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Abstract : In this paper, we study that inverse Sturm-Liouville problem having
singularity of type q(x) = δ

xp + q0(x) at zero point. We prove that the difference
between two potential functions q(x) and q̃ (x) becomes sufficiently small whenever
the spectral datas {λn, αn}

∞
n=0 and {λ̃n, α̃n}

∞
n=0 for q(x) and q̃ (x) respectively are

chosen sufficiently close to each other.
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1 Introduction and Preliminaries

An Inverse spectral problem means a way to rebuild the potential from the
spectral data. It is known that the spectral characteristics are spectra, spectral
functions, scattering data, norming constansts, etc. Since the concept of inverse
problem plays very important role in mathematics and physics, various scientists
study on that concept. The first result in this subject, giving imputes for the
further development of inverse problem theory was proved in [1]. Also inverse
problems for regular and singular equations have been showed in the monographs
in [2-11]. Later, Marchenko [12] has shown that the spectral data determine the
Sturm-Liouville problem. Gelfand-Levitan [13] gave an algorithm for construction
of q(x), h and H . Later, Mizutani [14] improved a different algorithm, which is a
slight modification of Gelfand-Levitan’s model. In this paper, we studied algorithm
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for singular Sturm-Liouville problem. Let’s give the main problem and necessary
datas, as follows:

Now, considering {λn}
∞
n=0 as a spectrum of the following singular Sturm-

Liouville Problem:

Ly = −y
′′

+

[

δ

xp
+ q0(x)

]

y = µy (µ = λ2, 0 ≤ x ≤ π) (1.1)

y(0) = 0 (1.2)

y
′

(π) − hy(π) = 0 (1.3)

where the real potential q0(x) satisfies the condition

∫ π

0

x|q(x)|dx < ∞ (1.4)

and δ constant, q(x) ∈ L2[0, π], 1 < p < 2. Let us consider the second Sturm-
Liouville Problem

L̃y = −y
′′

+

[

δ

xp
+ q̃0(x)

]

y = µ̃y (µ̃ = λ̃2, 0 ≤ x ≤ π) (1.5)

with (1.2)-(1.3) hold, where {λ̃n}
∞
n=0 be spectrum of the (1.5) and the real potential

q̃(x) = δ
xp + q̃0(x) satisfies the condition

∫ π

0

x|q̃(x)|dx < ∞. (1.6)

One has the following asymptotic formulas for solutions the problem (1.1-1.3), (see
[6, 7]),

Φ(x, λ) =
sinλx

λ
+ O

(

e|Imλ|x

|λ|5−2p

)

, (1.7)

Φ
′

(x, λ) = cosλx + O

(

e|Imλ|x

|λ|4−2p

)

. (1.8)

Furthermore note that this type of inverse problems for singular Sturm-Liouville
operator is investigated in which is also well known in [5-8] that

λn = n −
1

2
−

h

π(n − 1
2 )

+
a

π(n − 1
2 )

+ O

(

1

n4−2p

)

, (1.9)

λ̃n = n −
1

2
−

h

π(n − 1
2 )

+
ã

π(n − 1
2 )

+ O

(

1

n4−2p

)

, (1.10)

αn = ‖Φn‖
2 =

∫ π

0

Φ2
n(x)dx =

π

2(n − 1
2 )2

+ O
( τn

n2

)

, (1.11)
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α̃n = ‖Φ̃n‖
2 =

∫ π

0

Φ̃2
n(x)dx =

π

2(n − 1
2 )2

+ O

(

τ̃n

n2

)

(1.12)

where for τn =
∫ 2

n

0
t|q(t)|dt + 1

n

∫ π
1

2n

|q(t)|dt + 1
n
, ã =

∫ π

0
sin2(n − 1

2 )tq̃(t)dt.

Theorem 1.1. Let E be a linear topological space and E1, E2 ⊂ E. The transfor-
mation operator, X = XL,L̃, mapping E1 to E2 can be realized as follows:

X [Φ(x, λ)] = Φ̃(x, λ) = Φ(x, λ) +

∫ x

0

K(x, s)Φ(s, λ)ds (1.13)

The kernel of operator (1.13) is a solution of the differential equation

∂2K(x, s)

∂x2
− q̃(x)K(x, s) =

∂2K(x, s)

∂s2
− q(s)K(x, s) (1.14)

and also satisfies the following conditions

K(x, x) =
1

2

∫ x

0

(q̃0(s) − q0(s))ds, K(x, 0) = 0. (1.15)

Lemma 1.2. There exists a constant M > 0, such that

|Φ(x, λ)| +
|Φ

′

(x, λ)|

λ
≤ M, (1.16)

λ|Φ̇(x, λ)| + Φ̇
′

(x, λ) ≤ M, (1.17)

hold for every λ ≥ 1 and 0 ≤ x ≤ π, (Φ̇ = dΦ
dλ

).

