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1 Introduction

Let Ω ⊆ R
n and (Ω, A, µ) be a measure space. For a µ− measurable function

w : Ω → R, consider the Lebesgue space Lw(Ω, A, µ) = {y : Ω → R, y is µ −
measurable and

∫

Ω w(t)|y(t)|dµ(t) < ∞}. Assume W =
∫

Ωw(t)dµ(t) > 0. If
y, z : Ω → R are µ− measurable functions and y, z, yz ∈ Lw(Ω, µ), then we may
consider the Čebyšev functional

Tw(y, z) =
1

W

∫

Ω

w(t)y(t)z(t)dµ(t) −
1

W

∫

Ω

w(t)y(t)dµ(t)
1

W

∫

Ω

w(t)z(t)dµ(t).

(1.1)
Let us note that the following identity is a generalization of Sonin’s identity

Tw(y, z) =
1

W

∫

Ω

w(t)(y(t) − α)(z(t) − z)dµ(t), (1.2)

where α is an arbitrary real number and

z =
1

W

∫

Ω

w(t)z(t)dµ(t). (1.3)

Namely, Sonin [1] has given (1.2) for Ω = [a, b], µ(t) = t. He has used (1.2) in the
proof of Čebyšev inequality.

Theorem 1.1 (Čebyšev’s inequality). Let Ω = [a, b]. If y and z are monotonic
in same order then

Tw(y, z) ≥ 0. (1.4)

Moreover, if y and z are monotone in opposite direction, then the reverse inequality
in (1.4) is valid.

Proof. (Sonin) Since z is the mean value of z, then if z is an nondecreasing function,
there exist a number c (a < c < b) such that

z(t) − z ≥ 0 for t > c and z(t) − z ≤ 0 for t < c.

For α = y(c+ 0) the product (y(t)− α)(z(t)− z) has constant sign. This product
is positive if y is a non decreasing function and negative if y is an non increasing
function.

Remark 1.1. A related proof was also given by Sapogov [2].

Let us note that Sonin’s proof of Čebyšev’s inequality can be modified for the
following generalization of Čebyšev’s inequality.

Theorem 1.2 (Brunn, [3]). Let Ω = [a, b]. If for a ≤ t ≤ b we have

sgn(y(t) − y(tm)) = sgn(z(t) − z),

where z is defined by (1.3) and tm is determined from z(tm) = z, then inequality
(1.4) holds.
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Remark 1.2. In fact Brunn has proved Theorem 1.2 in case w(t) = 1, µ(t) = t.

Of course, as direct consequence of Sonin’s identity (1.2) we have the following
result.

Theorem 1.3. If

(y(t) − α)(z(t) − z) ≥ 0 for µ− a.e. t ∈ Ω, (1.5)

then (1.4) is valid. If reverse inequality in (1.5) is valid, the reverse inequality in
(1.4) is valid, too.

Theorem 1.4 ([4]). Let us denote by ω the set ω = {t|z(t) − z > 0, t ∈ Ω} and
ω is nonempty set and it is not equal to Ω. Let for all t1 ∈ ω and t2 ∈ Ω r ω we
have

y(t2) ≤ y(t1). (1.6)

Then (1.4) is valid. If the reverse inequality in (1.6) is valid then the reverse
inequality in (1.4) is valid, too.

Proof. Set α = supt∈Ωrω y(t). It is easy to see that (1.5) is valid. So (1.4) is valid.
If the reverse inequality in (1.6) is valid, we have reverse inequality in (1.5), that
is in (1.4), too.

Remark 1.5. Sapogov proved Theorem 1.4 for the case w(t) = 1 for all t ∈ Ω .

This paper is organized in the following manner: in Section 2 we give Sapogov’s
extension of Čebyšev’s inequality and using this extension prove majorization type
inequality. In Section 3 we prove majorization type inequalities for double integrals
by using continuous convex function and Green function. For these inequalities
we give two mean value theorems and also introduce generalized Cauchy type
means. In Section 4 we prove positive semi-definiteness of matrices generated
by the differences deduced from majorization type results for double integrals
which implies exponential convexity and log-convexity of these differences and
also obtained Lyapunov’s and Dresher’s type inequalities for these differences.

2 On Sapogov’s Extension of Čebyšev’s

Inequality

In fact the following generalization of the main result of Sapogov is equivalent
to Theorem 1.4.

Lemma 2.1. Let w, µ, v, x, y, z : [a, b] → R be continuous functions on [a, b]
with µ be increasing and w(t), x(t), v(t) > 0 for all t ∈ [a, b]. Denote λ =R

b

a
w(t)z(t)v(t)dµ(t)R

b

a
w(t)x(t)v(t)dµ(t)

. Suppose that there exist two intervals I1 and I2 with I1 ∪ I2 =

[a, b] such that
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(i) y(t2)
v(t2) ≤ y(t1)

v(t1) for t1 ∈ I1, t2 ∈ I2,

(ii) z(t2)
x(t2) ≤ λ ≤ z(t1)

x(t1)
for t1 ∈ I1, t2 ∈ I2.

