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1 Introduction and Preliminaries

In 1922, the Polish mathematician, Banach, proved a theorem which ensures,
under appropriate conditions, the existence and uniqueness of a fixed point. His
result is called Banach’s fixed point theorem or the Banach contraction princi-
ple. This theorem provides a technique for solving a variety of applied problems
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in mathematical science and engineering. Many authors have extended, gener-
alized and improved Banach’s fixed point theorem in different ways. In [1, 2],
Jungck introduced more generalized commuting mappings, called compatible and
weakly compatible mappings, which are more general than commuting and weakly
commuting mappings. These concept has been useful for obtaining more compre-
hensive fixed point theorems (see, e.g., [1–21], etc.).

Let (X, d) be a metric space and let f and g be two maps from X into itself.
f and g are commuting if fgx = gfx for all x in X . To generalize the notion of
commuting maps, Sessa [3] introduced the concept of weakly commuting maps.
He defines f and g to be weakly commuting if

d(fgx, gfx) ≤ d(gx, fx)

for all x ∈ X . Obviously, commuting maps are weakly commuting but the converse
is not true.

In 1986, Jungck [1] gave more generalized commuting and weakly commuting
maps called compatible maps. f and g above are called compatible if

lim
n→∞

d(fgxn, gfxn) = 0

whenever {xn} is a sequence in X such that limn→∞ fxn = limn→∞ gxn = t for
some t ∈ X . Clearly, weakly commuting maps are compatible, but the implication
is not reversible (see [1]).

In 1996, Jungck [2] generalized the compatibility by introducing the concept
of weak compatibility. He defines f and g to be weakly compatible if ft = gt for
some t ∈ X implies that fgt = gft. It is clear that compatible maps are weakly
compatible. The converse is not true.

In 1984, Chang [4] proved a common fixed point theorems for three self-
mappings which expansive type commuting condition.

In 2001, Gu [5] proved a common fixed point theorems for four self-mappings
which Φ-expansive type compatibility condition.

Motivated by the recent works, in this paper, by using the compatible and
weakly compatible conditions of self-mapping pair in metric spaces, we discussed
the existence and uniqueness of common fixed point for six self-mappings with
twice power type Φ-contractive condition in complete metric spaces. A new com-
mon fixed theorem is obtained. The results presented in this paper improves and
extends some previous results.

Definition 1.1. Let Φ be a function, we called Φ satisfies the condition (Φ), if
the function Φ satisfying the following condition:

(Φ) : Φ : [0,∞) → [0,∞)

and continuous at a point t from the right, nondecreasing and Φ(t) < t , ∀t > 0.

In order to prove the main results of this paper, we need the following lemma:
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Lemma 1.2 ([4]). Let the function Φ satisfies the condition (Φ), then we have

(i) For all real number t ∈ [0,∞), if t ≤ Φ(t), then t = 0;

(ii) For all nonnegative sequence {tn}, if tn+1 ≤ Φ(tn), n = 1, 2, 3, . . . , then
limn→∞ tn = 0.

Lemma 1.3 ([4]). Let (X, d) be a complete metric space, {yn} is a sequence in X

which satisfies the condition limn→∞ d(yn, yn+1) = 0. Suppose that {yn} is not a
Cauchy sequence in X, then there must exists an ǫ0 > 0, and the positive integer
sequence {mi}, {ni} , such that

(i) mi > ni + 1, ni → ∞ (i → ∞);

(ii) d(ymi
, yni

) ≥ ǫ0 ; d(ymi−1, yni
) < ǫ0, for i = 0, 1, 2, . . ..

2 Main Results

In this section, we shall prove our main theorems.

Theorem 2.1. Let (X, d) be a complete metric space and let S, T, A, B, L and M

be six mappings of X into itself, satisfying the following conditions:

(i) S(X) ⊂ BM(X), T (X) ⊂ AL(X);

(ii) AL = LA, SL = LS, BM = MB, TM = MT ;

(iii) ∀x, y ∈ X,

d2(Sx, T y) ≤ Φ(max{d(ALx, BMy)d(ALx, Sx),

d(ALx, Ty)d(BMy, Sx), d(ALx, BMy)d(BMy, Ty)})

where Φ satisfies the condition (Φ).

If one of the following conditions is satisfied, then S, T, A, B, L and M have a
unique common fixed point in X.

(1) Either S or AL is continuous, the pair (S, AL) is compatible, the pair
(T, BM) is weakly compatible;

(2) Either T or BM is continuous, the pair (T, BM) is compatible, the pair
(S, AL) is weakly compatible;

(3) Either AL or BM is surjection, the pairs (S, AL)and (T, BM) are weakly
compatible.

