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Multihomomorphisms from Groups
into Groups of Real Numbers

P. Youngkhong and K. Savettaraseranee

Abstract : By a multihomomorphism from a group G into a group G′ we mean
a multifunction f from G into G′ such that

f(xy) = f(x)f(y)
(
=

{
st | s ∈ f(x) and t ∈ f(y)

})

for all x, y ∈ G. We denote by MHom(G,G′) the set of all multihomomorphisms
from G into G′. It is shown that if f ∈ MHom(G,G′) where G′ is a subgroup of
(R, +), then either f is a homomorphism or there is an infinite cardinal number η
such that |f(x)| = η for all x ∈ G. If f ∈ MHom(G,G′) where G′ is a subgroup of
(R∗, ·), then (i) f is a homomorphism, (ii) |f(x)| = 2 for all x ∈ G or (iii) there is
an infinite cardinal number η such that |f(x)| = η for all x ∈ G.
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1 Introduction

The cardinality of a set X will be denoted by |X|. A multifunction from a
nonempty set X into a nonempty set Y is a function f : X → P ∗(Y ) where P (Y )
is the power set of Y and P ∗(Y ) = P (Y )\{∅}.

Upper and lower semicontinuity of multifunctions between two topological
spaces were studied by Whyburn [4] and Smithson [2]. Feichtinger [1] also gave a
characterization of lower semi-continuous multifunctions. The authors in [3] were
motivated by these works to study multifunctions in an algebraic sense. “Multi-
homomorphisms” between cyclic groups were characterized in [3]. The definition
of a multihomomorphism between groups was given naturally as follows :

A multifunction f from a group G into a group G′ is called a multihomomor-
phism if

f(xy) = f(x)f(y)
(
=

{
st | s ∈ f(x) and t ∈ f(y)

})
for all x, y ∈ G

and let MHom(G,G′) denote the set of all multihomomorphisms from G into
G′. Then every homomorphism from G into G′ belongs to MHom(G,G′) and for
f ∈ MHom(G,G′), f is a homomorphism if and only if |f(x)| = 1 for all x ∈ G.
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Let R be the set of real numbers and R∗ = R\{0}. Then (R, +) and (R∗, ·) are
abelian groups where + and · are the usual addition and multiplication, respec-
tively. Observe that there are infinitely many subgroups of (R, +) and of (R∗, ·).
Let R+ denote the set of positive real numbers.

Our purpose is to give remarkable necessary conditions of f ∈ MHom(G,
G′) where G′ is a subgroup of (R, +) and (R∗, ·). It will be shown that if f ∈
MHom(G,G′) where G′ is a subgroup of (R,+), then either

(i) f is a homomorphism or

(ii) there is an infinite cardinal number η such that |f(x)| = η for all x ∈ G.

Also, if f ∈ MHom(G,G′) where G′ is a subgroup of (R∗, ·), then one of the
following statements holds.

(i) f is a homomorphism.

(ii) For every x ∈ G, f(x) = {−x′, x′} for some x′ ∈ G′.

(iii) There is an infinite cardinal number η such that |f(x)| = η for all x ∈ G.

2 Main Results

To obtain our main results, the following two lemmas are needed.

Lemma 2.1 Let G and G′ be groups. Then for every f ∈ MHom(G,G′), |f(x)| =
|f(e)| for all x ∈ G where e is the identity of G.

Proof. Let f ∈ MHom(G,G′) and x ∈ G. Since |f(x−1)| ≥ 1 and G′ is cancellative,
we have

|f(e)| = |f(xx−1)| = |f(x)f(x−1)| ≥ |f(x)| = |f(xe)| = |f(x)f(e)| ≥ |f(e)|,

so |f(x)| = |f(e)|. ¤

Lemma 2.2 Let G be a group with identity e and G′ a subgroup of (R∗, ·). If
f ∈ MHom(G,G′) is such that |f(e)| = 2, then

(i) f(e) = {−1, 1} and

(ii) for every x ∈ G, f(x) = {−x′, x′} for some x′ ∈ G′.

