounded since the set $\left\{k:\left|x_{k}\right|>1\right\}$ has density zero, also x is statistically A-summable to zero. Take $B=C_{1}$ the Cesaro matrix of order 1. It is clear that C_{1} satisfies all the conditions of B in Theorem 4.1, but $A x$ is not B-summable.

Corollary 4.4. Let x be bounded sequence and x be B-statistically A-summable to l. Then $A x$ is B-summable to l.

Theorem 4.5. If the number sequence $A x$ is bounded above and B-summable to the number $l=s t_{B}-\lim \sup A x$, then x is B-statistically A-summable to l.

Proof. Suppose that $A x$ is not B-statistically A-summable to l. Then $s t_{B}$ - $\lim \inf A x$ $<l$, so there is a number $M<l$ such that $\delta_{B}\left(\left\{i: y_{i}<M\right\}\right) \neq 0$. Let $K_{1}=\left\{i: y_{i}<M\right\}$. Then for every $\varepsilon>0, \delta_{B}\left(\left\{i: y_{i}>l+\varepsilon\right\}\right)=0$. Write $K_{2}=\left\{i: M \leq y_{i} \leq \ell+\varepsilon\right\}, K_{3}=\left\{i: y_{i}>\ell+\varepsilon\right\}$, and let $G=\sup _{i} y_{i}<\infty$. Since $\delta_{B}\left(K_{1}\right) \neq 0$, there are many n such that

$$
\limsup _{n} \sum_{k \in K_{1}} b_{n k} \geq d>0
$$

and for each n

$$
\sum_{k=1}^{\infty}\left|b_{n k} y_{k}\right|<\infty
$$

Now

$$
\begin{aligned}
\sum_{k=1}^{\infty} b_{n k} y_{k} & =\left(\sum_{k \in K_{1}}+\sum_{k \in K_{2}}+\sum_{k \in K_{3}}\right) b_{n k} y_{k} \\
& \leq M \sum_{k \in K_{1}} b_{n k}+(l+\varepsilon) \sum_{k \in K_{2}} b_{n k}+G \sum_{k \in K_{3}} b_{n k} \\
& =M \sum_{k \in K_{1}} b_{n k}+(l+\varepsilon) \sum_{k=1}^{\infty} b_{n k}-(l+\varepsilon) \sum_{k \in K_{1}} b_{n k}+O(1) \\
& =-\sum_{k \in K^{\prime}} b_{n k}(-M+(l+\varepsilon))+(l+\varepsilon) \sum_{k=1}^{\infty} b_{n k}+O(1) \\
& \leq l \sum_{k=1}^{\infty} b_{n k}-d(l-M)+\varepsilon\left(\sum_{k=1}^{\infty} b_{n k}-d\right)+O(1)
\end{aligned}
$$

Since ε is arbitrary, it follows that

$$
\liminf B y \leq l-d(l-M)<l
$$

Hence $A x$ is not B-summable to l.
The following is the dual statement of Theorem 4.5.

Theorem 4.6. If the number sequence $A x$ is bounded below and B-summable to the number $l=s t_{B}$-liminf $A x$, then x is B-statistically A-summable to l.

Remark 4.7. The above Theorems 4.5 and 4.6, the boundedness of $A x$ can not be omitted or even replaced by the B-statistical boundedness.

Example 4.8. Define the sequence $x=\left(x_{k}\right)$ by

$$
x_{k}=\left\{\begin{array}{l}
1, \text { if } k \text { is an even nonsquare, } \\
0, \text { if } k \text { is an odd nonsquare, } \\
k, \text { if } k \text { is an even square, } \\
1, \text { if } k \text { is an odd square, }
\end{array}\right.
$$

and

$$
a_{n k}=\left\{\begin{array}{l}
1, \text { if } n \text { is nonsquare and } k=n^{2}+1 \\
1, \text { if } n \text { is a square and } k=n^{2} \\
0, \text { otherwise }
\end{array}\right.
$$

then

$$
\sum_{k} a_{n k} x_{k}= \begin{cases}1, & \text { if is } n \text { an odd nonsquare } \\ 1, & \text { if } n \text { is an odd square } \\ 0, & \text { if } n \text { is an even square } \\ n^{2}, & \text { if } n \text { is an even square }\end{cases}
$$

Now let us define a matrix $B=\left(b_{n k}\right)$ as

$$
b_{n k}=\left\{\begin{array}{l}
1, \text { if } n=k, n \text { is an even nonsquare, } \\
1, \text { if } n=k-2, n \text { is an even square, } \\
1, \text { if } n=k, n \text { is an odd square, } \\
1, \text { if } n=k+1, n \text { is an odd and }(n-1) \text { nonsquare, } \\
1, \text { if } n=k-1, n \text { is an odd and }(n-1) \text { square, } \\
0, \text { otherwise. }
\end{array}\right.
$$

We can see that $A x$ is B-statistically bounded since the set $\left\{i:\left|y_{i}\right|>1\right\}$ has B density zero, also $A x$ is B-summable to 1 , but $A x$ is not B-statistically summable to any number l.

Acknowledgement : I would like to thanks Prof. M. Mursaleen for his kind help and encouragement during the preparation of this paper.

References

[1] O.H.H. Edely, M. Mursaleen, On statistical A-summability, Math. Comp. Model. 49 (2009) 672-680.
[2] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951) 241-244.
[3] R.C. Buck, Generalized asymptotic density, Amer. J. Math. 75 (1953) 335346.
[4] I.J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly 66 (1959) 361-375.
[5] A. Zygmund, Trigonometric Series, Univ. Press, Cambridge, 1959.
[6] T. Šalát, On statistically convergent sequences of real numbers, Math. Slovaca 30 (1980) 139-150.
[7] J.A. Fridy, On statistical convergence, Analysis 5 (1985) 301-313.
[8] J. Connor, The statistical and strong p-Cesàro convergence of sequences, Analysis 8 (1988) 47-63.
[9] E. Kolk, Matrix summability of statistically convergent sequences, Analysis 13 (1993) 77-83.
[10] M. Mursaleen, λ-statistical convergence, Math. Slovaca 50 (2000) 111-115.
[11] M. Mursaleen, O.H.H. Edely, Statistical convergence of double sequences, J. Math. Anal. Appl. 288 (2003) 223-231.
[12] A.R. Freedman, J.J. Sember, Densities and summability, Pacific J. Math. 95 (1981) 293-305.
[13] J. Connor, On strong matrix summability with respect to a modulus and statistical convergence, Canad. Math. Bull. 32 (1989) 194-198.
[14] J. Connor, J. Kline, On statistical limit points and the consistency of statistical convergence, J. Math. Anal. Appl. 197 (1996) 392-399.
[15] F. Moricz, Tauberian conditions under which statistical convergence follows from statistical summability (C, 1), J. Math. Anal. Appl. 275 (2002) 277-287.
[16] M. Mursaleen, O.H.H. Edely, Generalized statistical convergence, Information Sciences 162 (2004) 287-294.
[17] J.A. Fridy, Statistical limit points, Proc. Amer. Math. Soc. 118 (1993) 11871192.
[18] J.A. Fridy, C. Orhan, Statistical limit superior and limit inferior, Proc. Amer. Math. Soc. 125 (1997) 3625-3631.
[19] K. Demirci, A-statistical core of a sequence, Demons. Math. 33 (2000) 343353.
(Accepted 27 April 2012)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