Proof. Let x0 in X be arbitrary, since S(X) ⊂ BM(X) , T (X) ⊂ AL(X), there
exists the sequences {xn} and {yn} in X , such that

y2n = Sx2n = BMx2n+1, y2n+1 = Tx2n+1 = ALx2n+2, for n = 1, 2, 3, . . . .
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Let dn = d(yn, yn+1). Now we shall show that

lim
n→∞

dn = lim
n→∞

d(yn, yn+1) = 0. (2.1)

In fact, from condition (iii) and the property of Φ, we have

d2(y2n−1,y2n) = d2(Tx2n−1, Sx2n) = d2(Sx2n, Tx2n−1)

≤ Φ(max{d(ALx2n, BMx2n−1)d(ALx2n, Sx2n),

d(ALx2n, Tx2n−1)d(BMx2n−1, Sx2n),

d(ALx2n, BMx2n−1)d(BMx2n−1, Tx2n−1)})

= Φ(max{d(y2n−1, y2n−2)d(y2n−1, y2n), d(y2n−1, y2n−1)d(y2n−2, y2n),

d(y2n−1, y2n−2)d(y2n−2, y2n−1)})

= Φ(max{d(y2n−1, y2n−2)d(y2n−1, y2n), d2(y2n−1, y2n−2)}). (2.2)

Now suppose that d(y2n−1, y2n−2) < d(y2n−1, y2n), by the (2.2) and the property
of function Φ, we get d2(y2n−1, y2n) ≤ Φ(d2(y2n−1, y2n)). Therefore, by virtue
of this and using Lemma 1.1(i), we have d2(y2n−1, y2n) = 0, which implies that
d(y2n−1, y2n) = 0. Thus d(y2n−1, y2n−2) < d(y2n−1, y2n) = 0, which is a contra-
diction. It follows that, in any event, we have d(y2n−1, y2n−2) ≥ d(y2n−1, y2n). By
the (2.2) we have d2(y2n−1, y2n) ≤ Φ(d2(y2n−1, y2n−2)). Hence by Lemma 1.1(ii)
we get

d2(y2n−1, y2n) → 0 (n → ∞)

and so limn→∞ d(y2n−1, y2n) = 0.
Similarly, it can be proved that limn→∞ d(y2n, y2n+1) = 0. Thus, limn→∞ dn =

limn→∞ d(yn, yn+1) = 0, so we have the conclusion of (2.1).
Next we will prove {yn} is a Cauchy sequence in X . If not, by Lemma 1.2,

there exists an ǫ0 > 0 and the positive integer sequences {mi}, {ni}, such that

(a) mi > ni + 1, ni → ∞ (i → ∞).

(b) d(ymi
, yni

) ≥ ǫ0 ; d(ymi−1, yni
) < ǫ0, for i = 0, 1, 2, . . ..

Letting ei = d(ymi
, yni

), then we get

ǫ0 ≤ ei ≤ d(ymi
, ymi−1) + d(ymi−1, yni

) < ǫ0 + d(ymi−1, ymi
).

Letting i → ∞ in the above, and from the (2.1) we have

lim
i→∞

ei = ǫ0 (from the right). (2.3)

On the other hand, we have

ei = d(ymi
, yni

) ≤ d(ymi
, ymi+1) + d(ymi+1, yni+1) + d(yni+1, yni

). (2.4)

Now we consider four possible cases for d(ymi+1, yni+1).
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Case (1): We can assume that ni is odd and mi is even. By virtue of condition
(iii), we have

d2(ymi+1, yni+1) = d2(Txmi+1, Sxni+1) = d2(Sxni+1, Txmi+1)

≤ Φ(max{d(ALxni+1, BMxmi+1)d(ALxni+1, Sxni+1),

d(ALxni+1, Txmi+1)d(BMxmi+1, Sxni+1),

d(ALxni+1, BMxmi+1)d(BMxmi+1, Txmi+1)})

= Φ(max{d(yni
, ymi

)d(yni
, yni+1), d(yni

, ymi+1)d(ymi
, yni+1)

d(yni
, ymi

)d(ymi
, ymi+1)})

≤ Φ(max{eidni
, (ei + dmi

)(ei + dni
), eidmi

}). (2.5)

Letting i → ∞ in (2.5), in view of (2.1), (2.3) and the assumption about Φ(t) is
right-continuous, we have limi→∞ d2(ymi+1, yni+1) ≤ Φ(ǫ20), this implies that

lim
i→∞

d(ymi+1, yni+1) ≤ [Φ(ǫ20)]
1/2. (2.6)

Letting i → ∞ in (2.4), using (2.1) and (2.6) we obtain

ǫ0 ≤ ei ≤ 0 + [Φ(ǫ20)]
1/2 + 0 = [Φ(ǫ20)]

1/2.

It follows that ǫ20 ≤ e2
i ≤ Φ(ǫ20) < ǫ20, which is a contradiction.

Case (2): We can assume that ni and mi are all even. By virtue of condi-
tion(iii), we have

d(ymi+1, yni+1) = d(Txmi+1, Txni+1) ≤ d(Sxni
, Txmi+1) + d(Sxni

, Txni+1).(2.7)

d2(Sxni
,Txmi+1)

≤ Φ(max{d(ALxni
, BMxmi+1)d(ALxni

, Sxni
),

d(ALxni
, Txmi+1)d(BMxmi+1, Sxni

),

d(ALxni
, BMxmi+1)d(BMxmi+1, Txmi+1)})

= Φ(max{d(yni−1, ymi
)d(yni−1, yni

), d(yni−1, ymi+1)d(ymi
, yni

),

d(yni−1, ymi
)d(ymi

, ymi+1)})

≤ Φ(max{(dni−1 + ei)dni−1, (dni−1 + ei + dmi
)ei, (dni−1 + ei)dmi

}).
(2.8)

