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Abstract : Graph algebras establish a connection between directed graphs with-
out multiple edges and special universal algebras of type (2,0). We say that a
graph G satisfies a term equation s ≈ t if the corresponding graph algebra A(G)
satisfies s ≈ t. A class of graph algebras V is called a graph variety if V = ModΣ
where Σ is a subset of T (X)×T (X). A term equation s ≈ t is called an identity in
a graph variety V if G satisfies s ≈ t for all G ∈ V . A graph variety V ′ = ModΣ

′

is called an (x(yz))z with opposite loop and reverse arc graph variety if Σ
′

is a set
of (x(yz))z with opposite loop and reverse arc term equations. In this paper we
characterize identities in each (x(yz))z with opposite loop and reverse arc graph
variety.
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1 Introduction

Graph algebras were invented by Shallon in [1] to obtain examples of nonfi-
nitely based finite algebras. To recall this concept, let G = (V, E) be a (directed)
graph with the vertex set V and the set of edges E ⊆ V × V . Define the graph
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algebra A(G) corresponding to G with the underlying set V ∪ {∞}, where ∞ is
a symbol outside V , and with two basic operations, namely a nullary operation
pointing to ∞ and a binary one denoted by juxtaposition, given for u, v ∈ V ∪{∞}
by

uv =

{

u, if (u, v) ∈ E,
∞, otherwise.

In a study by Pöschel and Wessel [2], graph varieties were investigated for
finite undirected graphs in order to get graph theoretic results (structure theorems)
from universal algebra via graph algebras. In [3], these investigations are extended
to arbitrary (finite) directed graphs where the authors ask for a graph theoretic
characterization of graph varieties, i.e., of classes of graphs which can be defined
by term equations for their corresponding graph algebras. The answer is a theorem
of Birkhoff-type, which uses graph theoretic closure operations. A class of finite
directed graphs is equational (i.e., a graph variety) if and only if it is closed with
respect to finite restricted pointed subproducts and isomorphic copies.

In [4], Anantpinitwatna and Poomsa-ard characterized all identities in (x(yz))z
with loop graph varieties. In [5, 6], Anantpinitwatna and Poomsa-ard character-
ized all identities in biregular leftmost and (x(yz))z with reverse arc graph varieties
respectively. In [7], Khampakdee and Poomsa-ard characterized identities in the
class of x(yx) ≈ x(yy) graph algebras. In [8], Poomsa-ard characterized identities
in the class of associative graph algebras. In [9, 10], Poomsa-ard et al. charac-
terized identities in the class of idempotent graph algebras and in the class of
transitive graph algebras respectively. In [11], Krapeedang and Poomsa-ard char-
acterized all (x(yz))z with opposite loop and reverse arc graph varieties.

In this paper we characterize all identities in each (x(yz))z with opposite loop
and reverse arc graph variety.

2 Terms, Identities and Graph Varieties

In [12], Denecke and Wismath gave a basic definiont about universal algebra
as the following:

Definition 2.1. Let A be a non-empty set. Let I be some non-empty index
set, and let (fA

i )i∈I be a function which assigns to every element of I an ni-ary
operation fA

i defined on A. Then the pair A = (A; (fA
i )i∈I) is called an (indexed)

algebra (indexed by the set I). The set A is called the base or carrier set or
universe of A, and (fA

i )i∈I is called the sequence of fundamental operations of A.
For each i ∈ I the natural number ni ia called the arity of fA

i . The sequence
τ = (ni)i∈I of all the arities is called the type of the algebra A. We use the name
Alg(τ) for the class of all algebras of a given type τ .

We see that graph algebra is type τ = (2, 0). In [13], Pöschel introduced
terms for graph algebras; The underlying formal language has to contain a binary
operation symbol (juxtaposition) and a symbol for the constant ∞ (denoted by
∞ too).
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Definition 2.2. The set T (X) of all terms over the alphabet

X = {x1, x2, x3, ...}

is defined inductively as follows:

(i) every variable xi, i = 1, 2, 3, ..., and ∞ are terms;

(ii) if t1 and t2 are terms, then t1t2 is a term.

T (X) is the set of all terms which can be obtained from (i) and (ii) in finitely many
steps. Thus terms built up from the two-element set X2 = {x1, x2} of variables
are binary terms. We denote the set of all binary terms by T (X2). The leftmost
variable of a term t is denoted by L(t). A term in which the symbol ∞ occurs is
called a trivial term.