Then the following inequality holds

∫ b

a

w(t)x(t)y(t)dµ(t)

∫ b

a

w(t)z(t)v(t)dµ(t)

≤

∫ b

a

w(t)z(t)y(t)dµ(t)

∫ b

a

w(t)x(t)v(t)dµ(t). (2.1)

Proof. From (i) we can say that there exists some α ∈ R such that

y(t2)

v(t2)
≤ α ≤

y(t1)

v(t1)
, for t1 ∈ I1, t2 ∈ I2. (2.2)

Let us consider g(t) = y(t) − αv(t) and

h(t) = z(t)
(

∫ b

a
w(t)x(t)v(t)dµ(t)

)

− x(t)
(

∫ b

a
w(t)z(t)v(t)dµ(t)

)

, t ∈ [a, b].

Now from (2.2) we may write

g(t1) ≥ 0, g(t2) ≤ 0 for t1 ∈ I1, t2 ∈ I2, (2.3)

and similarly from (ii) we may write

z(t1) − λx(t1) ≥ 0, z(t2) − λx(t2) ≤ 0 for t1 ∈ I1, t2 ∈ I2. (2.4)

Since
∫ b

a
w(t)x(t)v(t)dµ(t) > 0, so multiplying this with (2.4) we obtain

h(t1) ≥ 0, and h(t2) ≤ 0 for t1 ∈ I1, t2 ∈ I2. (2.5)

By using (2.3) and (2.5) we have g(t)h(t) ≥ 0 for all t ∈ [a, b], so we may write

∫ b

a

w(t)g(t)h(t)dµ(t) ≥ 0. (2.6)

From (2.6) we obtain (2.1).

Remark 2.2. In [5], Otachel proved inequality (2.1) using the relation of syn-
chronicity between vectors with respect to dual bases in Banach spaces V and its
dual V ∗.

Remark 2.3. If we set in Lemma 2.1: v(t) = x(t) = 1 for every t ∈ [a, b] we will
get Čebyšev’s result. On the other hand if we set in the corresponding Čebyšev’s

result: z(t) → z(t)
v(t) and y(t) → y(t)

x(t) , we will get Lemma 2.1.

In the following theorem we prove majorization type inequality by using Lemma
2.1.



On Sapogov’s Extension of Čebyšev’s Inequality and Related Results 621

Theorem 2.4. Let φ : I → R be a continuous convex function on the interval I. If
ϕ ∈ ∂φ (∂φ is the subdifferential of φ) and u, v, w, x, y, µ : [a, b] → R are continuous
functions such that µ is increasing, w(t), u(t), v(t) > 0 and x(t), y(t) ∈ I for

all t ∈ [a, b]. Denote λ =
R

b

a
w(t)(x(t)−y(t))v(t)dµ(t)R

b

a
w(t)u(t)v(t)dµ(t)

. Suppose that there exist two

intervals I1 and I2 with I1 ∪ I2 = [a, b] such that

(i) ϕ(y(t2))
v(t2) ≤ ϕ(y(t1))

v(t1) for t1 ∈ I1, t2 ∈ I2,

(ii) x(t2)−y(t2)
u(t2)

≤ λ ≤ x(t1)−y(t1)
u(t1) for t1 ∈ I1, t2 ∈ I2.

Under the above assumptions, the following assertions hold.

(A) If

∫ b

a

w(t)(x(t) − y(t))v(t)dµ(t) = 0, (2.7)

then

∫ b

a

w(t)φ(y(t))dµ(t) ≤

∫ b

a

w(t)φ(x(t))dµ(t). (2.8)

(B) If
∫ b

a
w(t)(x(t) − y(t))v(t)dµ(t)

∫ b

a
w(t)ϕ(y(t))u(t)dµ(t) ≥ 0, then (2.8) holds.

Proof. It follows from [6, Theorem 5] that

∫ b

a

w(t)(φ(x(t)) − φ(y(t))dµ(t)) ≥

∫ b

a

w(t)(x(t) − y(t))ϕ(y(t))dµ(t). (2.9)

Utilizing Lemma 2.1, we get
∫ b

a

w(t)(x(t) − y(t))ϕ(y(t))dµ(t)

≥

∫ b

a
w(t)(x(t) − y(t))v(t)dµ(t)

∫ b

a
w(t)ϕ(y(t))u(t)dµ(t)

∫ b

a
w(t)u(t)v(t)dµ(t)

, (2.10)

since
∫ b

a
w(t)u(t)v(t)dµ(t) > 0. So, if

∫ b

a
w(t)(x(t) − y(t))v(t)dµ(t) = 0 then (2.8)

follows from (2.9) and (2.10).

Similarly, if the condition
∫ b

a
w(t)(x(t)−y(t))v(t)dµ(t)

∫ b

a
w(t)ϕ(y(t))u(t)dµ(t) ≥

0 are fulfilled, then (2.8) holds by virtue of (2.9) and (2.10). This completes the
proof.