On letting i → ∞ in (2.8), using (2.1), (2.3) and the assumption about Φ(t) is
right-continuous, we have limi→∞ d2(Sxni

, Txmi+1) ≤ Φ(ǫ20), which implies that

lim
i→∞

d(Sxni
, Txmi+1) ≤ [Φ(ǫ20)]

1/2. (2.9)

It follows from (2.1) that

lim
i→∞

d(Sxni
, Txni+1) = lim

i→∞

d(yni
, yni+1) = 0. (2.10)
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Letting i → ∞ in (2.7), using (2.9) and (2.10) we obtain

lim
i→∞

d(ymi+1, yni+1) ≤ [Φ(ǫ20)]
1/2 + 0 = [Φ(ǫ20)]

1/2. (2.11)

Letting i → ∞ in (2.4), using (2.1) and (2.11) we obtain

ǫ0 ≤ ei ≤ 0 + [Φ(ǫ20)]
1/2 + 0 = [Φ(ǫ20)]

1/2,

this implies that ǫ20 ≤ e2
i ≤ Φ(ǫ20) < ǫ20, which is a contradiction.

Similarly, we can also complete the proof when ni and mi are all odd, or ni

is even and mi is odd. This is the anticipated contradiction. Hence, {yn} is a
Cauchy sequence in X . Since X is complete, suppose that yn → y∗ ∈ X then the
sequences {y2n−1} and {y2n} are said to be convergent to y∗, which implies that

Ax2n = y2n−1 → y∗, Sx2n = y2n → y∗ (n → ∞). (2.12)

(1) Either S or AL is continuous, the pair (S, AL) is compatible ,the pair
(T, BM) is weakly compatible.

As AL is continuous, {(AL)2x2n} and {(AL)Sx2n} are all converge to ALy∗.
Since (S, AL) is compatible, by (2.12) we have d(S(AL)x2n, (AL)Sx2n) → 0 (n →
∞). Thus

S(AL)x2n → ALy∗ (n → ∞).

Now we will prove that y∗ is a common fixed point of S, T, A, B, L and M . We
finish the proof by the following six steps.

Step 1. We shall prove ALy∗ = y∗. In fact, using condition (iii) we have

d2(S(AL)x2n,Tx2n+1)

≤ Φ(max{d((AL)2x2n, BMx2n+1)d((AL)2x2n, S(AL)x2n),

d((AL)2x2n, Tx2n+1)d(BMx2n+1, S(AL)x2n),

d((AL)2x2n, BMx2n+1)d(BMx2n+1, Tx2n+1)}).

Letting n → ∞, we have

d2(ALy∗, y∗) ≤ Φ(max{d(ALy∗, y∗)d(ALy∗, ALy∗),

d(ALy∗, y∗)d(y∗, ALy∗), d(ALy∗, y∗)d(y∗, y∗)})

= Φ(d2(ALy∗, y∗)). (2.13)

From the (2.13) and Lemma1.1 (i) we have d2(ALy∗, y∗) = 0, which implies that
ALy∗ = y∗.

Step 2. We shall prove Sy∗ = y∗. Using condition (iii) we have

d2(Sy∗, Tx2n+1) ≤ Φ(max{d(ALy∗, BMx2n+1)d(ALy∗, Sy∗),

d(ALy∗, Tx2n+1)d(BMx2n+1, Sy∗),

d(ALy∗, BMx2n+1)d(BMx2n+1, Tx2n+1)}). (2.14)
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Note that ALy∗ = y∗, letting n → ∞ in (2.14) we have

d2(Sy∗, y∗) ≤ Φ(max{d(ALy∗, y∗)d(ALy∗, Sy∗),

d(ALy∗, y∗)d(y∗, Sy∗), d(ALy∗, y∗)d(y∗, y∗)})

= Φ(0) ≤ Φ(d2(Sy∗, y∗)) (since Φ(t) is nondecreasing). (2.15)

By the (2.15) and Lemma1.1 (i) we have d2(Sy∗, y∗) = 0, this implies that Sy∗ =
y∗.

Step 3. We shall prove Ty∗ = y∗. Since Sy∗ = y∗ and S(X) ⊂ BM(X),
∃u ∈ X , such that y∗ = ALy∗ = Sy∗ = BMu. Using condition (iii) we have

d2(BMu, Tu) = d2(Sy∗, Tu)

≤ Φ(max{d(ALy∗, BMu)d(ALy∗, Sy∗),

d(AL)y∗, Tu)d(BMu, Sy∗), d(ALy∗, BMu)d(BMu, Tu)})

= Φ(0) ≤ Φ(d2(BMu, Tu)) (since Φ(t) is nondecreasing).

Therefore, by Lemma 1.1 (i)we have d2(BMu, Tu) = 0, and so BMu = Tu. Since
(T, BM) is weakly compatible, we have Ty∗ = T (BM)u = (BM)Tu = BMy∗.
Using condition (iii) we have

d2(y∗, T y∗) = d2(Sy∗, T y∗)

≤ Φ(max{d(ALy∗, BMy∗)d(ALy∗, Sy∗),

d(ALy∗, T y∗)d(BMy∗, Sy∗), d(ALy∗, BMy∗)d(BMy∗, T y∗)})

= Φ(d2(y∗, T y∗)).

