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Abstract : An alternative option pricing model is proposed, in which the as-
set prices follow the jump-diffusion and exhibits mean reversion. The stochastic
volatility follows the jump-diffusion with mean reversion. We find a formulation
for the European-style option in terms of characteristic functions.
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1 Introduction

Let (2, F,P) be a probability space with filtration F = (F;)gcicp. Al
processes that we shall consider in this section will be defined in this space. An
asset price model with stochastic volatility has been defined by Heston [1] which
has the following dynamics:

dSy = Sy(udt + /o dW), (1.1)
dve = k(0 — v)dt + o vedW, (1.2)

where S; is the asset price, p € R is the rate of return of the asset price, v; is
the volatility of asset returns, £ > 0 is the rate at which the volatility reverts
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toward its long-term mean, 6 € R is the mean long-term volatility, ¢ > 0 is the
volatility of the volatility process, W,° and W} are standard Brownian motions
corresponding to the processes S; and v, respectively, with constant correlation
p. Bate [2] introduced the jump-diffusion stochastic volatility model by adding
log normal jump Y; to the Heston stochastic volatility model. In the original
formulation of Bate, the model has the following form:

dS; = Sy(pudt + /o, dW?) + S;_Y;dN?, (1.3)

where N is the Poisson process which corresponds to the underlying asset S;, Y;
is a proportion of jump size of the asset price (1.1) with log normal distribution
and S;— means that there is a jump in the value of the process before the jump is
used on the left-hand side of the formula. Eraker et al. [3] extended Bate’s work
by incorporating jumps into the volatility model, i.e.

dve = k(0 — v)dt + o/oe dW, + ZydNY (1.4)

Eraker et al. [3] developed a likelihood-based estimation strategy and provided
estimates of parameters, spot volatility, jump times, and jump sizes using S&P 500
and Nasdaq 100 index returns. Moreover, they examined the volatility structure
of the S&P and Nasdaq indices and indicated that models with jumps in volatility
are preferred over those without jumps in volatility. But they did not provide a
closed-form formula for the price of a European call option.

Empirical evidence on mean reversion in financial assets has been produced
by Cecchetti et al. [4] and Bessembinder et al. [5], respectively. It has been
documented that currency exchange rates also exhibit mean reversion. Jorion
and Sweeney [6] show how the real exchange rates revert to their mean levels
and Sweeney [7] provides empirical evidence of mean reversion in G-10 nominal
exchange rates. Mean reversion also appears in some stock prices as evidenced by
Poterba and Summers [8].

In this paper, we consider the problem of finding a closed-form formula for a
European call option where the asset price follows mean reverting jump-diffusion
and the stochastic volatility with jump.

The rest of this paper is organized as follows. In Section 2, we briefly discuss
model descriptions for option pricing. Deriving a formula for a characteristic
function is presented in Section 3. Finally, a closed-form formula for a European
call option in terms of characteristic functions is presented.

2 Model Descriptions

It is assumed that a risk-neutral probability measure M exists. The asset
price S; under this measure follows a mean reverting jump-diffusion process, and
the volatility v; follows mean reverting with jump, i.e. our models are governed
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by the following dynamics:

S
S, = b (a —InS, - AT’”> Sydt + o SedWE + Si_YidNS (2.1)
d’Ut = m(6‘ — ’Ut)dt + O'\/’U_tdWi;U + thN);U (22)

where S;, vy, K, 0,0, W and W} are defined as above, a € R is the mean of long-
term asset price return, b > 0 is the rate at which the asset price return reverts
toward its long-term mean, N;° and N} are independent Poisson processes with
constant intensities A° and A\ respectively. Y; and Z; are proportional jump sizes
of the asset price (2.1) and the jump size of the volatility process (2.2) respectively.
Suppose that Y; and Z,; are independent and identically distributed sequences
with densities ¢y, (y) = év (y), ¢z, (2) := ¢dz(z) and EY; := m. Moreover, we
assume that the jump processes N;° and N} are independent of standard Brownian
motions W,° and W.

Assume that the asset price S; and the volatility v; satisfy equations (2.1) and
(2.2) respectively. Let Ly = In S, by the jump-diffusion chain rule, In S; satisfies
the SDE

Mmoo ow
— —> dt + o dW; +In(1 + Y;)dN{ . (2.3)

st:b<a—Lt—T %

3 Characteristic Functions
We denote the characteristic function for Ly = In St as
flx:t,1,v) = Epm[e™ET | Ly = 1, vy = v] (3.1)

where 0 <t < T and i = /—1. Here L, is the mean reverting asset price process
with jumps specified by (2.3) and v; is the volatility process specified by (2.2). The
generalized Feynman-Kac theorem [9] implies that f(z : ¢,1,v) solves the following
partial integro-differential equation (PIDE):

