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1 Introduction

Let
∑

p denote the class of functions f(z) of the form

f(z) = z−p +

∞
∑

k=1

akzk−p (p ∈ N := {1, 2, 3, ...}) (1.1)
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which are analytic and p-valent in the punctured unit disk

U∗ := {z : z ∈ C and 0 <| z |< 1} =: U \ {0}.

For function f ∈ Σp, given by (1.1) and g ∈ Σp given by

g(z) = z−p +
∞
∑

k=1

bkzk−p (p ∈ N) , (1.2)

the Hadamard product (or convolution) of f and g is given by

(f ∗ g)(z) = z−p +

∞
∑

k=1

akbkzk−p = (g ∗ f)(z). (1.3)

For complex parameters

a1, a2, ..., aq and b1, b2, ..., bs (bj 6= Z
0
−

= {0,−1,−2,−3, ...}, j = 1, 2, 3, ...)

we now define the generalized hypergeometric function qFs(a1, ..., aq; b1, ..., bs; z)
as follows:

qFs(a1, ..., aq; b1, ..., bs; z) :=

∞
∑

k=0

(a1)k · · · (aq)k

(b1)k · · · (bs)k

zk

k!
,

(q ≤ s + 1; q, s ∈ N0 = N ∪ {0}; z ∈ U) , (1.4)

where (λ)r is the Pochhammer symbol defined, in terms of the Gamma function,
by

(λ)r :=
Γ(λ + r)

Γ(λ)
=

{

1, (r = 0, λ ∈ C \ {0})
λ(λ + 1) · · · (λ + r − 1), (r ∈ N, λ ∈ C) .

(1.5)

Corresponding to a function

hp(a1, ..., aq; b1, ..., bs; z) = z−p
q Fs(a1, ..., aq; b1, ..., bs; z), (1.6)

Liu and Srivatava [1] (see also [2]) consider a linear operator

Hp(a1, ..., aq; b1, ..., bs; z) : Σp 7→ Σp,

which is defined by the following Hadamard product (or convolution):

Hp(a1, ..., aq; b1, ..., bs; z)f(z) := hp(a1, ..., aq; b1, ..., bs; z) ∗ f(z), (1.7)

so that, for a function f defined in (1.1), we have

Hp(a1, ..., aq; b1, ..., bs; z)f(z) := z−p +

∞
∑

k=1

Γk[a1; b1]akzk−p, (1.8)
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where

Γk[a1; b1] =
(a1)k · · · (aq)k

(b1)k · · · (bs)kk!
. (1.9)

For our convenience, we write

Hp,q,s[a1; b1] := Hp(a1, ..., aq; b1, ..., bs; z) . (1.10)

Special cases of the Liu-Srivastava linear operator include the meromorphic ana-
logue of the Carlson-Shaffer linear operator Lp(a, c) := Hp,2,1(1, a; c) (a, c > 0)
(studied among others by Liu and Srivastava ([1, 3, 4]), Liu [5], and Yang [6]), the
operator Dn+p := Lp(n + p, 1) (n > −p), which is analogous to the Ruscheweyh
derivative operator (investigated by Yang [7]) and the operator

Jc,p :=
c

zc+p

z
∫

0

tc+p−1f(t)dt := Lp(c, c + 1) (c > 0)

(studied by Uralegaddi and Somanatha [8]). It is to be noted that the Liu-
Srivastava operator investigated in ([9, 10]) is the meromorphic analogue of the
Dziok- Srivastava [11] linear operator.

Let f(z) and g(z) be analytic in U . Then we say that the function g(z) is
subordinate to f(z) if there exists an analytic function w(z) in U such that

w(0) = 0, | w(z) |< 1 (z ∈ U) and g(z) = f(w(z)).

For this subordination, the symbol g(z) ≺ f(z) is used. In case f(z) is univalent
in U, the subordination g(z) ≺ f(z) is equivalent to

g(0) = f(0) and g(U) ⊂ f(U).

Now we define two subclasses S∗

p [A, B] and Kp[A, B] of the class Σp, for −1 ≤
B < A ≤ 1 and p ∈ N as follows:

S∗

p [A, B] =

{

f ∈ Σp :
zf ′(z)

f(z)
≺ −p

1 + Az

1 + Bz
(z ∈ U∗)

}

(1.11)

and

Kp[A, B] =

{

f ∈ Σp : 1 +
zf ′′(z)

f ′(z)
≺ −p

1 + Az

1 + Bz
(z ∈ U∗)

}

. (1.12)

Clearly

f(z) ∈ S∗

p [A, B] ⇔
−zf

′

(z)

p
∈ Kp[A, B].

