Multihomomorphisms from Groups into Groups of Real Numbers

P. Youngkhong and K. Savettaraseranee

Abstract

By a multihomomorphism from a group G into a group G^{\prime} we mean a multifunction f from G into G^{\prime} such that $$
f(x y)=f(x) f(y)(=\{s t \mid s \in f(x) \text { and } t \in f(y)\})
$$ for all $x, y \in G$. We denote by $\operatorname{MHom}\left(G, G^{\prime}\right)$ the set of all multihomomorphisms from G into G^{\prime}. It is shown that if $f \in \operatorname{MHom}\left(G, G^{\prime}\right)$ where G^{\prime} is a subgroup of $(\mathbb{R},+)$, then either f is a homomorphism or there is an infinite cardinal number η such that $|f(x)|=\eta$ for all $x \in G$. If $f \in \operatorname{MHom}\left(G, G^{\prime}\right)$ where G^{\prime} is a subgroup of (\mathbb{R}^{*}, \cdot), then (i) f is a homomorphism, (ii) $|f(x)|=2$ for all $x \in G$ or (iii) there is an infinite cardinal number η such that $|f(x)|=\eta$ for all $x \in G$.

Keywords : Multihomomorphism, additive group of real numbers, multiplicative group of real numbers.
2000 Mathematics Subject Classification : 32A12.

1 Introduction

The cardinality of a set X will be denoted by $|X|$. A multifunction from a nonempty set X into a nonempty set Y is a function $f: X \rightarrow P^{*}(Y)$ where $P(Y)$ is the power set of Y and $P^{*}(Y)=P(Y) \backslash\{\emptyset\}$.

Upper and lower semicontinuity of multifunctions between two topological spaces were studied by Whyburn [4] and Smithson [2]. Feichtinger [1] also gave a characterization of lower semi-continuous multifunctions. The authors in [3] were motivated by these works to study multifunctions in an algebraic sense. "Multihomomorphisms" between cyclic groups were characterized in [3]. The definition of a multihomomorphism between groups was given naturally as follows :

A multifunction f from a group G into a group G^{\prime} is called a multihomomorphism if

$$
f(x y)=f(x) f(y)(=\{s t \mid s \in f(x) \text { and } t \in f(y)\}) \text { for all } x, y \in G
$$

and let $\operatorname{MHom}\left(G, G^{\prime}\right)$ denote the set of all multihomomorphisms from G into G^{\prime}. Then every homomorphism from G into G^{\prime} belongs to $\operatorname{MHom}\left(G, G^{\prime}\right)$ and for $f \in \operatorname{MHom}\left(G, G^{\prime}\right), f$ is a homomorphism if and only if $|f(x)|=1$ for all $x \in G$.

Let \mathbb{R} be the set of real numbers and $\mathbb{R}^{*}=\mathbb{R} \backslash\{0\}$. Then $(\mathbb{R},+)$ and $\left(\mathbb{R}^{*}, \cdot\right)$ are abelian groups where + and \cdot are the usual addition and multiplication, respectively. Observe that there are infinitely many subgroups of $(\mathbb{R},+)$ and of $\left(\mathbb{R}^{*}, \cdot\right)$. Let \mathbb{R}^{+}denote the set of positive real numbers.

Our purpose is to give remarkable necessary conditions of $f \in \operatorname{MHom}(G$, G^{\prime}) where G^{\prime} is a subgroup of $(\mathbb{R},+)$ and $\left(\mathbb{R}^{*}, \cdot\right)$. It will be shown that if $f \in$ $\operatorname{MHom}\left(G, G^{\prime}\right)$ where G^{\prime} is a subgroup of $(\mathbb{R},+)$, then either
(i) f is a homomorphism or
(ii) there is an infinite cardinal number η such that $|f(x)|=\eta$ for all $x \in G$.