Therefore, by Lemma 1.1 (i), we have d2(y∗, T y∗) = 0, this implies that Ty∗ = y∗.

Step 4. We prove that BMy∗ = y∗. Using condition (iii) we have

d2(Sx2n, Tu) ≤ Φ(max{d(ALx2n, BMu)d(ALx2n, Sx2n),

d(ALx2n, Tu)d(BMu, Sx2n), d(ALx2n, BMu)d(BMu, Tu)}).

Letting n → ∞, and note that BMu = Tu, we have

d2(y∗, Tu) ≤ Φ(max{d(y∗, Tu)d(y∗, y∗), d(y∗, Tu)d(Tu, y∗), d(y∗, Tu)d(Tu, Tu)})

= Φ(d2(y∗, Tu)).

Therefore, by Lemma 1.1(i), we have d2(y∗, Tu) = 0, which implies that Tu = y∗.
Hence Tu = y∗ = BMu. Since (T, BM) is weakly compatible, we have

y∗ = Ty∗ = T (BM)u = (BM)Tu = BMy∗.

Thus, BMy∗ = y∗.
Combining step (1)-(4), we get: y∗ = Sy∗ = Ty∗ = ALy∗ = BMy∗.
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Step 5. We shall prove Ly∗ = y∗, Ay∗ = y∗. Using condition (iii) we have

d2(SLy∗, Tx2n+1) ≤ Φ(max{d((AL)Ly∗, BMx2n+1)d((AL)Ly∗, SLy∗),

d(AL)Ly∗, Tx2n+1)d(BMx2n+1, SLy∗),

d((AL)Ly∗, BMx2n+1)d(BMx2n+1, Tx2n+1)}). (2.16)

Since LS = SL, AL = LA, we have LSy∗ = SLy∗ = Ly∗, (AL)Ly∗ = L(AL)y∗ =
Ly∗. Thus, letting n → ∞ in (2.16), and note that ALy∗ = y∗ we obtain

d2(Ly∗, y∗) ≤ Φ(max{d(Ly∗, y∗)d(Ly∗, Ly∗), d(Ly∗, y∗)d(y∗, Ly∗),

d(Ly∗, y∗)d(y∗, y∗)})

= Φ(d2(Ly∗, y∗)).

Therefore, by Lemma 1.1 (i), we have d2(Ly∗, y∗) = 0, this implies that Ly∗ = y∗.
Hence from ALy∗ = y∗ we get Ay∗ = y∗.

Step 6. We shall prove My∗ = y∗, By∗ = y∗. Using condition (iii), we have

d2(Sx2n, TMy∗) ≤ Φ(max{d(ALx2n, (BM)My∗)d(ALx2n, Sx2n),

d(ALx2n, TMy∗)d((BM)My∗, Sx2n),

d(ALx2n, (BM)My∗)d((BM)My∗, TMy∗)}). (2.17)

Since BM = MB, TM = MT , BMy∗ = y∗, we have TMy∗ = MTy∗ = My∗

and (BM)My∗ = M(BM)y∗ = My∗. Letting n → ∞ in (2.17), and note that
Ty∗ = y∗ and BMy∗ = Ty∗ we have

d2(y∗, My∗) ≤ Φ(max{d(y∗, My∗)d(y∗, y∗), d(y∗, My∗)d(My∗, y∗),

d(y∗, My∗)d(My∗, My∗)})

= Φ(d2(y∗, My∗)).

Therefore, by Lemma 1.1 (i), we have d2(y∗, My∗) = 0, which implies that My∗ =
y∗. From BMy∗ = y∗ we get By∗ = y∗.

By the above, we have y∗ = Sy∗ = Ty∗ = Ay∗ = By∗ = Ly∗ = My∗. Hence,
we prove that y∗ is a common fixed point of S, T, A, B, Land M in this case. As
S is continuous, {S2x2n} and {S(AL)x2n} all converge to Sy∗. As (S, AL) is
compatible and by (2.12), we have d(S(AL)x2n, (AL)Sx2n) → 0(n → ∞). Thus

(AL)Sx2n → Sy∗(n → ∞).

Using condition (iii), we have

d2(S2x2n, Tx2n+1) ≤ Φ(max{d((AL)Sx2n, BMx2n+1)d((AL)Sx2n, S2x2n),

d((AL)Sx2n, Tx2n+1)d(BMx2n+1, S
2x2n),

d((AL)Sx2n, BMx2n+1)d(BMx2n+1, Tx2n+1)}).
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Letting n → ∞, we have

d2(Sy∗, y∗) ≤ Φ(max{d(Sy∗, y∗)d(Sy∗, Sy∗), d(Sy∗, y∗)d(y∗, Sy∗),

d(Sy∗, y∗)d(y∗, y∗)})

= Φ(d2(Sy∗, y∗)).

Therefore, by Lemma 1.1 (i), we have d2(Sy∗, y∗) = 0, which implies that Sy∗ =
y∗. Since y∗ = Sy∗ ∈ S(X) ⊂ BM(X), then exists v ∈ X such that y∗ = Sy∗ =
BMv. Using condition (iii) we have

d2(S2x2n, T v)

≤ Φ(max{d((AL)Sx2n, BMv)d((AL)Sx2n, S2x2n),

d((AL)Sx2n, T v)d(BMv, S2x2n), d((AL)Sx2n, BMv)d(BMv, Tv)}).

