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1 Introduction

Let (Ω,F ,P) be a probability space with filtration F = (Ft)0≤t≤T . All
processes that we shall consider in this section will be defined in this space. An
asset price model with stochastic volatility has been defined by Heston [1] which
has the following dynamics:

dSt = St(µdt+
√
vtdW

S
t ), (1.1)

dvt = κ(θ − vt)dt+ σ
√
vtdW

v
t , (1.2)

where St is the asset price, µ ∈ ℜ is the rate of return of the asset price, vt is
the volatility of asset returns, κ > 0 is the rate at which the volatility reverts
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toward its long-term mean, θ ∈ ℜ is the mean long-term volatility, σ > 0 is the
volatility of the volatility process, WS

t and W v
t are standard Brownian motions

corresponding to the processes St and vt, respectively, with constant correlation
ρ. Bate [2] introduced the jump-diffusion stochastic volatility model by adding
log normal jump Yt to the Heston stochastic volatility model. In the original
formulation of Bate, the model has the following form:

dSt = St(µdt+
√
vtdW

S
t ) + St−YtdN

S
t , (1.3)

where NS
t is the Poisson process which corresponds to the underlying asset St, Yt

is a proportion of jump size of the asset price (1.1) with log normal distribution
and St− means that there is a jump in the value of the process before the jump is
used on the left-hand side of the formula. Eraker et al. [3] extended Bate’s work
by incorporating jumps into the volatility model, i.e.

dvt = κ(θ − vt)dt+ σ
√
vtdW

v
t + ZtdN

v
t (1.4)

Eraker et al. [3] developed a likelihood-based estimation strategy and provided
estimates of parameters, spot volatility, jump times, and jump sizes using S&P 500
and Nasdaq 100 index returns. Moreover, they examined the volatility structure
of the S&P and Nasdaq indices and indicated that models with jumps in volatility
are preferred over those without jumps in volatility. But they did not provide a
closed-form formula for the price of a European call option.

Empirical evidence on mean reversion in financial assets has been produced
by Cecchetti et al. [4] and Bessembinder et al. [5], respectively. It has been
documented that currency exchange rates also exhibit mean reversion. Jorion
and Sweeney [6] show how the real exchange rates revert to their mean levels
and Sweeney [7] provides empirical evidence of mean reversion in G-10 nominal
exchange rates. Mean reversion also appears in some stock prices as evidenced by
Poterba and Summers [8].

In this paper, we consider the problem of finding a closed-form formula for a
European call option where the asset price follows mean reverting jump-diffusion
and the stochastic volatility with jump.

The rest of this paper is organized as follows. In Section 2, we briefly discuss
model descriptions for option pricing. Deriving a formula for a characteristic
function is presented in Section 3. Finally, a closed-form formula for a European
call option in terms of characteristic functions is presented.

2 Model Descriptions

It is assumed that a risk-neutral probability measure M exists. The asset
price St under this measure follows a mean reverting jump-diffusion process, and
the volatility vt follows mean reverting with jump, i.e. our models are governed
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by the following dynamics:

dSt = b

(

a− lnSt −
λSm

b

)

Stdt+
√
vtStdW

S
t + St−YtdN

S
t (2.1)

dvt = κ(θ − vt)dt+ σ
√
vtdW

v
t + ZtdN

v
t (2.2)

where St, vt, κ, θ, σ,W
S
t and W v

t are defined as above, a ∈ ℜ is the mean of long-
term asset price return, b > 0 is the rate at which the asset price return reverts
toward its long-term mean, NS

t and Nv
t are independent Poisson processes with

constant intensities λS and λv respectively. Yt and Zt are proportional jump sizes
of the asset price (2.1) and the jump size of the volatility process (2.2) respectively.
Suppose that Yt and Zt are independent and identically distributed sequences
with densities φYt

(y) := φY (y), φZt
(z) := φZ(z) and EYt := m. Moreover, we

assume that the jump processesNS
t andNv

t are independent of standard Brownian
motions WS

t and W v
t .

