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Abstract : In this paper, a new algorithm for solving a class of variational
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1 Introduction

The variational inequality, as an important subject of current mathematics,
has not only stimulated new results dealing with partial differential equations, but
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also has been used in large variety of problems arising from mechanics, physics,
optimization and control, economic and transportation equilibrium, and engineer-
ing sciences. Because of its wide applications, the classic variational inequality
has been well studied and generalized in various directions. Among these gener-
alizations, variational inclusion is of interest and importance. One of the most
important and interesting problems in theory of variational inequality is the de-
velopment of an efficient and implementable algorithm for solving variational in-
equality and its generalizations. It is known that monotonicity of the underlying
operators plays a prominent role in the theory of variational inequality and its
generalizations.

In order to study various variational inequalities and variational inclusions, in
2003, Fang and Huang [1] introduced a new class of monotone operators named
H-monotone operators. For an H-monotone operator, they gave the definition
of its resolvent operator and established the Lipschitz continuity of the resolvent
operator. By using the resolvent operator technique, they constructed an iter-
ative algorithm for approximating a solution of a class of variational inclusions
involving H-monotone operators. Following the works of Fang and Huang [1],
Fang et al. [2], Feng and Ding [3], Lan [4], Lan et al. [5], Verma [6, 7], Xia and
Huang [8], Zhang [9] have introduced the concepts of (H, η)-monotone operators,
A-monotone operators, (A, η)-monotone operators, M -monotone operators, gen-
eral H-monotone operators, G-η-monotone operators, respectively. By using the
resolvent operator technique, they studied a number of variational inequalities and
variational inclusions.

In [1], Fang and Huang considered the following variational inclusions: find an
x ∈ H such that

0 ∈ A(x) + M(x), (1.1)

where H is a Hilbert space, A : H → H is a single-valued operator and M : H →
2H is a multi-valued operator. Under the assumptions that A, H : H → H are
strongly monotone and Lipschitz continuous, and M : H → 2H is an H-monotone
operator, they proved the convergence of an algorithm for solving problem (1.1).
However, the strongly monotonicity and Lipschitz continuity were very strong
conditions which would restrict the use of this method. In this paper, we relax
the assumptions on operators A and H . This is one of the two main motivations
of this paper.

On the other hand, problem (1.1) includes many problems as special cases
(see, Fang and Huang [1]). For example, if M = ∂ϕ, where ∂ϕ denotes the
subdifferential of a proper, convex and lower semi-continuous functional ϕ : H →
R

⋃

{+∞}, then problem (1.1) reduces to the following problem: find an x ∈ H
such that

〈Ax, y − x〉 + ϕ(y) − ϕ(x) ≥ 0, ∀y ∈ H, (1.2)

which is called a general mixed variational inequality. If A : H → 2H is a multi-
valued operator, (1.2) is called a generalized mixed variational inequality which has
been encountered in many applications, in particular, in mechanical problems (see,
e.g., [10, 11]) and equilibrium problems (see, e.g., [12, 13]). Moreover, generalized
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mixed variational inequalities have been studied by many authors, see, for example,
[8, 14–16]. Obviously, the variational inclusions (1.1) can not include generalized
mixed variational inequalities as a special case. So it is a significant work that how
to construct algorithms for approximating an solution of problem (1.1) involving
multi-valued operator A. This is another motivation of this paper.

In this paper, we consider the following variational inclusions problem: find
an x ∈ H such that

0 ∈ A(x) + M(x), (1.3)

where H is a Hilbert space, A, M : H → 2H are two multi-valued operators.
We provide a new iterative algorithm for solving problem (1.3) in Hilbert spaces.
We first show that how to generate the sequences {xk} and {zk} by an algorithm,
which consists of a resolvent operator technique step followed by a suitable orthog-
onal projection onto a hyperplane. Under the assumption that A, H are maximal
monotone, we prove that the sequences {xk} and {zk} are both weakly convergent
and the weak limit point of {xk} is the same as that of {zk}. We also prove that
the weak limit point of these sequences is a solution to problem (1.3).