Also, if $f \in \operatorname{MHom}\left(G, G^{\prime}\right)$ where G^{\prime} is a subgroup of $\left(\mathbb{R}^{*}, \cdot\right)$, then one of the following statements holds.
(i) f is a homomorphism.
(ii) For every $x \in G, f(x)=\left\{-x^{\prime}, x^{\prime}\right\}$ for some $x^{\prime} \in G^{\prime}$.
(iii) There is an infinite cardinal number η such that $|f(x)|=\eta$ for all $x \in G$.

2 Main Results

To obtain our main results, the following two lemmas are needed.
Lemma 2.1 Let G and G^{\prime} be groups. Then for every $f \in \operatorname{MHom}\left(G, G^{\prime}\right),|f(x)|=$ $|f(e)|$ for all $x \in G$ where e is the identity of G.

Proof. Let $f \in \operatorname{MHom}\left(G, G^{\prime}\right)$ and $x \in G$. Since $\left|f\left(x^{-1}\right)\right| \geq 1$ and G^{\prime} is cancellative, we have

$$
|f(e)|=\left|f\left(x x^{-1}\right)\right|=\left|f(x) f\left(x^{-1}\right)\right| \geq|f(x)|=|f(x e)|=|f(x) f(e)| \geq|f(e)|
$$

so $|f(x)|=|f(e)|$.
Lemma 2.2 Let G be a group with identity e and G^{\prime} a subgroup of $\left(\mathbb{R}^{*}, \cdot\right)$. If $f \in \operatorname{MHom}\left(G, G^{\prime}\right)$ is such that $|f(e)|=2$, then
(i) $f(e)=\{-1,1\}$ and
(ii) for every $x \in G, f(x)=\left\{-x^{\prime}, x^{\prime}\right\}$ for some $x^{\prime} \in G^{\prime}$.

Proof. (i) Let $f(e)=\{a, b\}$ with $a<b$. Then

$$
\begin{equation*}
\{a, b\}=f(e)=f(e) f(e)=\left\{a^{2}, a b, b^{2}\right\} \tag{2.1}
\end{equation*}
$$

Since $a<b$, it follows that $a^{2}<a b<b^{2}$ if $a>0$ and $a^{2}>a b>b^{2}$ if $b<0$. From this fact and (2.1), we deduce that $a<0$ and $b>0$. Hence $a b=a$ and $a^{2}=b^{2}=b$ which imply that $b=1$ and $a=-1$.
(ii) Let $x \in G$. Then $|f(x)|=2$ by Lemma 2.1. Let $f(x)=\{y, z\}$ with $y<z$ in G^{\prime}. Then

$$
\begin{equation*}
\{y, z\}=f(x)=f(x) f(e)=\{y, z\}\{-1,1\}=\{-y,-z, y, z\} . \tag{2.2}
\end{equation*}
$$

Since $0 \neq y<z$, we have $y \neq-y>-z$, so by $(2.2),-y=z$. Hence $-z=y<z$. Consequently, $f(x)=\{-z, z\}$.

Theorem 2.3 Let G be a group and G^{\prime} a subgroup of $(\mathbb{R},+)$. If $f \in M H o m$ (G, G^{\prime}), then either
(i) f is a homomorphism or
(ii) there is an infinite cardinal number η such that $|f(x)|=\eta$ for all $x \in G$.

Proof. Let $f \in \operatorname{MHom}\left(G, G^{\prime}\right)$ and assume that f is not a homomorphism from G into G^{\prime}. Then $|f(e)|>1$ by Lemma 2.1 where e is the identity of G. Suppose that $f(e)$ is a finite subset of \mathbb{R}, say $f(e)=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ with $a_{1}<a_{2}<\cdots<a_{n}$ and $n \geq 2$. Then $a_{1}+a_{1}<a_{2}+a_{1}<\ldots<a_{n}+a_{1}<a_{n}+a_{n}$ and hence

$$
\begin{aligned}
n=\left|\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}\right|=|f(e)| & =|f(e)+f(e)| \\
& =\left|\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}+\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}\right| \\
& \geq\left|\left\{a_{1}+a_{1}, a_{2}+a_{1}, \ldots, a_{n}+a_{1}, a_{n}+a_{n}\right\}\right| \\
& =n+1,
\end{aligned}
$$

a contradiction. Hence $|f(e)|=\eta$ for some infinite cardinal number η, and by Lemma 2.1, $|f(x)|=\eta$ for all $x \in G$.