Definition 2.3. For each non-trivial term t of type τ = (2, 0), one can define
a directed graph G(t) = (V (t), E(t)), where the vertex set V (t) is the set of all
variables occurring in t and the edge set E(t) is defined inductively by

E(t) = φ if t is a variable and E(t1t2) = E(t1) ∪ E(t2) ∪ {(L(t1), L(t2))}

where t = t1t2 is a compound term.
L(t) is called the root of the graph G(t), and the pair (G(t), L(t)) is the rooted

graph corresponding to t. Formally, we assign the empty graph φ to every trivial
term t.

Definition 2.4. A non-trivial term t of type τ = (2, 0) is called (x(yz))z with op-
posite loop and reverse arc term if and only if G(t) is a graph with V (t) = {x, y, z}
and E(t) = E ∪ (∪X∈E′X), where E = {(x, y), (x, z), (y, z)}, E′ ⊆ {U, V, W}, ,
E′ 6= φ and U = {(x, x), (z, y)}, V = {(y, y), (z, x)}, W = {(z, z), (y, x)}. A
term equation s ≈ t is called an (x(yz))z with opposite loop and reverse arc term
equation if s and t are (x(yz))z with opposite loop and reverse arc terms.

Definition 2.5. We say that a graph G = (V, E) satisfies a term equation s ≈ t
if the corresponding graph algebra A(G) satisfies s ≈ t (i.e., we have s = t for
every assignment V (s) ∪ V (t) → V ∪ {∞}), and in this case, we write G |= s ≈ t.
Given a class G of graphs and a set Σ of term equations (i.e., Σ ⊂ T (X) × T (X))
we introduce the following notation:

G |= Σ if G |= s ≈ t for all s ≈ t ∈ Σ, G |= s ≈ t if G |= s ≈ t for all G ∈ G,
G |= Σ if G |= Σ for all G ∈ G, IdG = {s ≈ t | s, t ∈ T (X), G |= s ≈ t},
ModΣ = {G | G is a graph and G |= Σ}, V(G) = ModIdG.

V(G) is called the graph variety generated by G and G is called an graph variety
if V(G) = G. G is called equational if there exists a set Σ′ of term equations such
that G = ModΣ′. Obviously V(G) = G if and only if G is an equational class.

Definition 2.6. Let G = (V, E) and G
′

= (V
′

, E
′

) be graphs. A homomorphism
h from G into G′ is a mapping h : V → V

′

carrying edges to edges, that is, for
which (u, v) ∈ E implies (h(u), h(v)) ∈ E

′

.



568 Thai J. Math. 10 (2012)/ A. Anantpinitwatna and T. Poomsa-ard

3 Identities in (x(yz))z with Opposite Loop and

Reverse Arc Graph Varieties

Graph identities were characterized in [14] by the following proposition:

Proposition 3.1. A non-trivial equation s ≈ t is an identity in the class of all
graph algebras if and only if either both terms s and t are trivial or none of them
is trivial, G(s) = G(t) and L(s) = L(t).

Further, the following propositions were proven in [14]:

Proposition 3.2. Let G = (V, E) be a graph and let h : X ∪ {∞} −→ V ∪ {∞}
be an evaluation of the variables such that h(∞) = ∞. Consider the canonical
extension of h to the set of all terms. Then there holds: if t is a trivial term
then h(t) = ∞. Otherwise, if h : G(t) −→ G is a homomorphism of graphs, then
h(t) = h(L(t)), and if h is not a homomorphism of graphs, then h(t) = ∞.

Proposition 3.3. Let s and t be non-trivial terms from T (X) with variables
V (s) = V (t) = {x0, x1, ..., xn} and L(s) = L(t). Then a graph G = (V, E) satisfies
s ≈ t if and only if the graph algebra A(G) has the following property:

A mapping h : V (s) −→ V is a homomorphism from G(s) into G if and only
if it is a homomorphism from G(t) into G.

All (x(yz))z with opposite loop and reverse arc graph varieties were character-
ized in [11]. Here we will give some detail about this as the following:

Theorem 3.4. Let G = (V, E) be a graph. Then we have

G ∈ K1 = Mod{((xx)(y(zy)))z ≈ (x((yy)(zx)))z}

if and only if for any a, b, c ∈ V if (a, b), (b, c), (a, c) ∈ E, then (a, a), (c, b) ∈ E if
and only if (b, b), (c, a) ∈ E.