2 Preliminaries

Suppose that X ⊂ H is a nonempty closed convex subset and

dist(z, X) := inf
x∈X

‖z − x‖

is the distance from z to X . Let PX [z] denote the projection of z onto X , that is,
PX [z] satisfies the condition

‖z − PX [z]‖ = dist(z, X).

The following well-known properties of the projection operator will be used in this
paper.

Proposition 2.1 ([17]). Let X be a nonempty closed convex subset in H. Then
the following properties hold:

(i) 〈x − y, x − PX [x]〉 ≥ 0, for all x ∈ H and y ∈ X;

(ii) 〈PX [x] − x, y − PX [x]〉 ≥ 0, for all x ∈ H and y ∈ X;

(iii) ‖PX [x] − PX [y]‖ ≤ ‖x − y‖, for all x, y ∈ H.

Definition 2.2. Let T : H → H be a single-valued operator. T is said to be

(i) monotone if
〈Tx − Ty, x− y〉 ≥ 0, ∀x, y ∈ H;

(ii) strictly monotone if, T is monotone and 〈Tx− Ty, x− y〉 = 0 if and only if
x = y;
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(iii) strongly monotone, if there exists constant ρ > 0 such that

〈Ty − Tx, y − x〉 ≥ ρ‖x − y‖2, ∀x, y ∈ H.

Definition 2.3. Let H : H → H be a single-valued operator. A multi-valued
operator M is said to be

(i) monotone if

〈u − v, x − y〉 ≥ 0, ∀x, y ∈ H, u ∈ Mx, v ∈ My;

(ii) monotone with respect to H if

〈u − v, Hx − Hy〉 ≥ 0, ∀x, y ∈ H, u ∈ Mx, v ∈ My;

(iii) maximal monotone if, T is monotone and (I + λM)(H) = H for all λ > 0,
where I denotes the identity mapping on H;

(iv) H-monotone [1] if M is monotone and (H + λM)(H) = H holds for every
λ > 0.

Definition 2.4 ([1]). Let H : H → H be a strictly monotone operator and
M : H → 2H be an H-monotone operator. The resolvent operator RH

M,λ : H → H
is defined by

RH
M,λ(x) = (H + λM)−1(x), ∀x ∈ H. (2.1)

We will use the following lemma.

Lemma 2.5 ([18]). Let σ ∈ [0, 1) and µ =
√

1 − (1 − σ2)2. If v = u + ξ with
‖ξ‖2 ≤ σ2(‖u‖2 + ‖v‖2), then

(i) 〈u, v〉 ≥ (‖u‖2 + ‖v‖2)(1 − σ2)/2;

(ii) (1 − µ)‖v‖ ≤ (1 − σ2)‖u‖ ≤ (1 + µ)‖v‖.

3 Iterative Algorithm and Convergence Analysis

Choose a positive sequence {λk}. Suppose that a single-valued operator H :
H → H is onto, that is, H(H) = H. We describe a new iterative algorithm for
variational inclusion problem (1.3).
ALGORITHM 3.1.

Step 0. (Initialization) Select initial z0 ∈ H and set k = 0.

Step 1. (Resolvent operator step) Find an xk ∈ H such that

xk = RH
M,λk

[H(zk) − λkgk], gk ∈ A(xk). (3.1)
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Step 2. (Projection step) Set wk = 1

λk
[H(zk)−H(xk)−λkgk]. If gk +wk =

0, then stop; otherwise, set

zk+1 = H−1[H(zk) − βk(gk + wk)] with βk =
〈gk + wk, H(zk) − H(xk)〉

‖gk + wk‖2
.

(3.2)

Step 3. Let k = k + 1 and return to Step 1.

In this paper, we focus our attention on obtaining general conditions ensuring
the convergence of {zk} and {xk} toward a solution of problem (1.3), under the
following hypothesises:

(A1) A positive sequence {λk} satisfies

α1 := inf
k≥0

λk > 0, α2 := sup
k≥0

λk < ∞. (3.3)

(A2) The set of solutions of problem (1.3), denoted by S, is nonempty.