Theorem 2.4 Let G be a group and G^{\prime} a subgroup of $\left(\mathbb{R}^{*}, \cdot\right)$. If $f \in \operatorname{MHom}(G$, $\left.G^{\prime}\right)$, then f satisfies one of the following conditions.
(i) f is a homomorphism.
(ii) For every $x \in G, f(x)=\left\{-x^{\prime}, x^{\prime}\right\}$ for some $x^{\prime} \in G^{\prime}$.
(iii) There is an infinite cardinal number η such that $|f(x)|=\eta$ for all $x \in G$.

Proof. Let $f \in \operatorname{MHom}\left(G, G^{\prime}\right)$ and assume that f is not a homomorphism from G into G^{\prime}. It follows from Lemma 2.1, $|f(e)|>1$. If $|f(e)|=2$, then by Lemma 2.2, f satisfies (ii). Assume that $|f(e)|>2$. To show that f satisfies (iii), suppose not. By lemma 2.1, $f(e)$ is a finite subset of \mathbb{R}^{*}, say $f(e)=$ $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ with $a_{1}<a_{2}<\cdots<a_{n}$ and $n>2$. Since $f(e) f(e)=f(e)$, we have $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$. It follows that

$$
\begin{equation*}
\left\{a_{i} a_{j} \mid i, j \in\{1,2, \ldots, n\}\right\}=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\left\{a_{i} a_{j} \mid i, j \in\{1,2, \ldots, n\}\right\}\right|=n \tag{2.4}
\end{equation*}
$$

Case 1: $0<a_{1}<\cdots<a_{n}$. Then $a_{1}^{2}<a_{1} a_{2}<\cdots<a_{1} a_{n}<a_{n}^{2}$, so $\left|\left\{a_{1}^{2}, a_{1} a_{2}, \ldots, a_{1} a_{n}, a_{n}^{2}\right\}\right|=n+1$ which is contrary to (2.4).
Case 2: $a_{1}<\cdots<a_{n}<0$. Then $a_{i} a_{j}>0$ for all $i, j \in\{1,2, \ldots, n\}$. Hence every element of $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ is negative but every element of $\left\{a_{i} a_{j} \mid i, j \in\right.$ $\{1,2, \ldots, n\}\}$ is positive which are contrary to (2.3).
Case 3: $a_{1}<\cdots<a_{n-1}<0<a_{n}$. Then $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ contains only one positive real number. But $a_{1}^{2}>a_{1} a_{2}>\cdots>a_{1} a_{n-1}>0$ and $n-1>1$, so $\left\{a_{i} a_{j} \mid i, j \in\{1,2, \ldots, n\}\right\}$ contains at least $n-1$ positive real numbers. These contradict (1) since $n>2$.

Case 4: $a_{1}<\cdots<a_{k}<0<a_{k+1}<\cdots<a_{n}$ and $k+1<n$. Then $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ contains exactly $n-k$ positive real numbers. Since $0<a_{k+1}^{2}<a_{k+1} a_{k+2}<\cdots<$ $a_{k+1} a_{n}<a_{n}^{2}$, we have that $\left\{a_{i} a_{j} \mid i, j \in\{1,2, \ldots, n\}\right\}$ contains at least $n-k+1$ positive real numbers. These contradict (2.3).
Hence the theorem is proved.
It is clearly seen that if H is a subsemigroup of G^{\prime} containing e^{\prime}, then the multifunction from G into G^{\prime} defined by

$$
f(x)=H \text { for all } x \in G
$$

is a multihomomorphism from G into G^{\prime}. Such a multihomomorphism is called a constant multihomomorphism. Since for every $a \in \mathbb{R}^{+},[a, \infty) \cup\{0\}$ is a subsemigroup of $(\mathbb{R},+)$ containing 0 , it follows that there are uncountably many constant multihomomorphisms from G into $(\mathbb{R},+)$. The next example shows that there are also uncountably many nonconstant multihomomorphisms in $\operatorname{MHom}((\mathbb{R},+),(\mathbb{R},+))$.

