

Multihomomorphisms from Groups into Groups of Real Numbers

P. Youngkhong and K. Savettaraseranee

Abstract: By a *multihomomorphism* from a group G into a group G' we mean a multifunction f from G into G' such that

$$f(xy) = f(x)f(y) \ \left(= \left\{st \mid s \in f(x) \text{ and } t \in f(y)\right\}\right)$$

for all $x, y \in G$. We denote by $\operatorname{MHom}(G, G')$ the set of all multihomomorphisms from G into G'. It is shown that if $f \in \operatorname{MHom}(G, G')$ where G' is a subgroup of $(\mathbb{R}, +)$, then either f is a homomorphism or there is an infinite cardinal number η such that $|f(x)| = \eta$ for all $x \in G$. If $f \in \operatorname{MHom}(G, G')$ where G' is a subgroup of (\mathbb{R}^*, \cdot) , then (i) f is a homomorphism, (ii) |f(x)| = 2 for all $x \in G$ or (iii) there is an infinite cardinal number η such that $|f(x)| = \eta$ for all $x \in G$.

Keywords : Multihomomorphism, additive group of real numbers, multiplicative group of real numbers.

2000 Mathematics Subject Classification : 32A12.

1 Introduction

The cardinality of a set X will be denoted by |X|. A multifunction from a nonempty set X into a nonempty set Y is a function $f: X \to P^*(Y)$ where P(Y) is the power set of Y and $P^*(Y) = P(Y) \setminus \{\emptyset\}$.

Upper and lower semicontinuity of multifunctions between two topological spaces were studied by Whyburn [4] and Smithson [2]. Feichtinger [1] also gave a characterization of lower semi-continuous multifunctions. The authors in [3] were motivated by these works to study multifunctions in an algebraic sense. "Multi-homomorphisms" between cyclic groups were characterized in [3]. The definition of a multihomomorphism between groups was given naturally as follows :

A multifunction f from a group G into a group G^\prime is called a multihomomorphism if

 $f(xy) = f(x)f(y) \ \left(=\left\{st \mid s \in f(x) \text{ and } t \in f(y)\right\}\right) \text{ for all } x, y \in G$

and let $\operatorname{MHom}(G, G')$ denote the set of all multihomomorphisms from G into G'. Then every homomorphism from G into G' belongs to $\operatorname{MHom}(G, G')$ and for $f \in \operatorname{MHom}(G, G'), f$ is a homomorphism if and only if |f(x)| = 1 for all $x \in G$.

Let \mathbb{R} be the set of real numbers and $\mathbb{R}^* = \mathbb{R} \setminus \{0\}$. Then $(\mathbb{R}, +)$ and (\mathbb{R}^*, \cdot) are abelian groups where + and \cdot are the usual addition and multiplication, respectively. Observe that there are infinitely many subgroups of $(\mathbb{R}, +)$ and of (\mathbb{R}^*, \cdot) . Let \mathbb{R}^+ denote the set of positive real numbers.

Our purpose is to give remarkable necessary conditions of $f \in \operatorname{MHom}(G, G')$ where G' is a subgroup of $(\mathbb{R}, +)$ and (\mathbb{R}^*, \cdot) . It will be shown that if $f \in \operatorname{MHom}(G, G')$ where G' is a subgroup of $(\mathbb{R}, +)$, then either

- (i) f is a homomorphism or
- (ii) there is an infinite cardinal number η such that $|f(x)| = \eta$ for all $x \in G$.

Also, if $f \in MHom(G, G')$ where G' is a subgroup of (\mathbb{R}^*, \cdot) , then one of the following statements holds.

- (i) f is a homomorphism.
- (ii) For every $x \in G$, $f(x) = \{-x', x'\}$ for some $x' \in G'$.
- (iii) There is an infinite cardinal number η such that $|f(x)| = \eta$ for all $x \in G$.

2 Main Results

To obtain our main results, the following two lemmas are needed.

Lemma 2.1 Let G and G' be groups. Then for every $f \in MHom(G, G')$, |f(x)| = |f(e)| for all $x \in G$ where e is the identity of G.