Proof. The right side of inequality is limited, by virtue of 0 ≤ x ≤ π and −1 ≤
cosx ≤ 1, −1 ≤ sin x ≤ 1.

|Φ(x, λ)|+
|Φ

′

(x, λ)|

λ
≤

∣

∣

∣

∣

sin λx

λ
+ O

(

|eImλx|

λ5−2p

)∣

∣

∣

∣

+

∣

∣

∣

∣

cosλx

λ
+ O

(

e|Imλx|

λ5−2p

)∣

∣

∣

∣

(1.18)

Therefore there exists a constant M > 0 such that

|Φ(x, λ)| +
|Φ

′

(x, λ)|

λ
≤ M.

We can obtain inequality (1.16), in a similar way.

Theorem 1.3. Letting

F (x, s) =

∞
∑

n=0

[

Φ(x, λ̃n)Φ(s, λ̃n)

α̃n

−
Φ(x, λn)Φ(s, λn)

αn

]

(1.19)

then, we obtain

K(x, s) +

∫ x

0

K(x, t)F (t, s)dt + F (x, s) = 0 for 0 ≤ s ≤ x ≤ π. (1.20)
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Mizutani [14] showed the uniqueness of the potential function for Sturm Li-
ouville problem according to normalizing constants and eigenvalues. The purpose
of our study is to give the sctructure concerning the difference q(x)− q̃(x) for the
differential operators having the singularity type δ

xp + q0(x), by using Mizutani
method. Now, let’s give the main theorem and its proof.

2 Main Results

Theorem 2.1. Let us consider the equality

A ≡
∞
∑

n=0

[|α̃n − αn| + |λ̃2
n − λ2

n|]. (2.1)

If it is sufficiently small, then we get

max
0≤x≤π

|q̃0(x) − q0(x)| ≤ C1A
′′

(2.2)

where C > 0 is a constant depending only on q(x) and h.

Proof. Let us solve the integral equation (1.19). Firstly let us start with F (s, t),
then construct the iterated kernels F (n)(s, t; x), (n=1,2,...). We get

F (1)(s, t; x) = F (s, t), F (n+1)(s, t; x) =

∫ x

0

F (s, u)F (n)(u, t; x) du, n ≥ 1. (2.3)

Now let us take

S(s, t; x) =

∞
∑

n=1

(−1)n F (n)(s, t; x),

and assuming that
∫ π

0

∫ π

0

|F (s, t)|2 ds dt < 1. (2.4)

It is easy to see that

K(x, s) = S(x, s; x) for 0 ≤ s ≤ x ≤ π. (2.5)

Then it follows from (1.15) that

1

2
(q0(x) − q̃0(x)) = −

dK(x, x)

dx
. (2.6)

Let’s give the following Lemma to complete the proof of the Theorem 2.1.

Lemma 2.2. Let us consider F (x, s) defined by (1.19). Then we get

1

2
(q0(x) − q̃0(x)) =

dF (x, x)

dx
− K2(x, x) + 2

∫ x

0

Fx(x, u)K(x, u)du (2.7)

where F (x, s) has a continuous derivative and the condition (2.4) is satisfied.
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Proof. Using formula (2.3)-(2.6), we obtain the following equation

1

2
(q0(x) − q̃0(x)) = −

d

dx

(

∞
∑

n=1

(−1)n d

dx
F (n)(x, x; x)

)

1

2
(q0(x) − q̃0(x)) =

dF (x, x)

dx
+

∞
∑

n=1

(−1)n d

dx
F (n+1)(x, x; x). (2.8)

Now, we estimate

d

dx
F (n+1)(x, x; x) =

{

F (n+1)
s + F

(n+1)
t + F (n+1)

x

}

s=x,t=x

= 2

∫ x

0

Fx(x, u)F (n)(x, u; x)du

+
n
∑

k=1

F (k)(x, x; x)F (n+1−k)(x, x; x). (2.9)

Using equation (2.9) in (2.8), the following equation

1

2
(q0(x) − q̃0(x)) =

dF (x, x)

dx
+ 2

∫ x

0

Fx(x, u)K(x, u)du

+

∞
∑

n=1

(−1)n

∞
∑

n=1

F (k)(x, x; x)F (n+1−k)(x, x; x)

=
dF (x, x)

dx
+ 2

∫ x

0

Fx(x, u)K(x, u)du − K2(x, x)

is obtained.
Now, we can prove the main theorem. Let us take A0 as follows:

