Higher Order Approximation by Iterates of Modified Beta Operators ${ }^{1}$

P.N. Agrawal and Karunesh Kumar Singh ${ }^{2}$
Department of Mathematics, I.I.T. Roorkee, Roorkee 247667, India
e-mail : pna_iitr@yahoo.co.in (P.N. Agrawal)
kksiitr.singh@gmail.com (K.K. Singh)

Abstract

The present paper is a continuation of our work [1] wherein we studied some direct results in ordinary and simultaneous approximation by an iterative combination of modified beta operators [2]. In this paper, we obtain an error estimate in terms of higher order modulus of continuity in simultaneous approximation for these operators.

Keywords : iterative combination; simultaneous approximation; modulus of continuity.
2010 Mathematics Subject Classification : 41A25; 41A28; 41A36.

1 Introduction

Following [3], for the class of functions integrable on $[0, \infty)$, the modified beta operators with the weight function of Baskakov operators are defined as

$$
\begin{equation*}
B_{n}(f ; x)=\frac{n-1}{n} \sum_{k=0}^{\infty} b_{n, k}(x) \int_{0}^{\infty} p_{n, k}(t) f(t) d t \tag{1.1}
\end{equation*}
$$

where

$$
p_{n, k}(t)=\binom{n+k-1}{k} t^{k}(1+t)^{-(n+k)}
$$

[^0]Copyright (c) 2012 by the Mathematical Association of Thailand. All rights reserved.

$$
b_{n, k}(x)=\frac{1}{B(k+1, n)} x^{k}(1+x)^{-(n+k+1)}, 0 \leq x<\infty
$$

Let us now define a new class of functions e.g. $H[0, \infty)$ as follows:

$$
\begin{aligned}
H[0, \infty)=:\left\{f: \int_{0}^{\infty} \frac{|f(t)|}{(1+t)^{n}} d t<\infty \text { for some positive integer } n, f\right. \\
\quad \text { being a Lebesgue measurable function on }[0, \infty)\}
\end{aligned}
$$

The motivation to consider the class $H[0, \infty)$ lies in the fact that the operators (1.1) are defined over this class which contains the class of all integrable functions on $[0, \infty)$.

We can easily show that $b_{n, k}(x)=n p_{n+1, k}(x)$. Therefore, the operators (1.1) may be rewritten as

$$
\begin{aligned}
B_{n}(f ; x) & =(n-1) \sum_{k=0}^{\infty} p_{n+1, k}(x) \int_{0}^{\infty} p_{n, k}(t) f(t) d t \\
& =\int_{0}^{\infty} W_{n}(t, x) f(t) d t
\end{aligned}
$$

where $W_{n}(t, x)=(n-1) \sum_{k=0}^{\infty} p_{n+1, k}(x) p_{n, k}(t)$ is the kernel of the operators B_{n}.
It turns out that the order of approximation by these operators is at best $O\left(n^{-1}\right)$, however smooth the function may be. In order to speed up the rate of convergence by the operators B_{n}, we [1] considered an iterative combination $L_{n, k}: H[0, \infty) \rightarrow C^{\infty}[0, \infty)$ of the operators $B_{n}(f ; x)$ defined as:

$$
L_{n, k}(f(t) ; x)=\left(I-\left(I-B_{n}\right)^{k}\right)(f ; x)=\sum_{r=1}^{k}(-1)^{r+1}\binom{k}{r} B_{n}^{r}(f(t) ; x)
$$

where $B_{n}^{0}=I$ and $B_{n}^{r}=B_{n}\left(B_{n}^{r-1}\right)$ for $r \in \mathbb{N}$ and established an error estimate of the degree of approximation in terms of the ordinary modulus of continuity by $L_{n, k}^{(p)}(. ; x)$ for smooth functions [1, Theorem 5]. The aim of this paper is to obtain the corresponding general result in terms of $2 k$-th order modulus of continuity by using the properties of a linear method of approximation namely Steklov means.

Throughout this paper, let $0<a<b<\infty, I=[a, b], 0<a_{1}<a_{2}<b_{2}<$ $b_{1}<\infty, I_{i}=\left[a_{i}, b_{i}\right], i=1,2,\|\cdot\|_{C(I)}$ denotes the sup-norm on the interval I and C a constant not necessarily the same in different cases.