Assume that the asset price St and the volatility vt satisfy equations (2.1) and
(2.2) respectively. Let Lt = lnSt, by the jump-diffusion chain rule, lnSt satisfies
the SDE

dLt = b

(

a− Lt −
λSm

b
− vt

2b

)

dt+
√
vtdW

S
t + ln(1 + Yt)dN

S
t . (2.3)

3 Characteristic Functions

We denote the characteristic function for LT = lnST as

f(x : t, l, v) = EM[eixLT |Lt = l, vt = v] (3.1)

where 0 ≤ t ≤ T and i =
√
−1. Here Lt is the mean reverting asset price process

with jumps specified by (2.3) and vt is the volatility process specified by (2.2). The
generalized Feynman-Kac theorem [9] implies that f(x : t, l, v) solves the following
partial integro-differential equation (PIDE):

0 =
∂f

∂t
+ b

(

a− l − λSm

b
− v

2b

)

∂f

∂l

+ κ(θ − v)
∂f

∂v
+

1

2
v
∂2f

∂l2
+ ρσv

∂2f

∂l∂v
+

1

2
σ2v

∂2f

∂v2

+ λS

∫

ℜ

[f(x : t, l + y, v) − f(x : t, l, v)]φY (y)dy

+ λv

∫

ℜ

[f(x : t, l, v + z) − f(x : t, l, v)]φZ(z)dz. (3.2)
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Lemma 3.1. Suppose that Lt follows the dynamics in (2.3). Then the character-
istic function for LT can be written in the form

f(x : t, l, v) = exp[B(t, T ) + C(t, T )l+D(t, T )v + ixl], (3.3)

where

B(t, T ) = (
λSm

b
− a)ix(e−b(T−t) − 1) − θκ

∫ T

t

D(s, T )ds

+ (T − t)λS

∫

ℜ

[

eixy − 1
]

φY (y)dy

+ (T − t)λv

∫

ℜ

[

ezD(t,T ) − 1
]

φZ(z)dz,

C(t, T ) = ix(e−b(T−t) − 1),

D(t, T ) = U(e−b(T−t)) +
e−κ(T−t)V (e−b(T−t))

− 1
U(1) + σ2

2b

∫ e−b(T−t)

1 h
κ
b
−1V (h)dh

,

U(h) =
2bh

σ2

(
√

1 − ρ2 − ρi)σx
2b

Φ(a∗, b∗, h
ζ
) + a∗

b∗ζ
Φ(a∗ + 1, b∗ + 1, h

ζ
)

Φ(a∗, b∗, h
ζ
)

,

V (h) =
Φ2(a∗, b∗, 1

ζ
)e(

√
1−ρ2) σx

b
(1−h)

Φ2(a∗, b∗, h
ζ
)

,

h = e−b(T−t),

a∗ =
b∗

2 (
√

ρ2 − 1 + ρ) + σ
4b

√

ρ2 − 1
,

b∗ = 1 − κ

b
,

ζ =
−b

σx
√

1 − ρ2
,

and Φ(·, ·, ·) is the degenerated hypergeometric function.

Proof. From (3.1), it is clear that

f(x : T, l, v) = eixl (3.4)

which is the boundary condition of PIDE (3.2). This implies that

B(T, T ) = C(T, T ) = D(T, T ) = 0. (3.5)

Substituting (3.3) in (3.2) and using the fact that the function f is never zero, we
obtain
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0 = [Bt + (ba− λSm)(C + ix) + κθD

+ λS

∫

ℜ

[eixy − 1]φY (y)dy + λv

∫

ℜ

[ezD − 1]φZ(z)dz]

+ [Ct − b(C + ix)]l

+ [Dt +
1

2
(C + ix) +

1

2
(C + ix)2 − κD +

1

2
σ2D2 + ρσ(C + ix)D]v

(3.6)

where Bt, Ct and Dt are the partial derivatives with respect to t of functions B,C
and D respectively.

This reduces the problem to one of solving three, much simpler, ordinary
differential equations:

Bt + (ba− λSm)(C + ix) + κθD + λS

∫

ℜ

[eixy − 1]φY (y)dy

+ λv

∫

ℜ

[ezD − 1]φZ(z)dz = 0 (3.7)

Ct − b(C + ix) = 0 (3.8)

Dt +
1

2
(C + ix)(C + ix− 1) − κD +

1

2
σ2D2 + ρσ(C + ix)D = 0 (3.9)

subject to boundary conditions (3.5).
The solution to equation (3.8) with the boundary condition C(T, T ) = 0 is

given by
C(t, T ) = ix(e−b(T−t) − 1). (3.10)

We now consider equation (3.9). Substituting (3.10) in (3.9), one gets

Dt +
1

2

[

ixe−b(T−t)
] [

ixe−b(T−t) − 1
]

− κD +
1

2
σ2D2 + ρσixDe−b(T−t) = 0.