(A3) A strongly monotone operator H : H → H is onto, that is, H(H) = H and
weakly continuous on H.

(A4) A multi-valued operator M : H → 2H is H-monotone and monotone with
respect to H .

(A5) A multi-valued operator A : H → 2H is maximal monotone and monotone
with respect to H .

By the definition of RH
M,λk

, we note that subproblem (3.1) is equivalent to the

following problem: find an xk ∈ H such that

H(zk) ∈ H(xk) + λk[M(xk) + gk]. (3.4)

By (3.4) and the definition of wk in Algorithm 3.1, we have wk ∈ M(zk). If
H : H → H is strictly monotone, M : H → 2H is H-monotone, then M is
maximal monotone (see proposition 2.1 in [1]). Furthermore, if A : H → 2H is
maximal monotone, then H + λk[M + A] must be a maximal monotone operator,
and then H + λk[M + A] must be onto (see [19]). So the sequence {xk} is well
defined. Since H : H → H is onto, by (3.2), we know that the sequence {zk} is
also well defined.

It is easy to see that (3.2) is a projection step because it can be written as
H(zk+1) = PK(H(zk)), where PK : H → K is the orthogonal projection operator
onto the hyperplane K = {z ∈ H : 〈gk + wk, z −H(xk)〉 ≤ 0}. In fact, by (3.2) we
have H(zk+1) = H(zk) − βk(gk + wk). Hence, for each y ∈ K, we deduce that

〈H(zk) − H(zk+1), y − H(zk)〉

= βk〈g
k + wk, y − H(zk)〉

= βk〈g
k + wk, y − H(xk)〉 + βk〈g

k + wk, H(xk) − H(zk)〉

= βk〈g
k + wk, H(xk) − H(zk)〉 (since 〈gk + wk, y − H(xk)〉 ≤ 0)

≤ 0 (since βk = 〈gk + wk, H(zk) − H(xk)〉/‖gk + wk‖2).
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By Proposition 2.1, we know that H(zk+1) = PK(H(zk)). By monotonicity of
M , A and Theorem 3.1(ii) below, the hyperplane K separates the current iterate
H(zk) from the set H(S), where S = {x ∈ H : 0 ∈ M(x) + A(x)} (see Remark 3.1
below). Thus, in Algorithm 3.1, the resolvent operator iteration step (3.1) is used
to construct this separation hyperplane, the next iterate H(zk+1) is then obtained
by a trivial projection of H(zk), which is not expensive at all from a numerical
point of view.

Now we give some properties for the iterative sequence generated by Algorithm
3.1 in Hilbert space H. First, we state some useful estimates that are direct
consequences of Lemma 2.5.

Theorem 3.1. Under (3.1)-(3.2), we have

(i) λk‖g
k + wk‖ = ‖H(xk) − H(zk)‖;

(ii) (λ2
k‖g

k + wk‖2 + ‖H(xk) − H(zk)‖2)/(2λk) ≤ 〈gk + wk, H(zk) − H(xk)〉.

Proof. Since wk = 1

λk
[H(zk) − H(xk) − λkgk], we apply Lemma 2.1 to σ = 0,

ξ = 0, v = λk(gk + wk) and u = H(zk) − H(xk) to get (i) and (ii).

Remark 3.2. Suppose that gk + wk = 0 in Step 2, we have

0 ∈ M(xk) + A(xk),

that is, xk is a solution of problem (1.3). On the other hand, assuming gk+wk 6= 0,
Theorem 3.1 (ii) yields 〈gk + wk, H(zk) − H(xk)〉 > 0. By the monotonicity with
respect to H of M and A, it is easy to see that, for all x∗ ∈ S (S denotes the
solution set of problem (1.3)),

〈0 − (wk + gk), H(x∗) − H(xk)〉 ≥ 0, ∀wk ∈ M(xk), gk ∈ A(xk),

which leads to

〈wk + gk, H(x∗) − H(xk)〉 ≤ 0, ∀wk ∈ M(xk), gk ∈ A(xk).