In fact in the following corollary we prove majorization type inequality by
using Sapogov’s result.

Corollary 2.5. Under the assumptions of Theorem 2.4, let u(t) = v(t) = 1 for all

t ∈ [a, b]. Denote λ = 1
W

∫ b

a
w(t)(x(t) − y(t))dµ(t), where W =

∫ b

a
w(t)dµ(t) > 0.

If there exist two intervals I1 and I2 with I1 ∪ I2 = [a, b] such that

(i) y(t2) ≤ y(t1) for t1 ∈ I1, t2 ∈ I2, (2.11)

(ii) x(t2) − y(t2) ≤ λ ≤ x(t1) − y(t1) for t1 ∈ I1, t2 ∈ I2, (2.12)

then assertions (A) and (B) of Theorem 2.4 hold.



622 Thai J. Math. 10 (2012)/ M. Adil Khan et al.

Proof. It is sufficient to show that condition (i) of Theorem 2.4 is satisfied for
v(t) = 1, t ∈ [a, b]. Since φ is convex function and ϕ ∈ ∂φ, ϕ is nondecreasing
function, so (2.11) implies (2.4), for v(t) = 1, t ∈ [a, b].

Conditions (2.11) and (2.12) are fulfilled for I1 = [a, c], I2 = [c, b] where a <
c < b, if both y and x − y are monotonic nonincreasing functions. Likewise, if
both y and x − y are monotonic nondecreasing functions, then (2.11) and (2.12)
hold for I1 = [c, b] and I2 = [a, c]. In these cases, Corollary 2.5, assertion (A) of
Theorem 2.4, reduces to a result [6, Theorem 6].

Corollary 2.6. Under the assumptions of Theorem 2.4, let u(t) = v(t) = t for all

t ∈ [a, b] ⊂ R
+. Denote λ = 1

W̃

∫ b

a
tw(t)(x(t)−y(t))dµ(t), W̃ =

∫ b

a
t2w(t)dµ(t) > 0.

If there exist two intervals I1 and I2 with I1 ∪ I2 = [a, b] such that

(i)
ϕ(y(t2))

t2
≤
ϕ(y(t1))

t1
for t1 ∈ I1, t2 ∈ I2, (2.13)

(ii)
x(t2) − y(t2)

t2
≤ λ ≤

x(t1) − y(t1)

t1
for t1 ∈ I1, t2 ∈ I2, (2.14)

then assertions (A) and (B) of Theorem 2.4 hold.

Proof. Apply Theorem 2.4.

Remark 2.7. For related discrete version of Lemma 2.1, Theorem 2.4, Corollary
2.5 and Corollary 2.6 see [7, 8].

3 Majorization Inequalities for Double Integrals

The following theorem is a simple consequence of Theorem 12.14 in [9] (see
also [10, p. 328], [11, p. 583]):

Theorem 3.1. Let φ : I → R be a continuous convex function on the interval I
and x, y, w : [a, b] → I be continuous functions such that x, y are decreasing and
let µ : [a, b] → R be a function of bounded variation.

( a) If
∫ ν

a

w(t)y(t) dµ(t) ≤

∫ ν

a

w(t)x(t) dµ(t) for every ν ∈ [a, b], (3.1)

and
∫ b

a

w(t)x(t) dµ(t) =

∫ b

a

w(t)y(t) dµ(t) (3.2)

hold, then

∫ b

a

w(t)φ (y(t)) dµ(t) ≤

∫ b

a

w(t)φ (x(t)) dµ(t). (3.3)
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(b) If φ : I → R is continuous increasing convex function and (3.1) holds, then
(3.3) holds.

In [12], the following theorem is proved by Maligranda et al. (1995):

Theorem 3.2. Suppose that φ : [0,∞) → R is a convex function and x, y, w :
[a, b] → R

+ be integrable functions. Let µ : [a, b] → R be an increasing and
satisfying (3.1) and (3.2).

(i) If y is a decreasing function on [a, b], then (3.3) holds.

(ii) If x is an increasing function on [a, b], then reverse inequality in (3.3) holds.

Theorem 3.3 ([6, p.419]). Let φ : I → R be continuous convex function on I

and x, y, w, µ : [a, b] → I be real continuous functions such that µ is monotonic
nondecreasing, w(t) > 0 is of bounded variation on [a, b]. If y, x−y are increasing
(decreasing) on [a, b] and satisfying (3.2), then (3.3) holds.

We give the above results for double integrals.

Theorem 3.4.

( a) Let φ : I → R be a continuous convex function on the interval I and
w, x, y : [a, b] × [c, d] → I be continuous functions such that x(t, s), y(t, s)
are decreasing in t ∈ [a, b] and let µ : [a, b] → R be a function of bounded
variation, u : [c, d] → R be an increasing function.