2 Preliminaries

In the sequel we shall require the following results:

Lemma 2.1 ([4]). For the function $u_{n, m}(t), m \in N^{0}$ (the set of non-negative integers) defined as

$$
u_{n, m}(t)=\sum_{\nu=0}^{\infty} p_{n, \nu}(t)\left(\frac{\nu}{n}-t\right)^{m}
$$

we have $u_{n, 0}(t)=1$ and $u_{n, 1}(t)=0$. Further, there holds the recurrence relation

$$
n u_{n, m+1}(t)=t\left[u_{n, m}^{\prime}(t)+m u_{n, m-1}(t)\right], \quad m=1,2,3, \ldots
$$

Consequently,
(i) $u_{n, m}(t)$ is a polynomial in t of degree $[m / 2]$, where $[\alpha]$ denotes the integral part of α;
(ii) for every $t \in[0, \infty), u_{n, m}(t)=O\left(n^{-[(m+1) / 2]}\right)$.

Lemma 2.2 ([1]). For the function $p_{n, k}(x)$, there holds

$$
x^{r}(1+x)^{r} \frac{d^{r}}{d x^{r}}\left(p_{n, k}(x)\right)=\sum_{\substack{2 i+j \leq r, i, j \geq 0}} n^{i}(k-n x)^{j} q_{i, j, r}(x) p_{n, k}(x),
$$

where $q_{i, j, r}(x)$ are certain polynomials in x independent of n and k.
Let $f \in C(I)$ and $I_{1} \subset(a, b)$. Then, for sufficiently small $\eta>0$, the Steklov mean $f_{\eta, m}$ of m th order corresponding to f is defined as follows:

$$
f_{\eta, m}(t)=\eta^{-m} \int_{-\eta / 2}^{\eta / 2} \cdots \int_{-\eta / 2}^{\eta / 2}\left(f(t)+(-1)^{m-1} \Delta_{\sum_{i=1}^{m} t_{i}}^{m} f(t)\right) \prod_{i=1}^{m} d t_{i},, t \in I_{1}
$$

where Δ_{h}^{m} is the forward difference operator with step length h.
Lemma 2.3 ([2]). For the function $f_{\eta, m}$, we have
(a) $f_{\eta, m}$ has derivatives up to order m over I_{1};
(b) $\left\|f_{\eta, m}^{(r)}\right\|_{C\left(I_{1}\right)} \leq C_{r} \omega_{r}(f, \eta, I), r=1,2, \ldots, m$;
(c) $\left\|f-f_{\eta, m}\right\|_{C\left(I_{1}\right)} \leq C_{m+1} \omega_{m}(f, \eta, I)$;
(d) $\left\|f_{\eta, m}\right\|_{C\left(I_{1}\right)} \leq C_{m+2} \eta^{-m}\|f\|_{C(I)}$;
(e) $\left\|f_{\eta, m}^{(r)}\right\|_{C\left(I_{1}\right)} \leq C_{m+3}\|f\|_{C(I)}$,
where $C_{i}^{\prime} s$ are certain constants that depend on i but are independent of f and η.

Lemma 2.4 ([1]). For the function $T_{n, m}(x), m \in N^{0}$ defined by

$$
T_{n, m}(x)=\int_{0}^{\infty} W_{n}(t, x)(t-x)^{m} d t
$$

we have

$$
T_{n, 0}(x)=1, T_{n, 1}(x)=\frac{1+3 x}{n-2}, n>2
$$

and for $m \geq 1$
$(n-m-2) T_{n, m+1}(x)=x(1+x)\left[T_{n, m}^{\prime}(x)+2 m T_{n, m-1}(x)\right]+\{(m+1)(1+2 x)+x\} T_{n, m}(x)$, where $n>m+2$. Consequently,
(i) $T_{n, m}(x)$ is a polynomial in x of degree m;
(ii) for every $x \in[0, \infty), T_{n, m}(x)=O\left(n^{-[(m+1) / 2]}\right)$.

For every $m \in N^{0}$, the m-th order moment $T_{n, m}^{\{p\}}$ for the operator B_{n}^{p} is defined by

$$
T_{n, m}^{\{p\}}(x)=B_{n}^{p}\left((t-x)^{m} ; x\right) .
$$

We adopt the convention $T_{n, m}^{\{1\}}(x)=T_{n, m}(x)$. From Lemma 2.4, it follows that $T_{n, m}^{\{p\}}(x)$ is a polynomial in x of degree m.