Letting n → ∞, and note that Sy∗ = BMv we have

d2(Sy∗, T v) ≤ Φ(max{d(Sy∗, BMv)d(Sy∗, Sy∗), d(Sy∗, T v)d(BMv, Sy∗),

d(Sy∗, BMv)d(BMv, Tv)})

= Φ(0) ≤ Φ(d2(Sy∗, T v)).

Therefore, by Lemma 1.1 (i) we have d2(Sy∗, T v) = 0, which implies that Sy∗ =
Tv. Thus, y∗ = Sy∗ = BMv = Tv. Since (T, BM) is weakly compatible, we have
Ty∗ = T (BM)v = (BM)Tv = BMy∗. Again using condition (iii), we have

d2(Sx2n, T y∗)

≤ Φ(max{d(ALx2n, BMy∗)d(ALx2n, Sx2n),

d(ALx2n, T y∗)d(BMy∗, Sx2n), d(ALx2n, BMy∗)d(BMy∗, T y∗)}).

Letting n → ∞, and note that BMy∗ = Ty∗ we obtain

d2(y∗, T y∗) ≤ Φ(max{d(y∗, T y∗)d(y∗, y∗), d(y∗, T y∗)d(Ty∗, y∗),

d(y∗, T y∗)d(Ty∗, T y∗)})

= Φ(d2(y∗, T y∗)).

Therefore, by Lemma 1.1 (i), we have d2(y∗, T y∗) = 0, this implies that y∗ = Ty∗.
Since y∗ = Ty∗ ∈ T (X) ⊂ AL(X), then exists w ∈ X such that y∗ = Ty∗ = ALw.
Using condition (iii), and note that BMy∗ = Ty∗ = ALw we have

d2(Sw, y∗) = d2(Sw, Ty∗)

≤ Φ(max{d(ALw, BMy∗)d(ALw, Sw), d(ALw, Ty∗)d(BMy∗, Sw),

d(ALw, BMy∗)d(BMy∗, T y∗)})

= Φ(0) ≤ Φ(d2(Sw, y∗)).
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Therefore, by Lemma 1.1 (i), we have d2(Sw, y∗) = 0, which implies that y∗ = Sw,
thus y∗ = ALw = Sw. Since (S, AL) is compatible, we have Sy∗ = S(AL)w =
(AL)Sw = ALy∗.

By the above, we have y∗ = Sy∗ = Ty∗ = ALy∗ = BMy∗.
The fact that y∗ = Ay∗ = By∗ = Ly∗ = My∗ can be proved similar above the

step 5 and the step 6. Thus y∗ = Sy∗ = Ty∗ = Ay∗ = By∗ = Ly∗ = My∗. Hence,
we prove that y∗ is a common fixed point of S, T, A, B, Land M in this case.

Next we prove y∗ is the unique common fixed point of S, T, A, B, L and M .
Let us suppose that z be another common fixed point of S, T, A, B, L and M , then
from condition (iii) we get

d2(y∗, z) = d2(Sy∗, T z)

≤ Φ(max{d(ALy∗, BMz)d(ALy∗, Sy∗), d(ALy∗, T z)d(BMz, Sy∗),

d(ALy∗, BMz)d(BMz, T z)})

= Φ(d2(y∗, z)).

By virtue of this and using Lemma 1.1 (i), we obtain that d2(y∗, z) = 0, which
implies that y∗ = z. Therefore, y∗ is a unique common fixed point of S, T, A, B, L

and M .

(2) Either T or BM is continuous, the pair (T, BM) is compatible ,the pair
(S, AL) is weakly compatible. The proof is similar (1).

(3) Either AL or BM is surjection, the pairs (S, AL) and (T, BM) are weakly
compatible.

Suppose that AL is surjection, then y∗ ∈ X , ∃u ∈ X , such that ALu = y∗.
By condition(ii), we get

d2(Su, Tx2n+1)

≤ Φ(max{d(ALu, BMx2n+1)d(ALu, Su),

d(ALu, Tx2n+1)d(BMx2n+1, Su), d(ALu, BMx2n+1)d(BMx2n+1, Tx2n+1)}).

Letting n → ∞, we get

d2(Su, y∗) ≤ Φ(0) ≤ Φ(d2(Su, y∗)).

Therefore, by Lemma 1.1 (i) we have d2(Su, y∗) = 0, which implies that Su = y∗.
Thus Su = ALu = y∗. Since (S, AL) is weakly compatible, we have ALy∗ =
(AL)Su = S(AL)u = Sy∗. Putting u = y∗ in (2.18), we get Sy∗ = y∗. Hence,
ALy∗ = Sy∗ = y∗. Now, using step 3- step 6 and continuing step 6 we can prove
that y∗ is a common fixed point of S, T, A, B, L and M . Thus it follows easily from
condition (iii) that y∗ is a unique common fixed point of S, T, A, B, L and M .

Suppose that BM is surjection, similarly, we can prove y∗ is the unique com-
mon fixed point of S, T, A, B, L and M . This completes the proof of Theorem
2.1.
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Remark 2.2. In Theorem 2.1, we taken: 1) S = T ; 2) A = B; 3) L = M ; 4)
S = T and A = B; 5) S = T , A = B and L = M ; 6)S = T and A = B = I; 7)
S = T , A = B and L = M = I, several new result can be obtain.