(a1) If for each s ∈ [c, d]

∫ ν

a

w(t, s)y(t, s) dµ(t) ≤

∫ ν

a

w(t, s)x(t, s) dµ(t), ν ∈ [a, b] (3.4)

and

∫ b

a

w(t, s)x(t, s) dµ(t) =

∫ b

a

w(t, s)y(t, s) dµ(t) (3.5)

hold, then

∫ d

c

∫ b

a

w(t, s)φ (y(t, s)) dµ(t)du(s) ≤

∫ d

c

∫ b

a

w(t, s)φ (x(t, s)) dµ(t)du(s).

(3.6)

(a2) If for each s ∈ [c, d], (3.4) holds, then for continuous increasing convex
function φ : I → R, (3.6) holds.

(b) Suppose that φ : [0,∞) → R is a convex function and x, y, w : [a, b]× [c, d] →
R

+ are integrable functions. Let µ : [a, b] → R, u : [c, d] → R be increasing
functions and satisfying conditions (3.4) and (3.5).
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(b1) If for each s ∈ [c, d], y(t, s) is a decreasing function in t ∈ [a, b], then
(3.6) holds.

(b2) If for each s ∈ [c, d], x(t, s) is an increasing function in t ∈ [a, b], then
the reverse inequality in (3.6) holds.

( c) Let φ : I → R be continuous convex function on the interval I, w, x, y :
[a, b] × [c, d] → I be continuous functions with w(t, s) > 0 is of bounded
variation and let µ : [a, b] → R, u : [c, d] → R be increasing functions.
If y(t, s) and x(t, s) − y(t, s) are increasing (decreasing) in t ∈ [a, b] and
satisfying condition (3.5), then (3.6) holds.

(d) Let φ : I → R be a continuous convex function on the interval I, ϕ ∈ ∂φ (∂φ
is the subdifferential of φ), w, x, y, g, h : [a, b]×[c, d] → R be continuous func-
tions with x(t, s), y(t, s) ∈ I, w(t, s), g(t, s), h(t, s) > 0 and µ : [a, b] → R,

u : [c, d] → R be increasing functions. Denote λ =
R

b

a
w(t,s)(x(t,s)−y(t,s))dµ(t)R
b

a
w(t,s)g(t,s)h(t,s)dµ(t)

.

Suppose that there exist two intervals I1 and I2 with I1 ∪ I2 = [a, b] such
that for each s ∈ [c, d]

(i)
ϕ(y(t2, s))

h(t2, s)
≤
ϕ(y(t1, s))

h(t1, s)
for t1 ∈ I1, t2 ∈ I2, (3.7)

(ii)
x(t2, s) − y(t2, s)

g(t2, s)
≤ λ ≤

x(t1, s) − y(t1, s)

g(t1, s)
for t1 ∈ I1, t2 ∈ I2. (3.8)

If
∫ b

a
w(t, s)(x(t, s) − y(t, s))h(t, s)dµ(t)

∫ b

a
w(t, s)ϕ(y(t, s))w(t, s)dµ(t) ≥ 0,

then (3.6) holds.

Proof. (a) By using Theorem 3.1 we may write

∫ b

a

w(t, s)φ (y(t, s)) dµ(t) ≤

∫ b

a

w(t, s)φ (x(t, s)) dµ(t), for each s ∈ [c, d ]. (3.9)

Integrating both hand sides with respect to u(s), we deduce the desire result (3.6).
In similar way we can prove (b), (c) and (d).

Now, we give majorization type result by using the Green function.
Consider the Green function G defined on [α, β] × [α, β] by

G(t, s) =

{

(t−β)(s−α)
β−α

, α ≤ s ≤ t;
(s−β)(t−α)

β−α
, t ≤ s ≤ β.

(3.10)

The function G is convex in s, it is symmetric, so it is also convex in t. The
function G is continuous in s and continuous in t. For any function φ : [α, β] → R,
φ ∈ C2([α, β]), we can easily show by integrating by parts that the following is
valid

φ(x) =
β − x

β − α
φ(α) +

x− α

β − α
φ(β) +

∫ β

α

G(x, s)φ′′(s)ds, (3.11)

where the function G is defined as above in (3.10) ([13]).
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Theorem 3.5. Let w, x, y : [a, b] × [c, d] → R, µ : [a, b] → R and u : [c, d] → R be
continuous functions and [α, β] be an interval such that x(t, s), y(t, s) ∈ [α, β] for
(t, s) ∈ [a, b] × [c, d ]. Also let (3.5) holds. Then the following are equivalent.

(i) For every continuous convex function φ : [α, β] → R, (3.6) holds.

(ii) For all τ ∈ [α, β] holds

∫ d

c

∫ b

a

w(t, s)G(y(t, s), τ)dµ(t)du(s) ≤

∫ d

c

∫ b

a

w(t, s)G(x(t, s), τ)dµ(t)du(s).