Proof. Let G = (V, E) be a graph. Suppose that G ∈ K1 and for any a, b, c ∈
V , suppose that (a, b), (b, c), (a, c), (a, a), (c, b) ∈ E. Let s and t be non-trivial
terms such that s = ((xx)(y(zy)))z and t = (x((yy)(zx)))z and let h : V (s) →
V be a function such that h(x) = a, h(y) = b and h(z) = c. We see that
h is a homomorphism from G(s) into G. By Proposition 3.3, we have h is a
homomorphism from G(t) into G. Since (y, y), (z, x) ∈ E(t), we have (h(y), h(y)) =
(b, b) ∈ E and (h(z), h(x)) = (c, a) ∈ E. In the same way, we can prove that if
(a, b), (b, c), (a, c), (b, b), (c, a) ∈ E, then (a, a), (c, b) ∈ E.

Conversely, suppose that G = (V, E) be a graph which has property that,
for any a, b, c ∈ V if (a, b), (b, c), (a, c) ∈ E, then (a, a), (c, b) ∈ E if and only if
(b, b), (c, a) ∈ E. Let s and t be non-trivial terms such that s = ((xx)(y(zy)))z
and t = (x((yy)(zx)))z and let h : V (s) → V be a function. Suppose that h is
a homomorphism from G(s) into G. Since (x, y), (y, z), (x, z), (x, x), (z, y) ∈ E(s),
we have (h(x), h(y)), (h(y), h(z)), (h(x), h(z)), (h(x), h(x)), (h(z), h(y)) ∈ E. By
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assumption, we get (h(y), h(y)), (h(z), h(x)) ∈ E. Hence, h is a homomorphism
from G(t) into G. In the same way, we can prove that if h is a homomorphism from
G(t) into G, then it is a homomorphism from G(s) into G. Then, by Proposition
3.3 we get A(G) satisfies s ≈ t.

By the similar way, we can prove the other (x(yz))z with opposite loop and
reverse arc graph varieties and we get the following table:

Table 1. (x(yz))z with opposite loop and reverse arc graph varieties and the
property of graphs.

Graph variety Properties of graphs, for any a,
b, c ∈ V if (a, b), (b, c), (a, c) ∈ E,

K1 = Mod{((xx)(y(zy)))z then (a, a), (c, b) ∈ E if and only
≈ (x((yy)(zx)))z} if (b, b), (c, a) ∈ E.

K2 = Mod{((xx)(y(zy)))z then (a, a), (c, b) ∈ E if and only
≈ (x(yx)(zz)))z} if (c, c), (b, a) ∈ E.

K3 = Mod{(x((yy)(zx)))z then (b, b), (c, a) ∈ E if and only
≈ (x((yx)(zz)))z} if (c, c), (b, a) ∈ E.

K4 = Modg{((xx)(y(zy)))z and (a, a), (c, b) ∈ E, then
≈ ((xx)((yy)((zx)y)))z} (b, b), (c, a) ∈ E.

K5 = Mod{(x((yy)(zx)))z and (b, b), (c, a) ∈ E, then
≈ ((xx)((yy)((zx)y)))z} (a, a), (c, b) ∈ E.

K6 = Mod{(x((yx)(zz)))z and (c, c), (b, a) ∈ E, then
≈ ((xx)((yx)((zy)z)))z} (a, a), (c, b) ∈ E.

K7 = Mod{((xx)((yy)((zx)y)))z and (a, a), (c, b), (b, b), (c, a) ∈ E,
≈ ((xx)(((yx)y)(((zx)y)z)))z} then (c, c), (b, a) ∈ E.

K8 = Mod{((xx)(y(zy)))z then (i) (a, a), (c, b) ∈ E if and
≈ (x((yy)(zx)))z, only if (b, b), (c, a) ∈ E,
((xx)(y(zy)))z (ii) (a, a), (c, b) ∈ E if and
≈ (x(yx)(zz)))z} only if (c, c), (b, a) ∈ E.

Further, let T be the set of all (x(yz))z with opposite loop and reverse arc term
equations. Since for any Σ ⊂ T the (x(yz))z with opposite loop and reverse arc
graph variety ModΣ =

⋂

s≈t∈Σ Mod{s ≈ t}, we have K8 = K1∩K2. Then, we can
check that K = {K0,K1,K2, ...,K8} is the set of all (x(yz))z with opposite loop
and reverse arc graph varieties, where K0 = Mod{(x((yx)z))z ≈ (x((yx)z))z} is
the class of all graph algebras.