Lemma 2.5 ([1]). For every $x \in[0, \infty)$, we have

$$
T_{n, m}^{\{p\}}(x)=O\left(n^{-[(m+1) / 2]}\right) .
$$

Theorem $2.6([1])$. Let $f \in H[0, \infty)$ be bounded on every finite subinterval of $[0, \infty)$ and $f(t)=O\left(t^{\alpha}\right)$ as $t \longrightarrow \infty$ for some $\alpha>0$. If $f^{(2 k+p)}(x)$ exists at a point $x \in(0, \infty)$ then we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{k}\left\{L_{n, k}^{(p)}(f ; x)-f^{(p)}(x)\right\}=\sum_{\nu=p}^{2 k+p} Q(\nu, k, p, x) f^{(\nu)}(x) \tag{2.1}
\end{equation*}
$$

where $Q(\nu, k, p, x)$ are certain polynomials in x. Further, if $f^{(2 k+p)}$ is continuous on $(a-\eta, b+\eta) \subset(0, \infty), \eta>0$, then (2.1) holds uniformly in $[a, b]$.

3 Main Result

We establish the following direct theorem:

Theorem 3.1. Let $f \in H[0, \infty)$ be bounded on every finite subinterval of $[0, \infty)$ and $f(t)=O\left(t^{\alpha}\right)$ as $t \longrightarrow \infty$ for some $\alpha>0$. If $f^{(p)}$ exists and is continuous on $(a-\eta, b+\eta) \subset(0, \infty)$, for some $\eta>0$ then

$$
\left\|L_{n, k}^{(p)}(f(t) ; x)-f^{(p)}(x)\right\|_{C\left(I_{2}\right)} \leq C\left\{n^{-k}\|f\|_{C\left(I_{1}\right)}+\omega_{2 k}\left(f^{(p)}, n^{-1 / 2}, I_{1}\right)\right\}
$$

where C is independent of f and n.
Proof. We can write

$$
\begin{aligned}
& \left\|L_{n, k}^{(p)}(f(t) ; x)-f^{(p)}(x)\right\|_{C\left(I_{2}\right)} \\
& \leq\left\|L_{n, k}^{(p)}\left(f-f_{\eta, 2 k} ; x\right)\right\|_{C\left(I_{2}\right)}+\left\|L_{n, k}^{(p)}\left(f_{\eta, 2 k} ; x\right)-f_{\eta, 2 k}^{(p)}(x)\right\|_{C\left(I_{2}\right)} \\
& \quad \quad+\left\|f^{(p)}(x)-f_{\eta, 2 k}^{(p)}(x)\right\|_{C\left(I_{2}\right)} \\
& = \\
& \quad S_{1}+S_{2}+S_{3}, \text { say. }
\end{aligned}
$$

Since $f_{\eta, 2 k}^{(p)}(x)=\left(f^{(p)}\right)_{\eta, 2 k}(x)$, by property (c) of the Steklov mean, we get

$$
S_{3} \leq C \omega_{2 k}\left(f^{(p)}, \eta, I_{1}\right)
$$

Next, applying Theorem 2.6 and the interpolation property [5] it follows that

$$
\begin{aligned}
S_{2} & \leq C n^{-k} \sum_{m=p}^{2 k+p}\left\|f_{\eta, 2 k}^{(m)}\right\|_{C\left(I_{2}\right)} \\
& \leq C n^{-k}\left(\left\|f_{\eta, 2 k}\right\|_{C\left(I_{2}\right)}+\left\|\left(f_{\eta, 2 k}^{(p)}\right)^{(2 k)}\right\|_{C\left(I_{2}\right)}\right)
\end{aligned}
$$

Hence, by properties (b) and (d) of Steklov mean, we have

$$
S_{2} \leq C n^{-k}\left(\|f\|_{C\left(I_{1}\right)}+\eta^{-2 k} \omega_{2 k}\left(f^{(p)}, \eta, I_{1}\right)\right)
$$

Let a^{*} and b^{*} be such that $0<a_{1}<a^{*}<a_{2}<b_{2}<b^{*}<b_{1}<\infty$.
To estimate S_{1}, let $F \equiv f-f_{\eta, 2 k}$ then by our hypothesis we can write

$$
\begin{align*}
F(t)= & \sum_{m=0}^{p} \frac{F^{(m)}(x)}{m!}(t-x)^{m}+\frac{F^{(p)}(\xi)-F^{(p)}(x)}{p!}(t-x)^{p} \psi(t) \\
& +h(t, x)(1-\psi(t)) \tag{3.1}
\end{align*}
$$

where ξ lies between t and x, and ψ is the characteristic function of the interval $\left[a^{*}, b^{*}\right]$. For $t \in\left[a^{*}, b^{*}\right]$ and $x \in\left[a_{2}, b_{2}\right]$, we get