A0 = inf
n

αn. (2.10)

A0 is positive from the asymptotic formula (1.9)-(1.12). We suppose that

A =

∞
∑

n=0

[|α̃n − αn| + |λ̃2
n − λ2

n|] ≤ A0. (2.11)

Then we get

αn ≥ 2A0 and α̃n ≥ A0. (2.12)

Differentiating formally the right side of (1.19) with respect to x, we obtain the
following equation

Fx(x, s) =

∞
∑

n=1

[

Φ
′

(x, λ̃n)Φ(s, λ̃n)

α̃n

−
Φ

′

(x, λn)Φ(s, λn)

αn

]

.
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Adding and subtracting Φ
′

(x,λ)nΦ(s,λn)
α̃n

to the right side of the last equation, we
obtain

Fx(x, s) =

∞
∑

n=1

[

(

αn − α̃n

αnα̃n

)

Φ
′

(x, λ̃n)Φ
′

(s, λ̃n) +
1

α̃n

∫ λ̃n

λn

(Φ
′

(x, λ)Φ(s, λ))·dλ

]

.

By virtue of (2.11), (2.12) and Lemma 1.2, it is seen that F (x, s) has a continuous
derivative and

|Fx(x, s)| ≤ C
′

∞
∑

n=0

[

|α̃n − αn| + |λ̃2
n − λ2

n|
]

≡ C
′

A. (2.13)

We can also write
∣

∣

∣

∣

d

dx
F (x, x)

∣

∣

∣

∣

≤ 2C
′

A. (2.14)

Using the same method, we obtain

F (x, s) =

∞
∑

n=0

[

(

αn − α̃n

αnα̃n

)

Φ2(x, λ̃n) +
1

α̃n

∫ λ̃n

λn

(2Φ̇(x, λ)Φ(s, λ))dλ

]

.

By means of formulas (1.7), (1.8) for 0 ≤ x ≤ π and −1 ≤ cosx ≤ 1, −1 ≤
sin x ≤ 1,

|F (x, x)|

=

∣

∣

∣

∣

∣

∞
∑

n=0

(

αn − α̃n

αnα̃n

)(

sin λx

λ
+ O

(

e|Imλ|x

|λ|5−2p

))2
∣

∣

∣

∣

∣

+
1

α̃n

∫ λ̃n

λn

2

[

x cos λx − sin λx

λ2
+ O

(

xe|Imλ|x

|λ|5−2p

)](

sin λs

λ
+ O

(

e|Imλ|s

|λ|5−2p

))

dλ.

It follows from the last equation, we have

|F (x, x)| ≤

∞
∑

n=0

∣

∣

∣

∣

∣

(

αn − α̃n

αnα̃n

)

c1 +
1

α̃n

∫ λ̃n

λn

2

(

π

λ2
−

1

λ3

)

c2dλ

∣

∣

∣

∣

∣

= C
′′

∞
∑

n=0

[

|(α̃n − αn)| + |λ̃2
n − λ2

n|
]

. (2.15)

From (2.15), we obtain

|F (x, x)| ≤ C
′′

A, (2.16)

where C
′

and C
′′

are constants depending only on q(x) and h. If πC
′′

A is suffi-
ciently small, e.g. πC

′′

A < 1
2 using formula (2.5), we can write the equation

|K(x, s)| =

∞
∑

n=0

(−1)nF (n)(x, s; x). (2.17)
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Because of formula (2.3), we construct the iterated kernelsF (n) as follows:

|F (1)(x, x)| = |F (x, x)| ≤ C
′′

A

|F (2)(x, x)| =

∣

∣

∣

∣

∫ x

0

FF (1)du

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ x

0

FFdu

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫ x

0

(C
′′

A)2du

∣

∣

∣

∣

= (C
′′

A)2π

...

|F (n)| ≤
1

π
(πC

′′

A)n. (2.18)

Using (2.18) in (2.17), we have

|K(x, s)| ≤

∣

∣

∣

∣

∣

∞
∑

n=1

1

π
(πC

′′

A)n

∣

∣

∣

∣

∣

≤ 2C
′′

A. (2.19)

By virtue of Lemma 2.2 and using (2.13)-(2.19), consequently, we obtain

|q̃0(x) − q0(x)| ≤ C1

∞
∑

n=0

[

|α̃n − αn| + |λ̃2
n − λ2

n|
]

(2.20)

for A ≤ min{A0, (2πC
′′

)−1}. This completes the proof.

3 Conclusion

The more norming constants and spectrums which are taken as spectral data
of singular inverse problem is close to each other, the more the potential difference
of these two problems is small, sufficiently.
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