Proof. Let $f \in MHom(G, G')$ and $x \in G$. Since $|f(x^{-1})| \ge 1$ and G' is cancellative, we have

$$|f(e)| = |f(xx^{-1})| = |f(x)f(x^{-1})| \ge |f(x)| = |f(xe)| = |f(x)f(e)| \ge |f(e)|,$$

so $|f(x)| = |f(e)|.$

Lemma 2.2 Let G be a group with identity e and G' a subgroup of (\mathbb{R}^*, \cdot) . If $f \in MHom(G, G')$ is such that |f(e)| = 2, then

- (i) $f(e) = \{-1, 1\}$ and
- (ii) for every $x \in G$, $f(x) = \{-x', x'\}$ for some $x' \in G'$.

Proof. (i) Let $f(e) = \{a, b\}$ with a < b. Then

$$\{a,b\} = f(e) = f(e)f(e) = \{a^2, ab, b^2\}.$$
(2.1)

Since a < b, it follows that $a^2 < ab < b^2$ if a > 0 and $a^2 > ab > b^2$ if b < 0. From this fact and (2.1), we deduce that a < 0 and b > 0. Hence ab = a and $a^2 = b^2 = b$ which imply that b = 1 and a = -1.

(ii) Let $x \in G$. Then |f(x)| = 2 by Lemma 2.1. Let $f(x) = \{y, z\}$ with y < z in G'. Then

$$\{y, z\} = f(x) = f(x)f(e) = \{y, z\}\{-1, 1\} = \{-y, -z, y, z\}.$$
 (2.2)

Since $0 \neq y < z$, we have $y \neq -y > -z$, so by (2.2), -y = z. Hence -z = y < z. Consequently, $f(x) = \{-z, z\}$.

Theorem 2.3 Let G be a group and G' a subgroup of $(\mathbb{R}, +)$. If $f \in MHom$ (G, G'), then either

- (i) f is a homomorphism or
- (ii) there is an infinite cardinal number η such that $|f(x)| = \eta$ for all $x \in G$.

Proof. Let $f \in \text{MHom}(G, G')$ and assume that f is not a homomorphism from G into G'. Then |f(e)| > 1 by Lemma 2.1 where e is the identity of G. Suppose that f(e) is a finite subset of \mathbb{R} , say $f(e) = \{a_1, a_2, \ldots, a_n\}$ with $a_1 < a_2 < \cdots < a_n$ and $n \geq 2$. Then $a_1 + a_1 < a_2 + a_1 < \ldots < a_n + a_1 < a_n + a_n$ and hence

$$n = |\{a_1, a_2, \dots, a_n\}| = |f(e)| = |f(e) + f(e)|$$

= |\{a_1, a_2, \dots, a_n\} + \{a_1, a_2, \dots, a_n\}|
\ge |\{a_1 + a_1, a_2 + a_1, \dots, a_n + a_1, a_n + a_n\}|
= n + 1.

a contradiction. Hence $|f(e)| = \eta$ for some infinite cardinal number η , and by Lemma 2.1, $|f(x)| = \eta$ for all $x \in G$.

Theorem 2.4 Let G be a group and G' a subgroup of (\mathbb{R}^*, \cdot) . If $f \in MHom(G, G')$, then f satisfies one of the following conditions.

- (i) f is a homomorphism.
- (ii) For every $x \in G$, $f(x) = \{-x', x'\}$ for some $x' \in G'$.
- (iii) There is an infinite cardinal number η such that $|f(x)| = \eta$ for all $x \in G$.

Proof. Let $f \in MHom(G, G')$ and assume that f is not a homomorphism from G into G'. It follows from Lemma 2.1, |f(e)| > 1. If |f(e)| = 2, then by Lemma 2.2, f satisfies (ii). Assume that |f(e)| > 2. To show that f satisfies (iii), suppose not. By lemma 2.1, f(e) is a finite subset of \mathbb{R}^* , say $f(e) = \{a_1, a_2, \ldots, a_n\}$ with $a_1 < a_2 < \cdots < a_n$ and n > 2. Since f(e)f(e) = f(e), we have $\{a_1, a_2, \ldots, a_n\}\{a_1, a_2, \ldots, a_n\} = \{a_1, a_2, \ldots, a_n\}$. It follows that

$$\{a_i a_j \mid i, j \in \{1, 2, \dots, n\}\} = \{a_1, a_2, \dots, a_n\}$$
(2.3)

and

$$|\{a_i a_j \mid i, j \in \{1, 2, \dots, n\}\}| = n.$$
(2.4)

Case 1: $0 < a_1 < \cdots < a_n$. Then $a_1^2 < a_1a_2 < \cdots < a_1a_n < a_n^2$, so $|\{a_1^2, a_1a_2, \dots, a_1a_n, a_n^2\}| = n + 1$ which is contrary to (2.4).