Proof. (i) Let f(e) = {a, b} with a < b. Then

{a, b} = f(e) = f(e)f(e) = {a2, ab, b2}. (2.1)

Since a < b, it follows that a2 < ab < b2 if a > 0 and a2 > ab > b2 if b < 0. From
this fact and (2.1), we deduce that a < 0 and b > 0. Hence ab = a and a2 = b2 = b
which imply that b = 1 and a = −1.
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(ii) Let x ∈ G. Then |f(x)| = 2 by Lemma 2.1. Let f(x) = {y, z} with y < z
in G′. Then

{y, z} = f(x) = f(x)f(e) = {y, z}{−1, 1} = {−y,−z, y, z}. (2.2)

Since 0 6= y < z, we have y 6= −y > −z, so by (2.2), −y = z. Hence −z = y < z.
Consequently, f(x) = {−z, z}. ¤

Theorem 2.3 Let G be a group and G′ a subgroup of (R,+). If f ∈ MHom
(G,G′), then either

(i) f is a homomorphism or

(ii) there is an infinite cardinal number η such that |f(x)| = η for all x ∈ G.

Proof. Let f ∈ MHom(G,G′) and assume that f is not a homomorphism from G
into G′. Then |f(e)| > 1 by Lemma 2.1 where e is the identity of G. Suppose that
f(e) is a finite subset of R, say f(e) = {a1, a2, . . . , an} with a1 < a2 < · · · < an

and n ≥ 2. Then a1 + a1 < a2 + a1 < . . . < an + a1 < an + an and hence

n = |{a1, a2, . . . , an}| = |f(e)| = |f(e) + f(e)|
= |{a1, a2, . . . , an}+ {a1, a2, . . . , an}|
≥ |{a1 + a1, a2 + a1, . . . , an + a1, an + an}|
= n + 1,

a contradiction. Hence |f(e)| = η for some infinite cardinal number η, and by
Lemma 2.1, |f(x)| = η for all x ∈ G. ¤

Theorem 2.4 Let G be a group and G′ a subgroup of (R∗, ·). If f ∈ MHom(G,
G′), then f satisfies one of the following conditions.

(i) f is a homomorphism.

(ii) For every x ∈ G, f(x) = {−x′, x′} for some x′ ∈ G′.

(iii) There is an infinite cardinal number η such that |f(x)| = η for all x ∈ G.

Proof. Let f ∈ MHom(G,G′) and assume that f is not a homomorphism from
G into G′. It follows from Lemma 2.1, |f(e)| > 1. If |f(e)| = 2, then by
Lemma 2.2, f satisfies (ii). Assume that |f(e)| > 2. To show that f satis-
fies (iii), suppose not. By lemma 2.1, f(e) is a finite subset of R∗, say f(e) =
{a1, a2, . . . , an} with a1 < a2 < · · · < an and n > 2. Since f(e)f(e) = f(e), we
have {a1, a2, . . . , an}{a1, a2, . . . , an} = {a1, a2, . . . , an}. It follows that

{
aiaj | i, j ∈ {1, 2, . . . , n}} = {a1, a2, . . . , an} (2.3)

and
|{aiaj | i, j ∈ {1, 2, . . . , n}}| = n. (2.4)
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Case 1: 0 < a1 < · · · < an. Then a2
1 < a1a2 < · · · < a1an < a2

n, so
|{a2

1, a1a2, . . . , a1an, a2
n}| = n + 1 which is contrary to (2.4).

Case 2: a1 < · · · < an < 0. Then aiaj > 0 for all i, j ∈ {1, 2, . . . , n}. Hence
every element of {a1, a2, . . . , an} is negative but every element of {aiaj | i, j ∈
{1, 2, . . . , n}} is positive which are contrary to (2.3).

Case 3: a1 < · · · < an−1 < 0 < an. Then {a1, a2, . . . , an} contains only one
positive real number. But a2

1 > a1a2 > · · · > a1an−1 > 0 and n − 1 > 1, so
{aiaj | i, j ∈ {1, 2, . . . , n}} contains at least n − 1 positive real numbers. These
contradict (1) since n > 2.