Now we characterize all identities in each (x(yz))z with opposite loop and
reverse arc graph variety. Clearly, if s ≈ t is a trivial equation (s, t are trivial
or G(s) = G(t) and, L(s) = L(t)), then s ≈ t is an identity in each (x(yz))z
with opposite loop and reverse arc graph variety. Further, if s is a trivial term
and t is a non-trivial term or both of them are non-trivial with L(s) 6= L(t) or
V (s) 6= V (t), then s ≈ t is not an identity in every (x(yz))z with opposite loop
and reverse arc graph variety, since for a complete graph G we have an evaluation
of the variables h such that h(s) = ∞ and h(t) 6= ∞. So we consider the case s
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and t are non-trivial with L(s) = L(t), V (s) = V (t) and G(s) 6= G(t). Before we
do this let us introduce some notation. For any non-trivial term t and x ∈ V (t)
let

Ax(t) = {x′ ∈ V (t) | x′ is an in-neighbor of x in G(t)},

A
′

x(t) = {x′ ∈ V (t) | x′ is an out-neighbor of x in G(t)},

A
′′

x(t) = {x′ ∈ V (t) | x′ is an in-neighbor and an out-neighbor of x in G(t)},

A0
x(t) = {x}, A1

x(t) = {x′ ∈ V (t) | x′ ∈ A
′′

x(t) or x′ ∈ A′

x(t) which has z
such that (x, z), (z, x), (x′, z) ∈ E(t) or x′ ∈ Ax(t) which has z′, z′′ such that
(x, z′), (z′, x), (x′, z′) ∈ E(t) or (x, z′′), (z′′, x), (z′′, x′) ∈ E(t)},

A2
x(t) =

⋃

y∈A1
x
(t) A1

y(t),..., An
x(t) =

⋃

y∈A
n−1

x (t) A1
y(t), A∗

x(t) =
⋃

∞

i=0 Ai
x(t),

B0
x(t) = {x}, B1

x(t) = {x′ ∈ V (t) | x′ ∈ A
′′

x(t) or x′ ∈ Ax(t) which has
z such that (x, z), (z, x), (x′, z) ∈ E(t) or x′ ∈ A′

x(t) which has z′ such that
(x, z′), (z′, x), (z′, x′) ∈ E(t)},

B2
x(t) =

⋃

y∈B1
x
(t) B1

y(t),..., Bn
x (t) =

⋃

y∈B
n−1

x (t) B1
y(t), B∗

x(t) =
⋃

∞

i=0 Bi
x(t),

C0
x(t) = {x}, C1

x(t) = {x′ ∈ V (t) | x′ ∈ A
′′

x(t) or x′ ∈ A′

x(t) which has z, z′

such that (x, z), (z, x), (x′, z) ∈ E(t) or (x, z′), (z′, x), (z′, x′) ∈ E(t) or x′ ∈ Ax(t)
which has z′′ such that (x, z′′), (z′′, x), (z′′, x′) ∈ E(t)},

C2
x(t) =

⋃

y∈C1
x
(t) C1

y (t),..., Cn
x (t) =

⋃

y∈Cn−1

x
(t) C1

y (t), C∗

x(t) =
⋃

∞

i=0 Ci
x(t),

D0
x(t) = {x}, D1

x(t) = {x′ ∈ V (t) | x′ ∈ A
′′

x(t) or x′ ∈ Ax(t) which has z such
that (x, z), (z, x), (x′, z) ∈ E(t)},

D2
x(t) =

⋃

y∈D1
x
(t) D1

y(t),..., Dn
x(t) =

⋃

y∈D
n−1

x (t) D1
y(t), D∗

x(t) =
⋃

∞

i=0 Di
x(t),

F 0
x (t) = {x}, F 1

x (t) = {x′ ∈ V (t) | x′ ∈ A
′′

x(t) or x′ ∈ Ax(t) which has
z such that (x, z), (z, x), (z, x′) ∈ E(t) or x′ ∈ A′

x(t) which has z′ such that
(x, z′), (z′, x), (x′, z′) ∈ E(t)},

F 2
x (t) =

⋃

y∈F 1
x
(t) F 1

y (t),..., Fn
x (t) =

⋃

y∈F
n−1

x (t) F 1
y (t), F ∗

x (t) =
⋃

∞

i=0 F i
x(t),

H0
x(t) = {x}, H1

x(t) = {x′ ∈ V (t) | x′ ∈ A
′′

x(t) or x′ ∈ A′

x(t) which has z such
that (x, z), (z, x), (z, x′) ∈ E(t)},

H2
x(t) =

⋃

y∈H1
x
(t) H1

y (t),..., Hn
x (t) =

⋃

y∈H
n−1

x (t) H1
y (t), H∗

x(t) =
⋃

∞

i=0 Hi
x(t),

I0
x(t) = {x}, I1

x(t) = {x′ ∈ V (t) | x′ ∈ A
′′

x(t)},

I2
x(t) =

⋃

y∈I1
x
(t) I1

y (t),..., In
x (t) =

⋃

y∈I
n−1

x (t) I1
y (t), I∗x(t) =

⋃

∞

i=0 Ii
x(t).