(3.12)

Moreover, the statements (i) and (ii) are also equivalent if we change the sign of
inequality in both inequalities, in (3.6) and in (3.12).

Proof. (i) ⇒ (ii): Let (i) holds. As the function G(·, τ) (τ ∈ [α, β]) is also
continuous and convex, it follows that also for this function (3.6) holds, i.e., (3.12)
holds .

(ii) ⇒ (i): Let φ : [α, β] → R be a convex function, φ ∈ C2([α, β]) and (ii)
holds. Then, we can represent the function φ in the form (3.11), where the function
G is defined in (3.10). By easy calculation, using (3.11), we can easily get that

∫ d

c

∫ b

a

w(t, s)φ(x(t, s))dµ(t)du(s) −

∫ d

c

∫ b

a

w(t, s)φ(y(t, s))dµ(t)du(s)

=

∫ β

α

[

∫ d

c

∫ b

a

w(t, s)G(x(t, s), τ)dµ(t)du(s)

−

∫ d

c

∫ b

a

w(t, s)G(y(t, s), τ)dµ(t)du(s)

]

φ′′(τ) dτ.

Since φ is a convex function, then φ′′(τ) ≥ 0 for all τ ∈ [α, β]. So, if for every
τ ∈ [α, β] the inequality (3.12) holds , then it follows that for every convex function
φ : [α, β] → R, with φ ∈ C2([α, β]), inequality (3.6) holds.

At the end, note that it is not necessary to demand the existence of the second
derivative of the function φ ([10, p.172]). The differentiability condition can be
directly eliminated by using the fact that it is possible to approximate uniformly
a continuous convex function by convex polynomials.

Remark 3.6. Under the assumptions of Theorem 3.5, if for all τ ∈ [α, β], the
inequality (3.12) holds then by setting φ(x) = x2, x ∈ [α, β], in (3.6) we get

∫ d

c

∫ b

a

w(t, s)y2(t, s)dµ(t)du(s) ≤

∫ d

c

w(t, s)x2(t, s)dµ(t)du(s). (3.13)

Theorem 3.7. Let φ ∈ C2([α, β]) and w, x, y : [a, b] × [c, d] → R, µ : [a, b] → R,
u : [a, b] → R be continuous functions such that x(t, s), y(t, s) ∈ [α, β] for (t, s) ∈
[a, b]× [c, d ]. Let (3.5) holds. If for all τ ∈ [α, β], the inequality (3.12) holds or if



626 Thai J. Math. 10 (2012)/ M. Adil Khan et al.

for all τ ∈ [α, β], the reverse inequality in (3.12) holds, then there exists ξ ∈ [α, β]
such that

∫ d

c

∫ b

a

w(t, s)φ(x(t, s))dµ(t)du(s) −

∫ d

c

∫ b

a

w(t, s)φ(y(t, s))dµ(t)du(s)

=
ψ′′(ξ)

2

(

∫ d

c

∫ b

a

w(t, s)x2(t, s)dµ(t)du(s) −

∫ d

c

∫ b

a

w(t, s)y2(t, s)dµ(t)du(s)

)

.

(3.14)

Proof. The proof is analogous to the proof of Theorem 8 in [14].

Theorem 3.8. Let φ, ψ ∈ C2([α, β]) and w, x, y, u, µ be defined as in Theorem
3.7. Also let (3.5) holds. If for all τ ∈ [α, β], the inequality (3.12) holds or if for
all τ ∈ [α, β], the reverse inequality in (3.12) holds, then there exists ξ ∈ [α, β]
such that

φ′′(ξ)

ψ′′(ξ)
=

∫ d

c

∫ b

a
w(t, s)φ(x(t, s))dµ(t)du(s) −

∫ d

c

∫ b

a
w(t, s)φ(y(t, s))dµ(t)du(s)

∫ d

c

∫ b

a
w(t, s)ψ(x(t, s))dµ(t)du(s) −

∫ d

c

∫ b

a
w(t, s)ψ(y(t, s))dµ(t)du(s)

,

(3.15)

provided that the denominators are non zero.

Proof. The proof is analogous to the proof of Theorem 9 in [14].

Corollary 3.9. Under the assumptions of Theorem 3.8, set φ(x) = xl and ψ(x) =
xm, for l,m ∈ R \ {0, 1}, l 6= m with [α, β] ⊂ R

+, then there exists ξ ∈ [α, β] such
that

ξl−m =
m(m− 1)

∫ d

c

∫ b

a
w(t, s)xl(t, s) dµ(t)du(s) −

∫ d

c

∫ b

a
w(t, s)yl(t, s) dµ(t)du(s)

l(l − 1)
∫ d

c

∫ b

a
w(t, s)xm(t, s) dµ(t)du(s) −

∫ d

c

∫ b

a
w(t, s)ym(t, s) dµ(t)du(s)

.

(3.16)

Proof. Apply Theorem 3.8.