Case 4: a1 < · · · < ak < 0 < ak+1 < · · · < an and k+1 < n. Then {a1, a2, . . . , an}
contains exactly n− k positive real numbers. Since 0 < a2

k+1 < ak+1ak+2 < · · · <
ak+1an < a2

n, we have that {aiaj | i, j ∈ {1, 2, . . . , n}} contains at least n− k + 1
positive real numbers. These contradict (2.3).
Hence the theorem is proved. ¤

It is clearly seen that if H is a subsemigroup of G′ containing e′, then the
multifunction from G into G′ defined by

f(x) = H for all x ∈ G

is a multihomomorphism from G into G′. Such a multihomomorphism is called a
constant multihomomorphism. Since for every a ∈ R+, [a,∞) ∪ {0} is a subsemi-
group of (R,+) containing 0, it follows that there are uncountably many constant
multihomomorphisms from G into (R, +). The next example shows that there are
also uncountably many nonconstant multihomomorphisms in MHom ((R, +), (R, +)).

Example 2.5 For each a ∈ R, define

fa(x) = [ax,∞) for all x ∈ R.

If a, x, y ∈ R, then

fa(x + y) = [a(x + y),∞) = [ax,∞) + [ay,∞) = fa(x) + fa(y).

Hence fa ∈ MHom((R, +), (R, +)) for all a ∈ R and fa is a constant multi-
homomorphism if and only if a = 0. If a, b ∈ R are such that a 6= b, then
fa(1) = [a,∞) 6= [b,∞) = fb(1). Therefore {fa | a ∈ R\{0}} is an uncountably
infinite subset of MHom ((R,+), (R, +)). Observe that |fa(x)| = ℵ1 for all x ∈ R.

Next, for a ∈ R, define

ga(x) = x + aZ+
0 for all x ∈ R

where Z+ is the set of positve integers and Z+
0 = Z+ ∪ {0}. Hence

ga(x) = {x, x + a, x + 2a, . . .} for all x ∈ R.
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Since for any a ∈ R, aZ+
0 is a subsemigroup of (R, +) containing 0, we have

aZ+
0 + aZ+

0 = aZ+
0 for every a ∈ R. It follows that ga ∈ MHom((R, +), (R, +))

which is nonconstant for every a ∈ R. Clearly, aZ+
0 6= bZ+

0 for all distinct a, b ∈ R.
If a, b ∈ R are such that a 6= b, then ga(0) = aZ+

0 6= bZ+
0 = gb(0). Hence

{ga | a ∈ R} is an uncountable subset of MHom ((R,+), (R,+)). Notice that
|ga(x)| = ℵ0 for all a ∈ R\{0} and x ∈ R.

If a ∈ R and a ≥ 1, then [a,∞)∪{1} is a subsemigroup of (R∗, ·) containing 1.
Therefore there are uncountably many constant multihomomorphisms from any
group G into (R∗, ·). We show in the last example that MHom((R∗, ·), (R∗, ·))
contains an uncountably many nonconstant f which satisfy (ii) of Theorem 2.4
and an uncountably many nonconstant f which satisfy (iii) of Theorem 2.4.

Example 2.6 For each a ∈ R, define

ha(x) = {−|x|a, |x|a}, ka(x) = [|x|a,∞) and

la(x) = |x|aZ+ for all x ∈ R∗.
If a ∈ R and x, y ∈ R∗, then

ha(xy) = {−|xy|a, |xy|a} = {−|x|a|y|a, |x|a|y|a}
= {−|x|a, |x|a}{−|y|a, |y|a} = ha(x)ha(y),

ka(xy) = [|xy|a,∞) = [|x|a|y|a,∞)
= [|x|a,∞)[|y|a,∞) = ka(x)ka(y) and

la(xy) = |xy|aZ+ = |x|a|y|aZ+

= (|x|aZ+)(|y|aZ+) = la(x)la(y).

Hence ha, ka, la ∈ MHom((R∗, ·), (R∗, ·)) for all a ∈ R. Also, ha is nonconstant if
and only if a 6= 0, and this is also true for ka and la.

Moreover, if a, b ∈ R are such that a 6= b, then 2a 6= 2b, so ha(2) 6= hb(2),
ka(2) 6= kb(2) and la(2) 6= lb(2). Hence {ha | a ∈ R}, {ka | a ∈ R} and {la | a ∈ R}
are uncountable subsets of MHom ((R∗, ·), (R∗, ·)), and |ha(x)| = 2, |ka(x)| = ℵ1

and |la(x)| = ℵ0 for all a ∈ R and x ∈ R∗.
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