_of Nm o v\ of
O—§+b<a—l————)—
af 1 9f o2f 1, O°f

92l L 2,2
R0 =)t gugE trovgsst5ovg s

+ )‘S/[f(x i+ y,v) = flz: t,l,’l))]¢y(y)dy

R

+ )\”/[f(x st v+ 2)— flz:t,1,0)]dz(2)dz. (3.2)

R
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Lemma 3.1. Suppose that L, follows the dynamics in (2.3). Then the character-
istic function for Lt can be written in the form

flz:t,l,v) =exp[B(t,T)+ C(t,T)+ D(t, T)v + ixl], (3.3)

where

Am T
B(t,T) = (=~ - a)iz(e T 1) — (M/ D(s,T)ds
t

+ (T —t)\° / [e"Y — 1] ¢y (y)dy

R

+(T_t)AU |:zD(tT :|¢Z( )
/t
Ct,T) = iz(e ?T=D —1),
7I<(T7t)v( 7b(T7t))

D(t’T) = U(eib(Tit))'i' e~b(T=t)  x_4 )
(1) + % /i he =tV (h)dh
U(h) = 2h (V1= p? = pi) 5 0(a”. 0", &) + e ®(a” + 16" +1, 2)
o? ( * b* %)
B2(a*, b, L)eW1=p) % (1=0)
V(h): 2C x hx h 5
D2(a*,b ’?)
h=e" b(T— t)
a* _ b2 \/P——-l-p
V-1
K
bpr=1-—-=
b’
(=%
O'Im7

and ®(-,-,+) is the degenerated hypergeometric function.
Proof. From (3.1), it is clear that
flx:T,1,v) =™ (3.4)
which is the boundary condition of PIDE (3.2). This implies that
B(T,T) = C(T,T) = D(T,T) = 0. (3.5)

Substituting (3.3) in (3.2) and using the fact that the function f is never zero, we
obtain
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0 = [B; + (ba — \¥m)(C + iz) + kD
T / (€Y — 1y (y)dy + A" / (€*0 — 1]6(2)dz]

i R
+[Cy — b(C + i)l
1 1 1
+[Di+ 5(C +iz) + 5(C +ix)* — kD + 50°D* + po(C + iz) D]v
(3.6)

where B, Cy and D, are the partial derivatives with respect to ¢ of functions B, C
and D respectively.

This reduces the problem to one of solving three, much simpler, ordinary
differential equations:

B + (ba — M5m)(C + iz) + k0D + \° / [ — 1oy (y)dy

R
+AY / [e*P —1]¢z(2)dz = 0 (3.7)

R
Cy — b(C +iz) =0 (3.8)
D, + %(C +iz)(C+ix—1)— kD + %O'QD2 + po(C +ix)D =0 (3.9)

subject to boundary conditions (3.5).
The solution to equation (3.8) with the boundary condition C(T,T) = 0 is
given by
C(t,T) = ix(e T~ 1), (3.10)

We now consider equation (3.9). Substituting (3.10) in (3.9), one gets
D, + % {ixeib(Tft)} [ixefb(Tft) - 1} — kD + %02D2 + poizDe T =,
Hence,
D; = —%U2D2 + {Ii - pai;ve_b(T_t)} D+ % [£C26_2b(T_t) +ize TD| 0 (3.11)

Let h = e T~% and we define a new function D(h(t),T) := D(t,T). Then

oD(t,T) _ 0D(h,T) 0h
oo 0h Ot
o OD(h, T)
— b(T—t) )
be —on

(3.12)
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Substituting (3.12) into (3.11), we obtain the following Riccati equation

oD 1 5.9 Kk poiz\ ~ 1 ., _
- 2D (o D+ — (a2h + iz) . 1
on ~ an’ T <bh b + g (i) (3.13)

We shall solve the second order ODE (3.13) together with the initial condition

D(1,T) = 0. Let
. 2bhw’ (h)

D(h,T) = m (3.14)
and taking the derivative of (3.14) with respect to h, one gets
g g
oD [, o , NG B 1
1
_ 2 / " _ 2 / 2
= [o®w(h) [2bw’ (h) + 2bhw” (h)] — 2bho” (w' (R))?] IR
(3.15)

Substituting (3.14) and (3.15) into (3.13), we have

2 2

ha' (h) — [(% 1y h(p"b“”)] W (B) — {%bjh + %] w(h) =0.  (3.16)

The ODE (3.16) has a general solution of the form [10],

S\ ox h * l
w(h) = eV 1=P*=pi)5Eh [Cﬂb(a*, b*, =) + Coh ™V ®(a* —b* 41,2 — b, Z)} ,

¢
(3.17)
where .
p?—1
K
b"=1-—
b7
and
B —b
ox\/1—p2

Here C; and C5 are constants to be determined from the boundary conditions.
®(a, b, 2) is the degenerated hypergeometric function which has the following Kum-

mer’s series expansion
o0

_ (a)rz
®(a,b,z) =1+ ; D)kl

k

where
(a)p =ala+1)---(a+k—1).
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If welet C4 =1 and C2 =0 in (3.17) then a particular solution for (3.16) is

w(h) = eV1=rP=pDgih [fb(a*,b*, %)] .