If we take L = M = I (I is the identity map) in Theorem 2.1, then we can
obtain following results.

Theorem 2.3. Let (X, d) be a complete metric space and let S, T, A and B be
four mappings of X into itself, satisfying the following conditions:

(i) S(X) ⊂ B(X), T (X) ⊂ A(X);

(ii) ∀x, y ∈ X,

d2(Sx, T y) ≤ Φ(max{d(Ax, By)d(Ax, Sx), d(Ax, Ty)d(By, Sx),

d(Ax, By)d(By, Ty)})

where Φ satisfies the condition (Φ).

If one of the following conditions is satisfied, then S, T, A and B have a unique
common fixed point in X.

(1) Either S or A is continuous, the pair (S, A) is compatible, the pair (T, B)
is weakly compatible;

(2) Either T or B is continuous, the pair (T, B) is compatible, the pair (S, A)
is weakly compatible;

(3) Either AL or B is surjection, the pairs (S, A)and (T, B) are weakly compat-
ible.

Now, we give an example to support the Theorem 2.3.

Example 2.4. Let X = [0, 1] be a metric space with the usual metric d(x, y) =
|x − y|, ∀ x, y ∈ X. Define Φ(t) = t

2
, ∀ t ∈ [0,∞), the maps A, B, S and T as

follows:

Ax = x ∀ x ∈ X, Tx =

{

4

5
, x ∈ [0, 1

2
],

5

6
, x ∈ (1

2
, 1].

,

Sx =

{

1, x ∈ [0, 1

2
],

5

6
, x ∈ (1

2
, 1].

and Bx =







1, x ∈ [0, 1

2
],

5

6
, x ∈ (1

2
, 1),

0, x = 1.

We know A is continuous, but S, T and B are are discontinuous. Since AX = X,
TX = { 4

5
, 5

6
}, SX = { 5

6
, 1} and BX = {0, 5

6
, 1}, we have SX ⊂ BX and TX ⊂

AX. Therefore, the condition (i) of Theorem 2.3 is satisfied.
On the other hand, by definition we know,

d(Sx, T y) =















1

5
, x, y ∈ [0, 1

2
],

1

6
, x ∈ [0, 1

2
], y ∈ (1

2
, 1],

1

30
, x ∈ (1

2
, 1], y ∈ [0, 1

2
],

0, x, y ∈ (1

2
, 1].

; d(Ax, By) =







|x − 1|, y ∈ [0, 1

2
],

|x − 5

6
|, y ∈ (1

2
, 1),

x, y = 1.
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d(Ax, Sx) =

{

|x − 1|, x ∈ [0, 1

2
],

|x − 5

6
|, x ∈ (1

2
, 1].

; d(By, Sx) =































0, x, y ∈ [0, 1

2
],

1

6
, x ∈ [0, 1

2
], y ∈ (1

2
, 1),

1, x ∈ [0, 1

2
], y = 1,

1

6
, x ∈ (1

2
, 1], y ∈ [0, 1

2
],

0, x ∈ (1

2
, 1], y ∈ (1

2
, 1),

5

6
, x ∈ (1

2
, 1], y = 1.

d(By, Ty) =







1

5
, y ∈ [0, 1

2
],

0, y ∈ (1

2
, 1),

5

6
, y = 1.

; d(Ax, Ty) =

{

|x − 4

5
|, y ∈ [0, 1

2
],

|x − 5

6
|, y ∈ (1

2
, 1].

Thus we can obtain that

d(SAx, ASx) = d(1, 1) = 0 ≤ d(Sx, Ax), ∀ x ∈

[

0,
1

2

]

;

d(TBx, BTx) = d

(

5

6
,
5

6

)

= 0 ≤ d(Tx, Bx), ∀ x ∈

[

0,
1

2

]

;

d(SAx, ASx) = d

(

5

6
,
5

6

)

= 0 ≤ d(Sx, Ax), ∀ x ∈

(

1

2
, 1

]

;

d(TBx, BTx) = d

(

5

6
,
5

6

)

= 0 = d(Tx, Bx), ∀ x ∈

(

1

2
, 1

)

;

d(TBx, BTx) = d

(

4

5
,
5

6

)

=
1

30
<

5

6
= d(Tx, Bx), x = 1.

This implies that

d(SAx, ASx) ≤ d(Sx, Ax) and d(TBx, BTx) ≤ d(Tx, Bx) ∀ x ∈ [0, 1].

Therefore, the pairs (S, A) and (T, B) are satisfying the condition (1) of the The-
orem 2.3.

Now we prove the contraction condition (ii) of Theorem 2.3 is satisfied. In fact,
for any x, y ∈ (1

2
, 1], we have d(Sx, T y) = 0. Hence the condition (ii) is satisfied.

Next we will prove the contractive condition (ii) is hold by the four steps.