Now we are able to introduce generalized Cauchy means from (3.15). Namely,

suppose that φ′′

ψ′′
has inverse function, then from (3.15) we have

ξ =

(

φ′′

ψ′′

)−1
(

∫ d

c

∫ b

a
w(t, s)φ(x(t, s))dµ(t)du(s) −

∫ d

c

∫ b

a
w(t, s)φ(y(t, s))dµ(t)du(s)

∫ d

c

∫ b

a
w(t, s)ψ(x(t, s))dµ(t)du(s) −

∫ d

c

∫ b

a
w(t, s)ψ(y(t, s))dµ(t)du(s)

)

.

(3.17)

Remark 3.10. Since the function ξ → ξl−m with l 6= m is invertible, then from
(3.16) we have

α ≤

{

m(m− 1)
∫ d

c

∫ b

a
w(t, s)xl(t, s)dµ(t)du(s) − A1

l(l− 1)
∫ d

c

∫ b

a
w(t, s)xm(t, s)dµ(t)du(s) −A2

}
1

l−m

≤ β. (3.18)
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where A1 =
∫ d

c

∫ b

a
w(t, s)yl(t, s)dµ(t)du(s) and A2 =

∫ d

c

∫ b

a
w(t, s)ym(t, s)dµ(t)u(s).

We shall say that the expression in the middle defines a class of means.

4 Applications of Generalized Cauchy Means

In this section, we give some very important applications of generalized Cauchy
means i.e., monotonicity of these means.

To define Cauchy type means for majorization type result, the following fam-
ilies of functions will be useful.

Lemma 4.1. Consider the functions ηr : [0,∞) → R

ηr(x) =

{

xr

r(r−1) , r 6= 1;

x log x, r = 1.
(4.1)

Then η′′r (x) = xr−2, that is ηr is convex for x ≥ 0, r > 0, with the convention that
0 log 0 = 0.

Lemma 4.2. Consider the functions ϕr : (0,∞) → R

ϕr(x) =











xr

r(r−1) , r 6= 0, 1;

− logx , r = 0;

x log x , r = 1.

(4.2)

Then ϕ′′

r (x) = xr−2, that is ϕr is convex for x > 0, r ∈ R.

Lemma 4.3. Consider the functions δr : R → R

δr(x) =

{

1
r2
erx , r 6= 0;

1
2x

2, r = 0.
(4.3)

Then δ′′r (x) = erx, that is δr is convex for x ∈ R, r ∈ R.

Definition 4.4 ([10, p. 2]). A function φ : I → R is convex if

φ(s1)(s3 − s2) + φ(s2)(s1 − s3) + φ(s3)(s2 − s1) ≥ 0, (4.4)

holds for every s1 < s2 < s3, s1, s2, s3 ∈ I.

The following important subclass i.e., the class of exponentially convex func-
tions, introduced by Bernstein [15], will be crucial importance in studying the
properties of Cauchy type means (for example monotonicity). Also our method
can give a method of producing families of exponentially convex functions.
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Definition 4.5 ([16]). A function φ : I → R is exponentially convex if it is
continuous and

n
∑

k,l=1

akalφ(xk + xl) ≥ 0,

for all n ∈ N, ak ∈ R and xk ∈ I, k = 1, 2, ..., n such that xk + xl ∈ I, 1 ≤ k, l ≤ n,

or equivalently
n
∑

k,l=1

akalφ(
xk + xl

2
) ≥ 0.

Corollary 4.6 ([16]). If φ : I → R is exponentially convex function, then

det

[

φ(
xk + xl

2
)

]n

k,l=1

≥ 0

for every n ∈ N xk ∈ I, k = 1, 2, ..., n.

Corollary 4.7 ([16]). If φ : I → (0,∞) is exponentially convex function, then φ

is a log-convex function that is

φ(λx + (1 − λ)y) ≤ φλ(x)φ1−λ(y), for all x, y ∈ I, λ ∈ [0, 1].

Let w, x, y, u, µ, φ be defined as in Theorem 3.5. We define the functional
A(x, y, w;φ) by

A(x, y, w;φ) =

∫ d

c

∫ b

a

w(t, s)φ(x(t, s))dµ(t)du(s)−

∫ d

c

∫ b

a

w(t, s)φ(y(t, s)) dµ(t)du(s).

(4.5)
We begin with defining Cauchy type means for the family of functions ηr.

Theorem 4.8. Let w, x, y, u, µ be defined as in Theorem 3.5 with [α, β] ⊂ R
+∪{0}.

Also let (3.5) holds. Consider Υ1
r = A(x, y, w; ηr), r ∈ R

+, if (3.12) holds for
every τ ∈ [α, β] and Υ2

r = −A(x, y, w; ηr), if (3.12) holds in the opposite direction
for every τ ∈ [α, β]. Then the following statements are valid for Υi

r(i=1,2).