Thus, the hyperplane {z ∈ H : 〈gk + wk, z − H(xk)〉 ≤ 0} strictly separates H(zk)
from H(S). The latter is the geometric motivation for the projection step (3.2).

Theorem 3.3. Suppose that x∗ ∈ H is a solution of problem (1.3). Then

‖H(x∗) − H(zk+1)‖2 ≤ ‖H(x∗) − H(zk)‖2 − ‖H(zk+1) − H(zk)‖2 (3.5)

and so the sequence {‖H(x∗) − H(zk)‖2} is convergent (not necessarily to 0).
Moreover,

∞
∑

k=0

‖H(zk+1) − H(zk)‖2 < ∞. (3.6)
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Proof. By Step 2, we have

‖H(x∗) − H(zk+1)‖2

= ‖H(x∗) − H(zk) − (H(zk+1) − H(zk))‖2

= ‖H(x∗) − H(zk)‖2 − 2〈H(x∗) − H(zk), H(zk+1) − H(zk)〉

+ ‖H(zk+1) − H(zk)‖2

= ‖H(x∗) − H(zk)‖2 − 2〈H(zk+1) − H(zk), H(zk+1) − H(zk)〉

− 2〈H(x∗) − H(zk+1), H(zk+1) − H(zk)〉 + ‖H(zk+1) − H(zk)‖2

= ‖H(x∗) − H(zk)‖2 − 2〈H(x∗) − H(zk+1), H(zk+1) − H(zk)〉

− ‖H(zk+1) − H(zk)‖2.

Since x∗ ∈ H is a solution of problem (1.3), we have 0 ∈ M(x∗) + A(x∗). By the
monotonicity with respect to H of A and M , we deduce that

〈0 − (gk + wk), H(x∗) − H(xk)〉 ≥ 0, ∀gk ∈ A(xk), wk ∈ M(xk),

which leads to

H(x∗) ∈ K = {z ∈ H : 〈gk + wk, z − H(xk)〉 ≤ 0}.

Since H(zk+1) = PK(H(zk)), by Proposition 2.1(ii), we have

〈H(zk+1) − H(x∗), H(zk) − H(zk+1)〉 ≥ 0,

and so

‖H(x∗) − H(zk+1)‖2 ≤ ‖H(x∗) − H(zk)‖2 − ‖H(zk+1) − H(zk)‖2,

which implies that (3.5) holds. Thus,

0 ≤ ‖H(x∗) − H(zk+1)‖2 ≤ ‖H(x∗) − H(zk)‖2, ∀k ≥ 0,

which yields that the sequence {‖H(x∗)−H(zk)‖2} is convergent. Let L∞ be the
limit of {‖H(x∗) − H(zk)‖2}.

Now we prove that (3.6) holds. It follows from (3.5) that

0 ≤ ‖H(zk+1) − H(zk)‖2 ≤ ‖H(x∗) − H(zk)‖2 − ‖H(x∗) − H(zk+1)‖2 (3.7)

and so (3.7) implies that

∞
∑

k=0

‖H(zk+1) − H(zk)‖2 ≤

∞
∑

k=0

[‖H(x∗) − H(zk)‖2 − ‖H(x∗) − H(zk+1)‖2]

= ‖H(x∗) − H(z0)‖
2 − L∞.

Thus, we know that
∑∞

k=0
‖H(zk+1) − H(zk)‖2 < ∞ holds. This completes the

proof.
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Theorem 3.4. Suppose that the positive sequence {λk} satisfies (3.3), then there
exists a constant ζ > 0 such that

〈gk + wk, H(zk) − H(xk)〉 ≥ ζ‖gk + wk‖2. (3.8)

Proof. If gk + wk = 0, then (3.8) holds. Now we assume that gk + wk 6= 0. By
Theorem 3.1 (ii), we have

〈gk + wk, H(zk) − H(xk)〉 ≥
λ2

k‖g
k + wk‖2 + ‖H(xk) − H(zk)‖2

2λk

≥
λk‖g

k + wk‖2

2
.