We note that the class S∗

p [A, B] was studied by Mogra [12] and the class Kp[A, B]
was studied by Srivastava et al. [8]. Also

S∗

1 [1 − 2α,−1] = S∗(α), K1[1 − 2α,−1] = K(α) (0 ≤ α < 1),
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and

S∗

p

[

1 −
2α

p
,−1

]

= S∗

p(α) , Kp

[

1 −
2α

p
,−1

]

= Kp(α) (0 ≤ α < p).

Next, using the Liu-Srivastava operator Hp,q,s[a1; b1], we intruduce the following
classes of analytic functions for q, s ∈ N and −1 ≤ B < A ≤ 1

S∗

p,q,s[a1; A, B] = S∗

p [a1, ..., aq; b1, ..., bs; A, B]

=
[

f ∈ Σp : Hp,q,s[a1; b1]f(z) ∈ S∗

p [A, B]
]

ω (1.13)

and

Kp,q,s[a1; A, B] = Kp[a1, ..., aq; b1, ..., bs; A, B]

= [f ∈ Σp : Hp,q,s[a1; b1]f(z) ∈ Kp[A, B]] . (1.14)

We also note that

f(z) ∈ Kp,q,s[a1; A, B] ⇔
−zf

′

(z)

p
∈ S∗

p,q,s[a1; A, B]

Many important properties of certain subclasses of meromorphic p-valent functions
were studied by several authors including Aouf and Srivastava [13], Cho and Kim
[14] Joshi and Srivastava [15], Liu and Owa [16], Liu and Srivastava [1], Owa et
al. [17] and Srivastava et al. [8].

2 Main Results

We assume throughout this section that 0 < θ < 2π, −1 ≤ B < A ≤ 1, p ∈ N

and Γk[a1; b1] is defined by (1.9).

Theorem 2.1. The function f(z) defined by (1.1) is in the class S∗

p [A, B] if and
only if

zp

[

f(z) ∗
1 + (D − 1)z

zp(1 − z)2

]

6= 0 (z ∈ U∗), (2.1)

where D =
e−iθ + B

p(A − B)
.

Proof. First, suppose f(z) is in the class S∗

p [A, B]. Then from (1.11), we have

−
zf ′(z)

f(z)
≺ p

1 + Az

1 + Bz
(z ∈ U∗), (2.2)

so that by subordination of two functions we say that there exists a function w(z)
analytic in U∗ with w(0) = 0, | w(z) |< 1 such that

−
zf ′(z)

f(z)
= p

1 + Aw(z)

1 + Bw(z)
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which is equivalent to

−
zf ′(z)

f(z)
6= p

1 + Aeiθ

1 + Beiθ
, (z ∈ U∗, 0 < θ < 2π). (2.3)

It can be noted that

f(z) ∗
1

zp(1 − z)
= f(z) (2.4)

and

f(z) ∗





1 −
(

1 + 1
p

)

z

zp(1 − z)
2



 = −
zf ′(z)

p
. (2.5)

Now using above (2.4) and (2.5) in (2.3), we can easily obtain (2.1).

Theorem 2.2. The function f(z) defined by (1.1) is in the class Kp[A, B] if and
only if

zp

{

f(z) ∗

[

p − {2 + p − (p − 1)(D − 1)}z − (p + 1)(D − 1)z2

pzp(1 − z)3

]}

6= 0 (z ∈ U∗)

(2.6)

Proof. Choose g(z) =
1 + (D − 1)z

zp(1 − z)2
and we note that

zg′(z) =

[

−p + {2 + p − (p − 1)(D − 1)}z + (p + 1)(D − 1)z2

zp(1 − z)3

]

. (2.7)

From the identity −zf ′(z)
p

∗ g(z) = f(z) ∗ −zg′(z)
p

and the fact that

f(z) ∈ Kp[A, B] ⇔
−zf

′

(z)

p
∈ S∗

P [A, B] (2.8)

the result follows from Theorem 2.1.

Theorem 2.3. A necessary and sufficient condition for the function f(z) defined
by (1.1) to lie in the class S∗

p,q,s[a1; A, B] is that

1 +

∞
∑

k=1

[

ke−iθ + pA + (k − p)B

p(A − B)

]

Γk[a1; b1]akzk 6= 0 (z ∈ U∗).