Case 2: $a_1 < \cdots < a_n < 0$. Then $a_i a_j > 0$ for all $i, j \in \{1, 2, \dots, n\}$. Hence every element of $\{a_1, a_2, \ldots, a_n\}$ is negative but every element of $\{a_i a_j \mid i, j \in$ $\{1, 2, \ldots, n\}$ is positive which are contrary to (2.3).

Case 3: $a_1 < \cdots < a_{n-1} < 0 < a_n$. Then $\{a_1, a_2, \ldots, a_n\}$ contains only one positive real number. But $a_1^2 > a_1 a_2 > \cdots > a_1 a_{n-1} > 0$ and n-1 > 1, so $\{a_i a_j \mid i, j \in \{1, 2, \dots, n\}\}$ contains at least n-1 positive real numbers. These contradict (1) since n > 2.

Case 4: $a_1 < \cdots < a_k < 0 < a_{k+1} < \cdots < a_n$ and k+1 < n. Then $\{a_1, a_2, \dots, a_n\}$ contains exactly n-k positive real numbers. Since $0 < a_{k+1}^2 < a_{k+1}a_{k+2} < \cdots < a_{k+1}a_n < a_n^2$, we have that $\{a_i a_j \mid i, j \in \{1, 2, \dots, n\}\}$ contains at least n-k+1positive real numbers. These contradict (2.3). Hence the theorem is proved.

It is clearly seen that if H is a subsemigroup of G' containing e', then the multifunction from G into G' defined by

$$f(x) = H$$
 for all $x \in G$

is a multihomomorphism from G into G'. Such a multihomomorphism is called a constant multihomomorphism. Since for every $a \in \mathbb{R}^+, [a, \infty) \cup \{0\}$ is a subsemigroup of $(\mathbb{R}, +)$ containing 0, it follows that there are uncountably many constant multihomomorphisms from G into $(\mathbb{R}, +)$. The next example shows that there are also uncountably many nonconstant multihomomorphisms in MHom $((\mathbb{R}, +), (\mathbb{R}, +))$.

Example 2.5 For each $a \in \mathbb{R}$, define

$$f_a(x) = [ax, \infty)$$
 for all $x \in \mathbb{R}$.

If $a, x, y \in \mathbb{R}$, then

$$f_a(x+y) = [a(x+y), \infty) = [ax, \infty) + [ay, \infty) = f_a(x) + f_a(y).$$

Hence $f_a \in \mathrm{MHom}\left((\mathbb{R},+),(\mathbb{R},+)\right)$ for all $a \in \mathbb{R}$ and f_a is a constant multihomomorphism if and only if a = 0. If $a, b \in \mathbb{R}$ are such that $a \neq b$, then $f_a(1) = [a, \infty) \neq [b, \infty) = f_b(1)$. Therefore $\{f_a \mid a \in \mathbb{R} \setminus \{0\}\}$ is an uncountably infinite subset of MHom $((\mathbb{R}, +), (\mathbb{R}, +))$. Observe that $|f_a(x)| = \aleph_1$ for all $x \in \mathbb{R}$.

Next, for $a \in \mathbb{R}$, define

$$g_a(x) = x + a\mathbb{Z}_0^+$$
 for all $x \in \mathbb{R}$

where \mathbb{Z}^+ is the set of positive integers and $\mathbb{Z}_0^+ = \mathbb{Z}^+ \cup \{0\}$. Hence

$$g_a(x) = \{x, x+a, x+2a, \ldots\}$$
 for all $x \in \mathbb{R}$.

46

Since for any $a \in \mathbb{R}$, $a\mathbb{Z}_0^+$ is a subsemigroup of $(\mathbb{R}, +)$ containing 0, we have $a\mathbb{Z}_0^+ + a\mathbb{Z}_0^+ = a\mathbb{Z}_0^+$ for every $a \in \mathbb{R}$. It follows that $g_a \in \text{MHom}((\mathbb{R}, +), (\mathbb{R}, +))$ which is nonconstant for every $a \in \mathbb{R}$. Clearly, $a\mathbb{Z}_0^+ \neq b\mathbb{Z}_0^+$ for all distinct $a, b \in \mathbb{R}$. If $a, b \in \mathbb{R}$ are such that $a \neq b$, then $g_a(0) = a\mathbb{Z}_0^+ \neq b\mathbb{Z}_0^+ = g_b(0)$. Hence $\{g_a \mid a \in \mathbb{R}\}$ is an uncountable subset of MHom $((\mathbb{R}, +), (\mathbb{R}, +))$. Notice that $|g_a(x)| = \aleph_0$ for all $a \in \mathbb{R} \setminus \{0\}$ and $x \in \mathbb{R}$.