Since λk ∈ [α1, α2],

〈gk + wk, H(zk) − H(xk)〉 ≥
α1

2
‖gk + wk‖2.

This completes the proof.

Theorem 3.5. If the positive sequence {λk} satisfies (3.4), then

lim
k→∞

‖gk + wk‖ = 0. (3.9)

Proof. If gk + wk 6= 0, then it follows from (3.2) and (3.8) that, for all k,

‖H(zk+1) − H(zk)‖ = ‖βk(gk + wk)‖

= 〈gk + wk, H(zk) − H(xk)〉/‖gk + wk‖

≥ ζ‖gk + wk‖, (3.10)

which clearly also holds for k satisfying gk +wk = 0. By (3.6) and (3.10), we have

lim
k→∞

‖gk + wk‖ = 0.

This completes the proof.

Theorem 3.6. Let {xk} and {zk} be infinite sequences generated by Algorithm
3.1 and let the positive sequence {λk} satisfy (3.3). Then {xk} and {zk} are both
bounded. Moreover, {xk} and {zk} have the same weak accumulation points.

Proof. It follows from Theorem 3.3 that the sequence {H(zk)} is bounded. Using
Theorem 3.5 and Theorem 3.1 (i), we have

lim
k→∞

‖H(zk) − H(xk)‖ = 0. (3.11)

Since H is a strongly monotone operator, there exists constant r > 0 such that

r‖xk − zk‖2 ≤ 〈H(xk) − H(zk), xk − zk〉 ≤ ‖H(xk) − H(zk)‖‖xk − zk‖,
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which leads to
r‖xk − zk‖ ≤ ‖H(xk) − H(zk)‖. (3.12)

It follows from (3.11) and (3.12) that

lim
k→∞

‖zk − xk‖ = 0.

We deduce
lim

k→∞
(zk − xk) = 0. (3.13)

By the boundedness of the sequence {zk}, we obtain that the sequence {xk} is
bounded. Moreover, (3.13) implies that {xk} and {zk} have the same weak accu-
mulation points. This completes the proof.

We now study the convergence of the sequences {xk} and {zk} generated by
Algorithm 3.1.

Theorem 3.7. Suppose that the sequence {xk} generated by Algorithm 3.1 is
finite. Then the last term is a solution of problem (1.3).

Proof. If the sequence {xk} is finite, then it must stop at Step 2 for some xk.
In this case, we have gk + wk = 0, that is, 0 ∈ M(xk) + A(xk). So xk ∈ X is a
solution of problem (1.3). This completes the proof.

Now, we assume that the sequence {xk} generated by Algorithm 3.1 is infinite
and so is the sequence {zk}.

Theorem 3.8. Every weak accumulation point of the sequence {xk} generated by
Algorithm 3.1 is a solution of problem (1.3) and so does the sequence {zk}.

Proof. Existence of weak accumulation points of {xk} follows from Theorem 3.6.
Let x̂ be a weak accumulation point of {xk}. We can extract a subsequence that
weakly converges to x̂. Without loss of generality, let us suppose that limk→∞ xk =
x̂ (weakly). By Theorem 3.6, we have limk→∞ zk = x̂ (weakly).

Now we prove each weak accumulation point of {xk} is a solution of problem
(1.3). For all v ∈ H , take an arbitrary u ∈ M(v) + A(v). Then, there exist points
w′ ∈ M(v) and g′ ∈ A(v) such that w′ + g′ = u. Therefore,

〈xk − v, wk − w′〉 ≥ 0, 〈xk − v, gk − g′〉 ≥ 0.

Adding these inequalities, we have

〈xk − v, wk + gk − (w′ + g′)〉 ≥ 0.