Proof. From Theorem 2.1, we find that f(z) ∈ S∗

p,q,s[A, B] if and only if

zp

[

Hp,q,s[a1; b1]f(z) ∗
1 + (D − 1)z

zp(1 − z)
2

]

6= 0 (z ∈ U∗). (2.9)

Using series expansion of 1+(D−1)z

zp(1−z)2
and equation (1.3), it gives our desire result.
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Theorem 2.4. A necessary and sufficient condition for the function f(z) defined
by (1.1) to lie in the class Kp,q,s[a1; A, B] is that

1 −

∞
∑

k=1

(k − p)[ke−iθ + pA + (k − p)B]

p2(A − B)
Γk[a1; b1]akzk 6= 0 (z ∈ U∗). ⊥ (2.10)

Proof. From Theorem 2.2, we find that f(z) ∈ Kp,q,s[A, B] if and only if

zp

{

Hp,q,s[a1; b1]f(z) ∗

[

p − {2 + p − (p − 1)(D − 1)}z − (p + 1)(D − 1)z2

pzp(1 − z)3

]}

6= 0

(2.11)
where z ∈ U∗. Now it can be easily shown that

1

zp(1 − z)3
=

1

zp
+

∞
∑

k=1

(k + 1)(k + 2)

2
zk−p, (2.12)

z

zp(1 − z)3
=

∞
∑

k=1

k(k + 1)

2
zk−p, (2.13)

and
z2

zp(1 − z)3
=

∞
∑

k=1

k(k − 1)

2
zk−p. (2.14)

Using (2.12)-(2.14) in (2.11), it gives our desired result and the proof of Theorem
2.4 is completed.

Unless otherwise mentioned, we assume throughout the reminder of this section
that α1, ..., αq and β1, ..., βs are positive real parameters.

Theorem 2.5. If the function f(z) defined by (1.1) belongs to S∗

p,q,s[a1; A, B],
then

∞
∑

k=1

[k + pA + (k − p)B]Γk[a1; b1] | ak |≤ p(A − B). (2.15)

Proof. Since

|1 +
∞
∑

k=1

[
ke−iθ + pA + (k − p)B

p(A − B)
]Γk[a1; b1]akzk|

> 1 −

∞
∑

k=1

|
ke−iθ + pA + (k − p)B

p(A − B)
|Γk[a1; b1]|ak|

and

|
ke−iθ + pA + (k − p)B

p(A − B)
| =

|ke−iθ + pA + (k − p)B|

p(A − B)
≤

k + pA + (k − p)B

p(A − B)

the results follows from Theorem 2.3.
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In the same way, we can also prove the following theorem.

Theorem 2.6. If the function f(z) defined by (1.1) belongs to Kp,q,s[a1; A, B],
then

∞
∑

k=1

(k − p)[k + pA + (k − p)B]Γk[a1; b1] | ak |≤ p2(A − B). (2.16)

Now using the method due to Ahuja [18] (see also [19]), we will prove following
theorem

Theorem 2.7. For a1 > 0, we have S∗

p,q,s[a1 + 1; A, B] ⊂ S∗

p,q,s[a1; A, B].

Proof. If f(z) ∈ S∗

p,q,s[a1 + 1; A, B], then from Theorem 2.3 we can write

1 +

∞
∑

k=1

[

ke−iθ + pA + (k − p)B

p(A − B)
]Γk[a1 + 1; b1]

]

akzk 6= 0 (z ∈ U∗; 0 < θ < 2π).

(2.17)
Note that (2.17) can be written as

[

1 +

∞
∑

k=1

a1 + k

a1
zk

]

∗ [1 +

∞
∑

k=1

[

ke−iθ + pA + (k − p)B

p(A − B)

]

Γk[a1; b1]akzk] 6= 0.

(2.18)
But

[

1 +
∞
∑

k=1

a1 + k

a1
zk

]

∗ [1 +
∞
∑

k=1

a1

a1 + k
zk] = 1 +

∞
∑

k=1

zk (z ∈ U∗) (2.19)

and using the property, if f 6= 0 and g ∗h 6= 0, then f ∗ (g ∗h) 6= 0. It follows from
(2.18) and (2.19) that

[

1 +
∞
∑

k=1

[
ke−iθ + pA + (k − p)B

p(A − B)
]

]

Γk[a1; b1]akzk] 6= 0 (z ∈ U∗; 0 < θ < 2π).

(2.20)
In view of Theorem 2.3, we conclude that f ∈ S∗

p,q,s[a1; A, B] which proves Theo-
rem 2.7.

In the same way, we can also prove the following theorem.

Theorem 2.8. For a1 > 0, we have Kp,q,s[a1 + 1; A, B] ⊂ Kp,q,s[a1; A, B].
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