(i) For every n ∈ N and for every rk ∈ R
+, k ∈ {1, 2, 3, ..., n}, the matrix

[Υi
r

k
+r

l

2

]nk,l=1 is positive semi-definite. Particularly

det[Υi
r

k
+r

l

2

]nk,l=1 ≥ 0. (4.6)

(ii) The function r → Υi
r is exponentially convex.

(iii) If Υi
r > 0, then the function r → Υi

r is log-convex, i.e for 0 < r < s < t <

∞, we have

(Υi
s)
t−r ≤ (Υi

r)
t−s(Υi

t)
s−r . (4.7)
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Proof. (i) As in [14] we can show that the function defined by

µ(x) =
n
∑

k,l=1

akalηrkl
(x),

where rkl = rk+rl

2 > 0, ak ∈ R for all k ∈ {1, 2, 3, ..., n}, x ≥ 0 is convex. Therefore
we have

n
∑

k,l=1

akalΥ
i
rkl

≥ 0, (4.8)

hence the matrix [Υi
r

k
+r

l

2

]nk,l=1 is positive semi-definite.

(ii) Since limr→1 Υi
r = Υi

1 and 0 log 0 = 0, we conclude that Υi
r is continuous

for all r > 0, x ≥ 0 and [Υi
r

k
+r

l

2

]nk,l=1 is positive semi-definite matrix, so using

Definition 4.5 we have that exponential convexity of the function r → Υi
r.

(iii) Assume that Υi
r > 0, then by Corollary 4.7 we have that Υi

r is log-
convex.

Let w, x, y, u, µ be stated as in Theorem 3.5 such that (3.5) holds and [α, β] ⊂
R

+ ∪{0}. If for all τ ∈ [α, β], the inequality (3.12) holds or if for all τ ∈ [α, β], the
reverse inequality in (3.12) holds. We also assume that Υi

r > 0 (i=1,2) for r ∈ R
+.

We give the following definition.

Ml,m :=

(

Υ1
l

Υ1
m

)
1

l−m

=

(

Υ2
l

Υ2
m

)
1

l−m

for l,m ∈ R
+

such that l 6= m, (4.9)

where Υi
r is defined in Theorem 4.8. By Remark 3.10 these expressions define a

class of means. We can extend these means to the other cases, by limit we have

Ml,l = exp

( R
d

c

R
b

a
w(t,s)[xl(t,s) log x(t,s)−yl(t,s) log y(t,s)] dµ(t)du(s)R

d

c

R
b

a
w(t,s)[xl(t,s)−yl(t,s)] dµ(t)du(s)

− 2l−1
l(l−1)

)

,

M1,1 = exp

( R
d

c

R
b

a
w(t,s)[x(t,s) log2 x(t,s)−y(t,s) log2 y(t,s)] dµ(t)du(s)

2
R

d

c

R
b

a
w(t,s)[x(t,s) log x(t,s)−y(t,s) log y(t,s)] dµ(t)du(s)

− 1

)

.

Theorem 4.9. Let c, d, l,m ∈ R
+ such that c ≤ l and d ≤ m, then the following

inequality is valid.

Mc,d ≤Ml,m for c, d, l,m ∈ R
+

. (4.10)

Proof. Since Υi
r (i=1,2) is log-convex. Therefore it holds ([10, p.2]) that

log Υi
c − log Υi

d

c− d
≤

log Υi
l − log Υi

m

l −m
(4.11)

with c ≤ l, d ≤ m, c 6= d, l 6= m. Consequently

(

Υi
c

Υi
d

)c−d

≤

(

Υi
l

Υi
m

)l−m

. (4.12)

And for c = l and/ or d = m we consider limiting cases.
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Now, we define Cauchy type means for the family of functions ϕr.

Theorem 4.10. Let w, x, y, u, µ be defined as in Theorem 3.5 with [α, β] ⊂ R
+.

Also let (3.5) holds. Consider Υ̃1
r = A(x, y, w;ϕr), r ∈ R, if (3.12) holds for

every τ ∈ [α, β] and Υ̃2
r = −A(x, y, w;ϕr), r ∈ R, if (3.12) holds in the opposite

direction for every τ ∈ [α, β]. Then the following statements are valid for Υ̃i
r

(i=1,2).

(i) For every n ∈ N and for every rk ∈ R, k ∈ {1, 2, 3, ..., n}, the matrix
[Υ̃i

r
k
+r

l

2

]nk,l=1 is positive semi-definite. Particularly

det[Υ̃i
r

k
+r

l

2

]nk,l=1 ≥ 0. (4.13)

(ii) The function r → Υ̃i
r is exponentially convex.

(iii) If Υ̃i
r > 0, then the function r → Υ̃i

r is log-convex, i.e for −∞ < r < s <

t <∞, we have
(Υ̃i

s)
t−r ≤ (Υ̃i

r)
t−s(Υ̃i

t)
s−r . (4.14)

Proof. The proof is similar to the proof of Theorem 4.8.