Example 2.5 For each $a \in \mathbb{R}$, define

$$
f_{a}(x)=[a x, \infty) \text { for all } x \in \mathbb{R}
$$

If $a, x, y \in \mathbb{R}$, then

$$
f_{a}(x+y)=[a(x+y), \infty)=[a x, \infty)+[a y, \infty)=f_{a}(x)+f_{a}(y)
$$

Hence $f_{a} \in \operatorname{MHom}((\mathbb{R},+),(\mathbb{R},+))$ for all $a \in \mathbb{R}$ and f_{a} is a constant multihomomorphism if and only if $a=0$. If $a, b \in \mathbb{R}$ are such that $a \neq b$, then $f_{a}(1)=[a, \infty) \neq[b, \infty)=f_{b}(1)$. Therefore $\left\{f_{a} \mid a \in \mathbb{R} \backslash\{0\}\right\}$ is an uncountably infinite subset of $\operatorname{MHom}((\mathbb{R},+),(\mathbb{R},+))$. Observe that $\left|f_{a}(x)\right|=\aleph_{1}$ for all $x \in \mathbb{R}$.

Next, for $a \in \mathbb{R}$, define

$$
g_{a}(x)=x+a \mathbb{Z}_{0}^{+} \text {for all } x \in \mathbb{R}
$$

where \mathbb{Z}^{+}is the set of positve integers and $\mathbb{Z}_{0}^{+}=\mathbb{Z}^{+} \cup\{0\}$. Hence

$$
g_{a}(x)=\{x, x+a, x+2 a, \ldots\} \text { for all } x \in \mathbb{R}
$$

Since for any $a \in \mathbb{R}, a \mathbb{Z}_{0}^{+}$is a subsemigroup of $(\mathbb{R},+)$ containing 0 , we have $a \mathbb{Z}_{0}^{+}+a \mathbb{Z}_{0}^{+}=a \mathbb{Z}_{0}^{+}$for every $a \in \mathbb{R}$. It follows that $g_{a} \in \operatorname{MHom}((\mathbb{R},+),(\mathbb{R},+))$ which is nonconstant for every $a \in \mathbb{R}$. Clearly, $a \mathbb{Z}_{0}^{+} \neq b \mathbb{Z}_{0}^{+}$for all distinct $a, b \in \mathbb{R}$. If $a, b \in \mathbb{R}$ are such that $a \neq b$, then $g_{a}(0)=a \mathbb{Z}_{0}^{+} \neq b \mathbb{Z}_{0}^{+}=g_{b}(0)$. Hence $\left\{g_{a} \mid a \in \mathbb{R}\right\}$ is an uncountable subset of $\operatorname{MHom}((\mathbb{R},+),(\mathbb{R},+))$. Notice that $\left|g_{a}(x)\right|=\aleph_{0}$ for all $a \in \mathbb{R} \backslash\{0\}$ and $x \in \mathbb{R}$.

If $a \in \mathbb{R}$ and $a \geq 1$, then $[a, \infty) \cup\{1\}$ is a subsemigroup of $\left(\mathbb{R}^{*}, \cdot\right)$ containing 1 . Therefore there are uncountably many constant multihomomorphisms from any group G into $\left(\mathbb{R}^{*}, \cdot\right)$. We show in the last example that $\operatorname{MHom}\left(\left(\mathbb{R}^{*}, \cdot\right),\left(\mathbb{R}^{*}, \cdot\right)\right)$ contains an uncountably many nonconstant f which satisfy (ii) of Theorem 2.4 and an uncountably many nonconstant f which satisfy (iii) of Theorem 2.4.