Using the transformation (3.14), Wong and Lo [11] show that a particular solution
for (3.13) is

_ n2 _ pi\OZT * 1% h a* y . A
U(h):@( 1—p? = pi)5g®@(a”, 0", 2) + gz P(a” + 1,07 + 1, ¢)
i D(a b7, 5) ’

which can be used to obtain the general solution for (3.13) as follows
B2(a* 0", 1)« /1_2\oz (}_
. the s

1 2 b ®2(a*,b*,1) w1 o /I—g8) %% (n—1 .
“to tw mae e V=) % (=) gy

(3.18)

We now consider the final ordinary differential equation (3.7). Substituting (3.18)
and (3.10) in (3.7), we have

By(t,T) = (\¥m — ba)ize *T~Y — k0D(t,T)

S / (€Y — 1y (y)dy — X" / [°P — 1162(2)d.
R

R

Integrating both sides of the above equation and invoking the condition B(T,T) =
0, we obtain

R
+ (T — )" / [e*P —1)pz(2)dz. (3.19)
R

O

We can conclude that the characteristic function of the mean reverting process
(2.3) with stochastic volatility (2.2) is

f({E i, l, 1)) — eB(t,T)-l—C’(t,T);E—i-D(t,T)’u-i—iwl7

where B(¢,T),C(t,T) and D(t,T) are as given in the Lemma.
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4 A formula for European Option Pricing

Let C' denote the price at time ¢ of a European style call option on the current
price of the underlying asset S; with strike price K and expiration time 7.

The terminal payoff of a European call option on the underlying stock price
Sy with strike price K is

max (St — K, 0).

This means that the holder will exercise his right only if S > K and then his
gain is S — K. Otherwise, if Sp < K, then the holder will buy the underlying
asset from the market and the value of the option is zero.

Assuming the risk-free interest rate r is constant over the lifetime of the option,
the price of the Furopean call at time ¢ is equal to the discounted conditional
expected payoff

C(t,St) = e " T=DE [max (St — K,0)|F].

Assume that ¢ = 0 and we define Ly = In Sp and k = In K. Moreover, we express
the call price option C(0, St) as a function of the log of the strike price K rather
than the terminal log asset price S7. The initial call value Cp(k) is related to the
risk-neutral density ¢r (1) by

Cr(k)=e"T /:O (el — eM)gr(1)dl, (4.1)

where ¢r(1) is the density function of the random variable Ly. It was mentioned
by Carr and Madan [12] that Cr(k) is not square integrable. To obtain a square
integrable function, they introduced the modified call price function cr (k) defined
by

cr(k) = e**Cr(k) (4.2)
for some constant o > 0 that makes ¢y (k) is square integrable in k over the entire
real line and a good choice of « is that one fourth of the upper bound E[S%!] < oo.
Consider the Fourier transform of ¢p (k)

Yr(u) = /:)O e"*er(k)dk
k

:/ eiuk
_oo l )
:/ efrTqT(l)/ (elJrak_e(lJra)k)ezukdkdl

00 (a+1+iu)l (a+1+iu)l
—rT e e
= l - dl
/ ¢ qT()[ a4+ iu a—i—iu—i—l]

e /Oo (o + du)elr il 4 e(HF! — (o 4 ju)el Tt
. —oo (o +iu)(a +iu+1)

00 (a+1+iu)l
:e_TT/ [ ¢ }qT(l)dl

oo L2+ 20du — U + o+ iu

/ e*e T (e — eF)qr(l)dldk

— 00

qr(l)dl
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e—rT [e’e} .
_ (a+1+iu)l Ddl
a2+a—u2+i(2a—|—1)u/_ooe ar(l)
_ e T /00 ei(u—(a-l—l)i)qu(l)dl
a2+ a—u?+i2a+ Nu J_

e Tfx=u— (a+1)i:tlv)
a2+ a—u2+i2a+ 1u

where f is the characteristic function defined in Lemma 3.1.
Hence, the European call prices at time ¢ = 0 with strike price £ = In K can then
be numerically obtained by using the inverse transform:

e—ak

e
ook /oo o T =u— (a+1)i:t,1,v)
e - —— du.
™ J a?+a—u?+i2a+ u

(4.3)

Integration (4.3) is a direct Fourier transform and lends itself to an application of
the Fast Fourier Transform (FFT).
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