$$
F(t)=\sum_{m=0}^{p} \frac{F^{(m)}(x)}{m!}(t-x)^{m}+\frac{F^{(p)}(\xi)-F^{(p)}(x)}{p!}(t-x)^{p}
$$

and for $t \in[0, \infty) \backslash\left[a^{*}, b^{*}\right], x \in\left[a_{2}, b_{2}\right]$ we define

$$
h(t, x)=F(t)-\sum_{m=0}^{p} \frac{F^{(m)}(x)}{m!}(t-x)^{m} .
$$

Now, operating on both sides of (3.1) by $L_{n, k}^{(p)}$, we get three terms J_{1}, J_{2}, and J_{3}, corresponding to the three terms in the right hand side of (3.1). By using Lemma 2.4, we get

$$
\begin{aligned}
J_{1} & =\sum_{m=0}^{p} \frac{F^{(m)}(x)}{m!} \sum_{i=1}^{k}(-1)^{i+1}\binom{k}{i} D^{p}\left(B_{n}^{i}\left((t-x)^{m} ; x\right)\right), D \equiv \frac{d}{d x} \\
& =\frac{F^{(p)}(x)}{p!} \sum_{i=1}^{k}(-1)^{i+1}\binom{k}{i} \int_{0}^{\infty} W^{(p)}(n, x, u) B_{n}^{i-1}\left(t^{p} ; u\right) d u \\
& =\frac{F^{(p)}(x)}{p!} \sum_{i=1}^{k}(-1)^{i+1}\binom{k}{i} D^{p}\left(B_{n}^{i}\left(t^{p} ; x\right)\right) \\
& \rightarrow F^{(p)}(x), \text { as } n \rightarrow \infty, \text { uniformly in } I_{2} .
\end{aligned}
$$

Therefore, $\left\|J_{1}\right\|_{C\left(I_{2}\right)} \leq C\left\|f^{(p)}-f_{\eta, 2 k}^{(p)}\right\|_{C\left(I_{2}\right)}$. Next,

$$
\begin{aligned}
\left\|J_{2}\right\|_{C\left(I_{2}\right)} \leq \frac{2}{p!} \| & \left\|f^{(p)}-f_{\eta, 2 k}^{(p)}\right\|_{C\left[a^{*}, b^{*}\right]} \sum_{i=1}^{k}\binom{k}{i}(n-1) \sum_{\nu=0}^{\infty}\left|p_{n+1, \nu}^{(p)}(x)\right| \\
& \times \int_{0}^{\infty} p_{n, \nu}(v) B_{n}^{i-1}\left(|t-x|^{p} ; v\right) d v .
\end{aligned}
$$

Now, using Lemma 2.2, Cauchy Schwarz inequality three times, Lemma 2.1 and Lemma 2.5 (in that order), it follows that

$$
\begin{aligned}
& (n-1) \sum_{\nu=0}^{\infty}\left|p_{n+1, \nu}^{(p)}(x)\right| \int_{0}^{\infty} p_{n, \nu}(v) B_{n}^{i-1}\left(|t-x|^{p} ; v\right) d v \\
& \leq C \\
& \quad \sum_{\substack{2 i+j \leq p \\
i, j \geq 0}}(n-1)(n+1)^{i}\left|q_{i, j, p}(x)\right|(x(1+x))^{-p} \sum_{\nu=0}^{\infty} p_{n+1, \nu}(x)|\nu-(n+1) x|^{j} \\
& \quad \times \int_{0}^{\infty} p_{n, \nu}(v) B_{n}^{i-1}\left(|t-x|^{p} ; v\right) d v
\end{aligned}
$$

$$
\begin{aligned}
& \leq C \sum_{\substack{2 i+j \leq p \\
i, j \geqslant 0}}(n+1)^{i}\left(\sum_{\nu=0}^{\infty} p_{n+1, \nu}(x)(\nu-(n+1) x)^{2 j}\right)^{1 / 2} \\
& \quad \times\left((n-1) \sum_{\nu=0}^{\infty} p_{n+1, \nu}(x) \int_{0}^{\infty} p_{n, \nu}(v) B_{n}^{i-1}\left((t-x)^{2 p} ; v\right) d v\right)^{1 / 2} \\
& =C \sum_{\substack{2 i+j \leq p \\
i, j \geq 0}}(n+1)^{i} O\left(n^{j / 2}\right) O\left(n^{-p / 2}\right)=O(1), \text { as } n \rightarrow \infty, \text { uniformly in } I_{2} .
\end{aligned}
$$