Step 1. For all x, y ∈ [0, 1

2
], we have |x − 1| ∈ [1

2
, 1], this shows that

max{d(Ax, By)d(Ax, Sx), d(Ax, Ty)d(By, Sx), d(Ax, By)d(By, Ty)}

= max

{

(x − 1)2,

∣

∣

∣

∣

x −
4

5

∣

∣

∣

∣

· 0, |x − 1| ·
1

5

}

≥ max

{

(

1

2

)2

, 0,
1

2
·
1

5

}

=
1

4
.
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Hence we have

d2(Sx,T y) =

(

1

5

)2

<
1

2
·
1

4
= Φ

(

1

4

)

≤ Φ

(

max

{

(x − 1)2,

∣

∣

∣

∣

x −
4

5

∣

∣

∣

∣

· 0, |x − 1| ·
1

5

})

= max{d(Ax, By)d(Ax, Sx), d(Ax, Ty)d(By, Sx), d(Ax, By)d(By, Ty)}.

Which implies that the contraction condition (ii) of Theorem 2.3 is satisfied for
all x, y ∈ [0, 1

2
].

Step 2. For all x ∈ [0, 1

2
] and y ∈ (1

2
, 1], we have |x − 5

6
| ∈ [1

3
, 5

6
] and

|x − 1| ∈ [1
2
, 1], thus we have

max{d(Ax, By)d(Ax, Sx), d(Ax, Ty)d(By, Sx), d(Ax, By)d(By, Ty)}

= max

{
∣

∣

∣

∣

x −
5

6

∣

∣

∣

∣

· |x − 1|,

∣

∣

∣

∣

x −
5

6

∣

∣

∣

∣

·
1

6
,

∣

∣

∣

∣

x −
5

6

∣

∣

∣

∣

· 0

}

≥ max

{

1

3
·
1

2
,

1

3
·
1

6
, 0

}

=
1

6
.

Hence we have

d2(Sx,T y) =

(

1

6

)2

<
1

2
·
1

6
= Φ

(

1

6

)

≤ Φ

(

max

{∣

∣

∣

∣

x −
5

6

∣

∣

∣

∣

· |x − 1|,

∣

∣

∣

∣

x −
5

6

∣

∣

∣

∣

·
1

6
,

∣

∣

∣

∣

x −
5

6

∣

∣

∣

∣

· 0

})

= max{d(Ax, By)d(Ax, Sx), d(Ax, Ty)d(By, Sx), d(Ax, By)d(By, Ty)}.

Which implies that the contraction condition (ii) of Theorem 2.3 is satisfied for
all x ∈ [0, 1

2
] and y ∈ (1

2
, 1].

Step 3. For all x ∈ [0, 1

2
] and y = 1, we have |x − 1| ∈ [1

2
, 1] and |x − 4

5
| ∈

[ 3

10
, 4

5
], thus we have that

max{d(Ax, By)d(Ax, Sx), d(Ax, Ty)d(By, Sx), d(Ax, By)d(By, Ty)}

= max

{

x · |x − 1|,

∣

∣

∣

∣

x −
4

5

∣

∣

∣

∣

· 1, x ·
5

6

}

≥ max

{

0 ·
1

2
,

3

10
· 1, 0 ·

5

6

}

=
3

10
.

Hence we have

d2(Sx,T y) =

(

1

6

)2

<
1

2
·

3

10
= Φ

(

3

10

)

≤ Φ

(

max

{

x · |x − 1|,

∣

∣

∣

∣

x −
4

5

∣

∣

∣

∣

· 1, x ·
5

6

})

= max{d(Ax, By)d(Ax, Sx), d(Ax, Ty)d(By, Sx), d(Ax, By)d(By, Ty)}.
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Which implies that the contraction condition (ii) of Theorem 2.3 is satisfied for
all x ∈ [0, 1

2
] and y = 1.

Step 4. For all x ∈ (1

2
, 1] and y ∈ [0, 1

2
], we have |x−1| ∈ [1

2
, 1], |x− 5

6
| ∈ [1

3
, 5

6
]

and |x − 4

5
| ∈ [ 3

10
, 4

5
], thus we have

max{d(Ax, By)d(Ax, Sx), d(Ax, Ty)d(By, Sx), d(Ax, By)d(By, Ty)}

= max

{

|x − 1| ·

∣

∣

∣

∣

x −
5

6

∣

∣

∣

∣

,

∣

∣

∣

∣

x −
4

5

∣

∣

∣

∣

·
1

6
, |x − 1| ·

1

5

}

≥ max

{

1

2
·
1

3
,

3

10
·
1

6
,

1

2
·
1

5

}

=
1

6
.

Hence we have

d2(Sx,T y) =

(

1

30

)2

<
1

2
·
1

6
= Φ

(

1

6

)

≤ Φ

(

max

{

|x − 1| ·

∣

∣

∣

∣

x −
5

6

∣

∣

∣

∣

,

∣

∣

∣

∣

x −
4

5

∣

∣

∣

∣

·
1

6
, |x − 1| ·

1

5

})

= max{d(Ax, By)d(Ax, Sx), d(Ax, Ty)d(By, Sx), d(Ax, By)d(By, Ty)}.

Which implies that the contraction condition (ii) of Theorem 2.3 is satisfied for
all x ∈ (1

2
, 1] and y ∈ [0, 1

2
].

By the above, the contractive conditions (ii) of Theorem 2.3 are all satisfied
for all x, y ∈ [0, 1]. It is easy to show that the x = 5

6
be a unique common fixed

point of maps S, T , A and B.