Hence,

Dt = −1

2
σ2D2 +

[

κ− ρσixe−b(T−t)
]

D +
1

2

[

x2e−2b(T−t) + ixe−b(T−t)
]

. (3.11)

Let h = e−b(T−t) and we define a new function D̂(h(t), T ) := D(t, T ). Then

∂D(t, T )

∂t
=
∂D̂(h, T )

∂h

∂h

∂t

= be−b(T−t)∂D̂(h, T )

∂h
. (3.12)
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Substituting (3.12) into (3.11), we obtain the following Riccati equation

∂D̂

∂h
= − 1

2bh
σ2D̂2 +

(

κ

bh
− ρσix

b

)

D̂ +
1

2b

(

x2h+ ix
)

. (3.13)

We shall solve the second order ODE (3.13) together with the initial condition
D̂(1, T ) = 0. Let

D̂(h, T ) =
2bhw′(h)

σ2w(h)
(3.14)

and taking the derivative of (3.14) with respect to h, one gets

∂D̂

∂h
=

[

σ2w(h)
∂

∂h
(2bhw′(h)) − 2bhw′(h)

∂

∂h
(σ2w(h))

]

1

σ4w2(h)

=
[

σ2w(h) [2bw′(h) + 2bhw′′(h)] − 2bhσ2(w′(h))2
] 1

σ4w2(h)
.

(3.15)

Substituting (3.14) and (3.15) into (3.13), we have

hw′′(h) −
[

(
κ

b
− 1) − h(

ρσxi

b
)

]

w′(h) −
[

x2σ2h

4b2
+
ixσ2

4b2

]

w(h) = 0. (3.16)

The ODE (3.16) has a general solution of the form [10],

w(h) = e(
√

1−ρ2−ρi) σx
2b

h

[

C1Φ(a∗, b∗,
h

ζ
) + C2h

1−b∗Φ(a∗ − b∗ + 1, 2 − b∗,
l

ζ
)

]

,

(3.17)
where

a∗ =
(
√

ρ2 − 1 + ρ) b∗

2 + σ
4b

√

ρ2 − 1

b∗ = 1 − κ

b
,

and

ζ =
−b

σx
√

1 − ρ2
.

Here C1 and C2 are constants to be determined from the boundary conditions.
Φ(a, b, z) is the degenerated hypergeometric function which has the following Kum-
mer’s series expansion

Φ(a, b, z) = 1 +

∞
∑

k=1

(a)kz
k

(b)kk!
,

where

(a)k = a(a+ 1) · · · (a+ k − 1).
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If we let C1 = 1 and C2 = 0 in (3.17) then a particular solution for (3.16) is

w(h) = e(
√

1−ρ2−ρi) σx
2b

h

[

Φ(a∗, b∗,
h

ζ
)

]

.

Using the transformation (3.14), Wong and Lo [11] show that a particular solution
for (3.13) is

U(h) =
2bh

σ2

(
√

1 − ρ2 − ρi)σx
2b

Φ(a∗, b∗, h
ζ
) + a∗

b∗ζ
Φ(a∗ + 1, b∗ + 1, h

ζ
)

Φ(a∗, b∗, h
ζ
)

,

which can be used to obtain the general solution for (3.13) as follows

D̂(h) = U(h) +

Φ2(a∗,b∗, 1
ζ
)

Φ2(a∗,b∗, h
ζ
)
h

κ
b e−2(

√
1−ρ2) σx

2b
(h−1)

− 1
U(1) + σ2

2b

∫ h

1

Φ2(a∗,b∗, 1
ζ
)

Φ2(a∗,b∗, h
ζ
)
η

κ
b
−1e−2(

√
1−ρ2) σx

2b
(η−1)dη

. (3.18)

We now consider the final ordinary differential equation (3.7). Substituting (3.18)
and (3.10) in (3.7), we have

Bt(t, T ) = (λSm− ba)ixe−b(T−t) − κθD(t, T )

− λS

∫

ℜ

[eixy − 1]φY (y)dy − λv

∫

ℜ

[ezD − 1]φZ(z)dz.