If $a \in \mathbb{R}$ and $a \geq 1$, then $[a, \infty) \cup \{1\}$ is a subsemigroup of (\mathbb{R}^*, \cdot) containing 1. Therefore there are uncountably many constant multihomomorphisms from any group G into (\mathbb{R}^*, \cdot) . We show in the last example that $MHom((\mathbb{R}^*, \cdot), (\mathbb{R}^*, \cdot))$ contains an uncountably many nonconstant f which satisfy (ii) of Theorem 2.4 and an uncountably many nonconstant f which satisfy (iii) of Theorem 2.4.

Example 2.6 For each $a \in \mathbb{R}$, define

$$h_a(x) = \{-|x|^a, |x|^a\}, \ k_a(x) = [|x|^a, \infty) \text{ and } l_a(x) = |x|^a \mathbb{Z}^+ \text{ for all } x \in \mathbb{R}^*.$$

If $a \in \mathbb{R}$ and $x, y \in \mathbb{R}^*$, then

$$h_{a}(xy) = \{-|xy|^{a}, |xy|^{a}\} = \{-|x|^{a}|y|^{a}, |x|^{a}|y|^{a}\} \\ = \{-|x|^{a}, |x|^{a}\}\{-|y|^{a}, |y|^{a}\} = h_{a}(x)h_{a}(y), \\ k_{a}(xy) = [|xy|^{a}, \infty) = [|x|^{a}|y|^{a}, \infty) \\ = [|x|^{a}, \infty)[|y|^{a}, \infty) = k_{a}(x)k_{a}(y) \text{ and} \\ l_{a}(xy) = |xy|^{a}\mathbb{Z}^{+} = |x|^{a}|y|^{a}\mathbb{Z}^{+} \\ = (|x|^{a}\mathbb{Z}^{+})(|y|^{a}\mathbb{Z}^{+}) = l_{a}(x)l_{a}(y).$$

Hence $h_a, k_a, l_a \in MHom((\mathbb{R}^*, \cdot), (\mathbb{R}^*, \cdot))$ for all $a \in \mathbb{R}$. Also, h_a is nonconstant if and only if $a \neq 0$, and this is also true for k_a and l_a .

Moreover, if $a, b \in \mathbb{R}$ are such that $a \neq b$, then $2^a \neq 2^b$, so $h_a(2) \neq h_b(2)$, $k_a(2) \neq k_b(2)$ and $l_a(2) \neq l_b(2)$. Hence $\{h_a \mid a \in \mathbb{R}\}$, $\{k_a \mid a \in \mathbb{R}\}$ and $\{l_a \mid a \in \mathbb{R}\}$ are uncountable subsets of MHom $((\mathbb{R}^*, \cdot), (\mathbb{R}^*, \cdot))$, and $|h_a(x)| = 2$, $|k_a(x)| = \aleph_1$ and $|l_a(x)| = \aleph_0$ for all $a \in \mathbb{R}$ and $x \in \mathbb{R}^*$.

References

- O. Feichtinger, More on lower semi-continuity, Amer. Math. Monthly, 83(1976), 39.
- [2] R. E. Smithson, A characterization of lower semicontinuity, Amer. Math. Monthly, 75(1968), 505.
- [3] N. Triphop, A. Harnchoowong and Y. Kemprasit, Multihomomorphisms between cyclic groups, *Set-valued Mathematics and Applications*, to appear.
- [4] G. T. Whyburn, Continuity of multifunctions, Proc. Nat. Acad. Sciences, 54(1965), 1494–1501.

(Received 11 March 2006)

P. Youngkhong Department of Mathematics Faculty of Science Chulalongkorn University Bangkok 10330, Thailand. e-mail : pyoungkhong@yahoo.com

K. Savettaraseranee Department of Mathematics Faculty of Science Kasertsart University Bangkok 10900, Thailand. e-mail : fscikrs@ku.ac.th