Let w, x, y, u, µ be stated as in Theorem 3.5 such that (3.5) holds and [α, β] ⊂
R

+. If for all τ ∈ [α, β], the inequality (3.12) holds or if for all τ ∈ [α, β], the
reverse inequality in (3.12) holds. We also assume that Υ̃i

r > 0 for r ∈ R. We give
the following definition.

M̃l,m :=

(

Υ̃i
l

Υ̃i
m

)
1

l−m

for l,m ∈ R such that l 6= m, i=1,2, (4.15)

where Υ̃i
r is defined in Theorem 4.10 . By Remark 3.10 these expressions define

a class of means. We can extend these means to the other cases. Namely, for
l 6= 0, 1, by limit we have

M̃l,l = exp

( R
d

c

R
b

a
w(t,s)(xl(t,s) log x(t,s)−yl(t,s) log y(t,s)) dµ(t)du(s)R

b

a

R
b

a
w(t,s)(xl(t,s)−yl(t,s)) dµ(t)du(s)

− 2l−1
l(l−1)

)

,

M̃0,0 = exp

( R
d

c

R
b

a
w(t,s)(log2 x(t,s)−log2 y(t,s)) dµ(t)du(s)

2
R

d

c

R
b

a
w(t,s)(log x(t,s)−log y(t,s)) dµ(t)du(s)

+ 1

)

,

and M̃1,1 = M1,1.

Theorem 4.11. Let c, d, l,m ∈ R such that c ≤ l and d ≤ m, then the following
inequality is valid.

M̃c,d ≤ M̃l,m for c, d, l,m ∈ R, (4.16)

Proof. The proof is similar to the proof of Theorem 4.9.

Finally, we define Cauchy type means for the family of functions δr.
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Theorem 4.12. Let w, x, y, u, µ be defined as in Theorem 3.5 such that (3.5)

holds. Consider Υ
1

r = A(x, y, w; δr), r ∈ R, if (3.12) holds for every τ ∈ [α, β]

or Υ
2

r = −A(x, y, w; δr), r ∈ R, if (3.12) holds in the opposite direction for every

τ ∈ [α, β]. Then the following statements are valid for Υ
i

r (i=1,2).

(i) For every n ∈ N and for every rk ∈ R, k ∈ {1, 2, 3, ..., n}, the matrix

[Υ
i
r

k
+r

l

2
]nk,l=1 is a positive semi-definite. Particularly

det[Υ
i
r

k
+r

l

2
]nk,l=1 ≥ 0. (4.17)

(ii) The function r → Υ
i

r is exponentially convex.

(iii) If Υ
i

r > 0, then the function r → Υ
i

r is log-convex, i.e for −∞ < r < s <

t <∞, we have

(Υ
i

s)
t−r ≤ (Υ

i

r)
t−s(Υ

i

t)
s−r. (4.18)

Proof. The proof is similar to the proof of Theorem 4.8.

Let w, x, y, u, µ be stated as in Theorem 3.5 such that (3.5) holds. If for all
τ ∈ [α, β], the inequality (3.12) holds or if for all τ ∈ [α, β], the reverse inequality

in (3.12) holds and let Υ
i

r > 0 for r ∈ R,

M l,m =
1

l −m
log

(

m2

l2
.

∫ d

c

∫ b

a
w(t)

(

elx(t,s) − ely(t,s)
)

dµ(t)du(s)
∫ d

c

∫ b

a
w(t)

(

emx(t,s) − emy(t,s)
)

dµ(t)du(s)

)

(4.19)

for l,m ∈ R \ {0}, l 6= m define a class of means. Moreover we can extend these
means to the other cases.
So by limit we have

M l,l =

∫ d

c

∫ b

a
w(t, s)

(

x(t, s)elx(t,s) − y(t, s)ely(t,s)
)

dµ(t)du(s)
∫ d

c

∫ b

a
w(t, s)

(

elx(t,s) − ely(t)
)

dµ(t)du(s)
−

2

l
, l 6= 0,

M0,0 =

∫ d

c

∫ b

a
w(t, s)

(

x3(t, s) − y3(t, s)
)

dµ(t)du(s)

3
(

∫ d

c

∫ b

a
w(t, s) (x2(t, s) − y2(t, s)) dµ(t)du(s)

) .

Theorem 4.13. Let c, d, l,m ∈ R such that c ≤ l and d ≤ m, then the following
inequality is valid.

M c,d ≤M l,m for c, d, l,m ∈ R. (4.20)

Proof. The proof is similar to the proof of Theorem 4.9.

Remark 4.14. We can give Theorem 3.7, Theorem 3.8, Corollary 3.9, Remark
3.10, Theorem 4.8, Cauchy type means (4.9), Theorem 4.9, Theorem 4.10, Cauchy
type means (4.15), Theorem (4.11), Theorem (4.12), Cauchy type means (4.19)
and Theorem (4.13) in a similar way for Theorem 3.4(a), (b), (c) and (d).
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Remark 4.15. For related discrete version of this paper see [14] and for some
interesting results related to log convexity see [17].
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