Since w′ + g′ = u,
〈xk − v,−u〉 ≥ −〈xk − v, wk + gk〉. (3.14)

Since ‖wk + gk‖ → 0 (by Theorem 3.5) and {xk} is bounded, we have

〈xk − v, wk + gk〉 → 0.
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Taking limits in (3.14),

〈x̂ − v, 0 − u〉 = lim
k→∞

〈xk − v, 0 − u〉 ≥ 0.

As M is a H-monotone operator and H is a strictly monotone operator, by Proposi-
tion 2.1 of Fang and Huang [1], we know that M : H → 2H is a maximal monotone
operator. Since A : H → 2H is a maximal monotone operator, M + A must be
maximal monotone because the domain of M intersects the interior of the domain
of A (see Rockafellar [20]). Since (v, u) is an arbitrary point in Gph(M + A),
and M + A is maximal monotone, we conclude that (x̂, 0) ∈ Gph(M + A) and so
0 ∈ M(x̂) + A(x̂). This shows that x̂ ∈ X is a solution of problem (1.3). This
completes the proof.

Theorem 3.9. The sequence {zk} generated by Algorithm 3.1 has a unique weak
accumulation point. Thus, {zk} is weakly convergent and so does the sequence
{xk}.

Proof. For each x∗ ∈ S, it follows from Theorem 3.3 that the sequence {‖H(zk)−
H(x∗)‖2} converges (not necessarily to 0). Now we prove that the sequence {zk}
has a unique weak accumulation point and so does the sequence {xk}. Let ẑ and z̄
be two weak accumulation points of {zk}, and {zkj} and {zki} be two subsequences
of {zk} that weakly converge to ẑ and z̄, respectively. By Theorem 3.8, we know
that ẑ, z̄ ∈ S. Then the sequences {‖H(zk) − H(ẑ)‖2} and {‖H(zk) − H(z̄)‖2}
are convergent. Let ξ = limk→∞‖H(zk) − H(ẑ)‖2, η = limk→∞‖H(zk) − H(z̄)‖2

and γ = ‖H(ẑ) − H(z̄)‖2. Then

‖H(zkj) − H(z̄)‖2 = ‖H(zkj) − H(ẑ)‖2 + ‖H(ẑ) − H(z̄)‖2

+ 2〈H(zkj) − H(ẑ), H(ẑ) − H(z̄)〉 (3.15)

and

‖H(zki) − H(ẑ)‖2 = ‖H(zki) − H(z̄)‖2 + ‖H(ẑ) − H(z̄)‖2

+ 2〈H(zki) − H(z̄), H(z̄) − H(ẑ)〉. (3.16)

Taking limit in (3.15) as j → ∞ and (3.16) as i → ∞, observing that the inner
products in the right hand sides of (3.15) and (3.16) converge to 0 because H is
weakly continuous and ẑ, z̄ are weak limits of {zkj}, {zki} respectively, and get,
using the definitions of ξ, η, γ,

ξ = η + γ, (3.17)

η = ξ + γ. (3.18)

From (3.17) and (3.18), we get ξ − η = γ = η − ξ, which implies γ = 0, i.e.
H(ẑ) = H(z̄). Since H is strongly monotone, there exists a constant r > 0 such
that

r‖ẑ − z̄‖2 ≤ 〈H(ẑ) − H(z̄), ẑ − z̄〉 ≤ ‖H(ẑ) − H(z̄)‖‖ẑ − z̄‖. (3.19)
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It follows from (3.19) and H(ẑ) = H(z̄) that

ẑ = z̄.

We conclude that all weak accumulation points of {zk} coincide, i.e., {zk} is weakly
convergent. This completes the proof.

Remark 3.10. The results in this paper generalize the Theorem 3.1 of Fang and
Huang [1] in the following aspects (a) A is a multi-valued operator; (b) H is not
necessarily a Lipschitz continuous operator; (c) A is not strongly monotone and
Lipschitz continuous.

Acknowledgement : The authors thank the referees very much for their valuable
comments.
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