Therefore,

$$
\left\|J_{2}\right\|_{C\left(I_{2}\right)} \leq C\left\|f^{(p)}-f_{\eta, 2 k}^{(p)}\right\|_{C\left[a^{*}, b^{*}\right]} .
$$

Since, $t \in[0, \infty) \backslash\left[a^{*}, b^{*}\right]$ and $x \in I_{2}$, we can choose a $\delta>0$ in such a way that $|t-x| \geq \delta$. If β is any integer $\geq \max \{\alpha, p\}$, then we can find a constant $M>0$ such that $|h(t, x)| \leq M|t-x|^{\beta}$ whenever $|t-x| \geq \delta$. Again, applying Lemma 2.2, Cauchy Schwarz inequality three times, Lemma 2.1 and Lemma 2.5 (in that order), we get

$$
\begin{aligned}
\left|J_{3}\right| \leq & C \sum_{i=1}^{k}\binom{k}{i} \sum_{\substack{2 i+j \leq p \\
i, j \geq 0}}(n+1)^{i}\left(\sum_{\nu=0}^{\infty} p_{n+1, \nu}(x)(\nu-(n+1) x)^{2 j}\right)^{1 / 2} \\
& \times\left((n-1) \sum_{\nu=0}^{\infty} p_{n+1, \nu}(x) \int_{0}^{\infty} p_{n, \nu}(v) B_{n}^{i-1}\left((1-\psi(t))(t-x)^{2 \beta} ; v\right) d v\right)^{1 / 2} \\
\leq & C \sum_{i=1}^{k}\binom{k}{i} \sum_{\substack{2 i+j \leq p \\
i, j \geq 0}}(n+1)^{i}\left(\sum_{\nu=0}^{\infty} p_{n+1, \nu}(x)(\nu-(n+1) x)^{2 j}\right)^{1 / 2} \\
& \times\left((n-1) \sum_{\nu=0}^{\infty} p_{n+1, \nu}(x) \int_{0}^{\infty} p_{n, \nu}(v) B_{n}^{i-1}\left(\frac{(t-x)^{2 m}}{\delta^{2 m-2 \beta}} ; v\right) d v\right)^{1 / 2} \\
\leq & C \sum_{\substack{2 i+j \leq p \\
i, j \geq 0}}(n+1)^{i} O\left(n^{j / 2}\right) O\left(n^{-m / 2}\right), \text { for any integer } m>\beta .
\end{aligned}
$$

Hence, it follows that $J_{3}=o(1)$, as $n \rightarrow \infty$, uniformly in I_{2}. Combining the estimates of $J_{1}-J_{3}$, in view of property (c) of Steklov mean we obtain

$$
S_{1} \leq C\left\|f^{(p)}-f_{\eta, 2 k}^{(p)}\right\|_{C\left[a^{*}, b^{*}\right]} \leq C \omega_{2 k}\left(f^{(p)}, \eta, I_{1}\right)
$$

Therefore, with $\eta=n^{-1 / 2}$, the theorem follows.

Acknowledgement : The authors are extremely grateful to the referee for making valuable suggestions leading to an improvement of the paper.

References

[1] P.N. Agrawal, K.K. Singh, Approximation by iterates of modified beta operators, Proc. of the First Int. Conf. on Math. and Stat., American University of Sharjah, Sharjah, U.A.E., March 18-21, Vol. 2010 Art. ID 100169, 6 pages.
[2] P. Maheshwari, V. Gupta, On rate of approximation by modified beta operators, Int. J. Math. Math. Sci. Vol. 2009, Art. ID 205649, 8 pages.
[3] P. Maheshwari, Saturation theorem for the combinations of modified beta operators in L_{p}-spaces, Appl. Math. E-Notes 7 (2007) 32-37 (electronic).
[4] R.P. Sinha, P.N. Agrawal, V. Gupta, On simultaneous approximation by modified Baskakov operators, Bull. Soc. Math. Belg. Sér. B 43 (2) (1991) 217-231.
[5] S. Goldberg, A. Meir, Minimum moduli of ordinary differential operators, Proc. London Math. Soc. 23 (1971) 1-15.
(Received 1 August 2011)
(Accepted 17 January 2012)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

[^0]: ${ }^{1}$ This research was supported by the Council of Scientific and Industrial Research, New Delhi, India
 ${ }^{2}$ Corresponding author.