Example 2.6 For each $a \in \mathbb{R}$, define

$$
\begin{aligned}
& h_{a}(x)=\left\{-|x|^{a},|x|^{a}\right\}, k_{a}(x)=\left[|x|^{a}, \infty\right) \text { and } \\
& l_{a}(x)=|x|^{a} \mathbb{Z}^{+} \text {for all } x \in \mathbb{R}^{*}
\end{aligned}
$$

If $a \in \mathbb{R}$ and $x, y \in \mathbb{R}^{*}$, then

$$
\begin{aligned}
h_{a}(x y)=\left\{-|x y|^{a},|x y|^{a}\right\} & =\left\{-|x|^{a}|y|^{a},|x|^{a}|y|^{a}\right\} \\
& =\left\{-|x|^{a},|x|^{a}\right\}\left\{-|y|^{a},|y|^{a}\right\}=h_{a}(x) h_{a}(y), \\
k_{a}(x y)=\left[|x y|^{a}, \infty\right) & =\left[|x|^{a}|y|^{a}, \infty\right) \\
& =\left[|x|^{a}, \infty\right)\left[|y|^{a}, \infty\right)=k_{a}(x) k_{a}(y) \text { and } \\
l_{a}(x y)=|x y|^{a} \mathbb{Z}^{+} & =|x|^{a}|y|^{a} \mathbb{Z}^{+} \\
& =\left(|x|^{a} \mathbb{Z}^{+}\right)\left(|y|^{a} \mathbb{Z}^{+}\right)=l_{a}(x) l_{a}(y)
\end{aligned}
$$

Hence $h_{a}, k_{a}, l_{a} \in \operatorname{MHom}\left(\left(\mathbb{R}^{*}, \cdot\right),\left(\mathbb{R}^{*}, \cdot\right)\right)$ for all $a \in \mathbb{R}$. Also, h_{a} is nonconstant if and only if $a \neq 0$, and this is also true for k_{a} and l_{a}.

Moreover, if $a, b \in \mathbb{R}$ are such that $a \neq b$, then $2^{a} \neq 2^{b}$, so $h_{a}(2) \neq h_{b}(2)$, $k_{a}(2) \neq k_{b}(2)$ and $l_{a}(2) \neq l_{b}(2)$. Hence $\left\{h_{a} \mid a \in \mathbb{R}\right\},\left\{k_{a} \mid a \in \mathbb{R}\right\}$ and $\left\{l_{a} \mid a \in \mathbb{R}\right\}$ are uncountable subsets of $\operatorname{MHom}\left(\left(\mathbb{R}^{*}, \cdot\right),\left(\mathbb{R}^{*}, \cdot\right)\right)$, and $\left|h_{a}(x)\right|=2,\left|k_{a}(x)\right|=\aleph_{1}$ and $\left|l_{a}(x)\right|=\aleph_{0}$ for all $a \in \mathbb{R}$ and $x \in \mathbb{R}^{*}$.

References

[1] O. Feichtinger, More on lower semi-continuity, Amer. Math. Monthly, 83(1976), 39.
[2] R. E. Smithson, A characterization of lower semicontinuity, Amer. Math. Monthly, 75(1968), 505.
[3] N. Triphop, A. Harnchoowong and Y. Kemprasit, Multihomomorphisms between cyclic groups, Set-valued Mathematics and Applications, to appear.
[4] G. T. Whyburn, Continuity of multifunctions, Proc. Nat. Acad. Sciences, 54(1965), 1494-1501.
(Received 11 March 2006)
P. Youngkhong

Department of Mathematics
Faculty of Science
Chulalongkorn University
Bangkok 10330, Thailand.
e-mail : pyoungkhong@yahoo.com
K. Savettaraseranee

Department of Mathematics
Faculty of Science
Kasertsart University
Bangkok 10900, Thailand.
e-mail : fscikrs@ku.ac.th