Theorem 2.5. Let (X, d) be a complete metric space, {Ti}i∈Λ is a family of self
mappings on X, where Λ is the index set of the family, the power set of Λ is
greater than or equal to 2, and let A, B, L and M be four mappings of X into
itself, satisfying the following conditions:

(i) Ti(X) ⊂ BM(X), Ti(X) ⊂ AL(X) (∀i ∈ Λ);

(ii) AL = LA, TiL = LTi, BM = MB, TiM = MTi (∀i ∈ Λ);

(iii) ∀x, y ∈ X, i, j ∈ Λ(i 6= j),

d2(Tix, Tjy) ≤ Φ(max{d(ALx, BMy)d(ALx, Tix), d(ALx, Tjy)d(BMy, Tix),

d(ALx, BMy)d(BMy, Tjy)}),

where Φ satisfies the condition (Φ).

If one of the following conditions is satisfied then A, B, L, M ,and {Ti}i∈Λ have
a unique common fixed point in X.

(1) Either Ti(∀i ∈ Λ) or A is continuous, the pair (Ti, AL) is compatible, the
pair (Ti, BM) is weakly compatible;
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(2) Either Ti(∀i ∈ Λ) or B is continuous, the pair (Ti, AL) is weakly compatible,
the pair (Ti, BM) is compatible;

(3) Either AL or BM is surjection, the pairs (Ti, AL) and (Ti, BM)(∀i ∈ Λ)
are all weakly compatible.

Proof. Let i, j, m ∈ Λ, i 6= j, i 6= m, by Theorem 2.1 we see there exists a unique
common fixed point xij of A, B, L, M , Ti, Tj , and there exists a unique common
fixed point xim of A, B, L, M , Ti, Tm. Next we proved xij = xim, in fact, from
condition (iii) and the property of Φ, we have

d2(xij , xim) = d2(Tixij , Tmxim)

≤ Φ(max{d(ALxij , BMxim)d(ALxij , Tixij), d(ALxij , Tmxim)d(BMxim, Tixij)

d(ALxij , BMxim)d(BMxim, Tmxim)})

= Φ(d2(xij , xim)).

By virtue of this and using Lemma 1.1 (i), we obtain that d2(xij , xim) = 0, which
gives xij = xim. Since i, j, m be arbitrary in Λ, hence there exists a unique
common fixed point of A, B, L, M and Ti(∀i ∈ Λ) in X .

Theorem 2.6. Let (X, d) be a complete metric space, A, B, L, M and {Ti}i∈Λ

are self-mappings and a family of self-mappings on X, respectively, where Λ is
the index set, the power set of Λ is greater than or equal to 2, satisfying ∀i ∈
Λ, Ti(X) ⊂ BM(X), Ti(X) ⊂ AL(X), the pairs (Ti, AL) and (Ti, BM) are
commuting. If there exists the positive integer n such that A, B, L, M and {Ti}i∈I

satisfying the following conditions:

(i) One of AL, BM, {Ti}i∈Λ is continuous;

(ii) AL = LA, TiL = LTi, BM = MB, TiM = MTi (∀i ∈ Λ);

(iii) ∀x, y ∈ X, i, j ∈ Λ, (i 6= j),

d2(Ti
nx, Tj

ny) ≤ Φ(max{d(ALx, BMy)d(ALx, Ti
nx),

d(ALx, Tj
ny)d(BMy, Ti

nx), d(ALx, BMy)d(BMy, Tj
ny)})

where φ satisfies the condition (Φ).

Then A, B, L, M and {Ti}i∈Λ have a unique common fixed point in X.

Proof. Since for all i, j ∈ Λ, the pairs (Ti, AL) and (Ti, BM) are commuting, then
the pairs (Ti

nx, AL), (Tj
ny, BM) are commuting. Therefore, they are compatible.

By Theorem 2.1 we know that Ti
n, Tj

n, A, B, L and M have a unique common
fixed point z ∈ X . This is, Ti

nz = Tj
nz = Az = Bz = Lz = Mz = z. We now

prove that z is the common fixed point of Ti (i ∈ Λ). In fact, since Ti
nz = z, the

pairs (Ti, AL) and (Ti, BM) are commuting. Then (AL)Tiz = Ti(AL)z = Tiz,
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(BM)Tiz = Ti(BM)z = Tiz, Ti
nTiz = TiTi

nz = Tiz. Thus, Tiz is the unique
common fixed point of AL, BM and Ti

n. Using condition(iii), we obtain

d2(Tiz,z) = d2(Ti
nTiz, Tj

nz)

≤ Φ(max{d(AL)Tiz, BMz)d((AL)Tiz, Ti
nTiz),

d((AL)Tiz, Tj
nz)d(BMz, Ti

nTiz), d((AL)Tiz, BMz)d(BMz, Tj
nz)})

= Φ(d2(Tiz, z)).

By virtue of this and using Lemma 1.1 (i), we obtain that d2(Tiz, z) = 0, which
gives Tiz = z. Thus, z is a common fixed point of A, B, L, M and {Ti}i∈Λ. It
follows easily from the condition (iii) that z is a unique common fixed point of
A, B, L, M and {Ti}i∈Λ. This completes the proof of Theorem 2.6.
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