Integrating both sides of the above equation and invoking the condition B(T, T ) =
0, we obtain

B(t, T ) =

(

λSm

b
− a

)

ix(e−b(T−t) − 1) − κθ

∫ T

t

D(s, T )ds

+ (T − t)λS

∫

ℜ

[eixy − 1]φY (y)dy

+ (T − t)λv

∫

ℜ

[ezD − 1]φZ(z)dz. (3.19)

We can conclude that the characteristic function of the mean reverting process
(2.3) with stochastic volatility (2.2) is

f(x : t, l, v) = eB(t,T )+C(t,T )x+D(t,T )v+ixl,

where B(t, T ), C(t, T ) and D(t, T ) are as given in the Lemma.
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4 A formula for European Option Pricing

Let C denote the price at time t of a European style call option on the current
price of the underlying asset St with strike price K and expiration time T .

The terminal payoff of a European call option on the underlying stock price
St with strike price K is

max(ST −K, 0).

This means that the holder will exercise his right only if ST > K and then his
gain is ST − K. Otherwise, if ST ≤ K, then the holder will buy the underlying
asset from the market and the value of the option is zero.

Assuming the risk-free interest rate r is constant over the lifetime of the option,
the price of the European call at time t is equal to the discounted conditional
expected payoff

C(t, ST ) = e−r(T−t)EM[max(ST −K, 0)|Ft].

Assume that t = 0 and we define LT = lnST and k = lnK. Moreover, we express
the call price option C(0, ST ) as a function of the log of the strike price K rather
than the terminal log asset price ST . The initial call value CT (k) is related to the
risk-neutral density qT (l) by

CT (k) = e−rT

∫ ∞

k

(el − ek)qT (l)dl, (4.1)

where qT (l) is the density function of the random variable LT . It was mentioned
by Carr and Madan [12] that CT (k) is not square integrable. To obtain a square
integrable function, they introduced the modified call price function cT (k) defined
by

cT (k) = eαkCT (k) (4.2)

for some constant α > 0 that makes cT (k) is square integrable in k over the entire
real line and a good choice of α is that one fourth of the upper bound E[Sα+1

T ] <∞.

Consider the Fourier transform of cT (k)

ψT (u) =

∫ ∞

−∞

eiukcT (k)dk

=

∫ ∞

−∞

eiuk

∫ ∞

k

eαke−rT (el − ek)qT (l)dldk

=

∫ ∞

−∞

e−rT qT (l)

∫ l

−∞

(el+αk − e(1+α)k)eiukdkdl

=

∫ ∞

−∞

e−rT qT (l)

[

e(α+1+iu)l

α+ iu
− e(α+1+iu)l

α+ iu+ 1

]

dl

= e−rT

∫ ∞

−∞

[

(α + iu)e(α+1+iu)l + e(α+1+iu)l − (α+ iu)e(α+1+iu)l

(α+ iu)(α+ iu+ 1)

]

qT (l)dl

= e−rT

∫ ∞

−∞

[

e(α+1+iu)l

α2 + 2αiu− u2 + α+ iu

]

qT (l)dl



Option Pricing under a Mean Reverting Process with Jump-Diffusion ... 659

=
e−rT

α2 + α− u2 + i(2α+ 1)u

∫ ∞

−∞

e(α+1+iu)lqT (l)dl

=
e−rT

α2 + α− u2 + i(2α+ 1)u

∫ ∞

−∞

ei(u−(α+1)i)lqT (l)dl

=
e−rTf(x = u− (α + 1)i : t, l, v)

α2 + α− u2 + i(2α+ 1)u

where f is the characteristic function defined in Lemma 3.1.
Hence, the European call prices at time t = 0 with strike price k = lnK can then
be numerically obtained by using the inverse transform:

CT (k) =
e−αk

2π

∫ ∞

−∞

e−iukψT (u)du

=
e−αk

π

∫ ∞

0

e−iuk e
−rTf(x = u− (α + 1)i : t, l, v)

α2 + α− u2 + i(2α+ 1)u
du. (4.3)

Integration (4.3) is a direct Fourier transform and lends itself to an application of
the Fast Fourier Transform (FFT).
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