Then, all identities in each (x(yz))z with opposite loop and reverse arc graph
variety are characterized by the following theorems:

Theorem 3.5. Let s ≈ t be a non-trivial equation, L(s) = L(t), V (s) = V (t).
Then, s ≈ t ∈ IdK1 if and only if the following conditions are satisfied:
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(i) for any x ∈ V (s), there exists y ∈ A∗

x(s) such that (y, y) ∈ E(s) if and only
if there exists y′ ∈ A∗

x(t) such that (y′, y′) ∈ E(t);

(ii) for any x, y ∈ V (s) with x 6= y, (x, y) ∈ E(s) or (y, x) ∈ E(s) and, there
exists y′ ∈ A∗

y(s), x′ ∈ A∗

x(s) such that (y′, y′) ∈ E(s) and (x′, x′) ∈ E(s)
if and only if (x, y) ∈ E(t) or (y, x) ∈ E(t) and, there exists y′′ ∈ A∗

y(t),
x′′ ∈ A∗

x(t) such that (y′′, y′′) ∈ E(t) and (x′′, x′′) ∈ E(t).

Proof. Suppose that there exists x ∈ V (s) which there is y ∈ A∗

x(s) such that
(y, y) ∈ E(s) but (y′, y′) /∈ E(t) for all y′ ∈ A∗

x(t). Consider the graph G = (V, E)
which obtains from G(t) by adding minimum edges to G(t) until G ∈ K1. Let
h : V (s) → V be an identity evaluation of the variables. We see that h(s) = ∞,
h(t) = h(L(t)). Hence, s ≈ t /∈ IdK1. Similarly, we prove the converse. Suppose
that there exist x, y ∈ V (s) with x 6= y, such that (ii) true for G(s) but it is not true
for G(t). If (x, y) /∈ E(t) and (y, x) /∈ E(t), then consider the graph G = (V, E)
such that V = {0, 1, 2}, E = {(0, 0), (0, 1), (1, 0), (1, 1), (0, 2), (2, 0), (2, 2)}. By
Table 1., we see that G ∈ K1. Let h : V (s) −→ V such that h(x) = 1, h(y) = 2
and h(z) = 0 for all other z ∈ V (s). We see that h(s) = ∞, h(t) = h(L(t)).
Hence, s ≈ t /∈ IdK1. Otherwise, consider the graph G = (V, E) which obtains
from G(t) by adding minimum edges to G(t) until G ∈ K1. Let h : V (s) → V
be an identity evaluation of the variables. We see that h(s) = ∞, h(t) = h(L(t)).
Hence, s ≈ t /∈ IdK1. Similarly, we prove the converse.

Conversely, suppose that s ≈ t are non-trivial equation, L(s) = L(t), V (s) =
V (t) satisfying (i) and (ii). Let G = (V, E) be a graph in K1 and let h : V (s) −→ V
be a function. Suppose that h is a homomorphism from G(s) into G and let
(x, y) ∈ E(t). If x = y, then by (i), there exists z ∈ A∗

x(s) such that (z, z) ∈
E(s). By Table 1. and h is a homomorphism, we have (h(x), h(x)) ∈ E. If
x 6= y, then (ii) true for the graph G(s). If (x, y) ∈ E(s), then (h(x), h(y)) ∈
E. Suppose that (x, y) /∈ E(s). Then by (ii), we get that (y, x) ∈ E(s), there
exists y′ ∈ A∗

y(s) such that (y′, y′) ∈ E(s) and there exists x′ ∈ A∗

x(s) such
that (x′, x′) ∈ E(s). By Table 1. and h is a homomorphism from G(s) into
G, we have (h(y), h(y)), (h(x), h(x)), (h(y), h(x)) ∈ E. Thus, by Table 1. again,
we get (h(x), h(y)) ∈ E. Therefore, h is a homomorphism from G(t) into G.
In the same way, we can prove that if h is a homomorphism from G(t) into G,
then it is a homomorphism from G(s) into G. Hence, by Proposition 3.3, we get
s ≈ t ∈ IdK1.

Theorem 3.6. Let s ≈ t be a non-trivial equation, L(s) = L(t), V (s) = V (t).
Then, s ≈ t ∈ IdK2 if and only if the following conditions are satisfied:

(i) for any x ∈ V (s), there exists y ∈ B∗

x(s) such that (y, y) ∈ E(s) if and only
if there exists y′ ∈ B∗

x(t) such that (y′, y′) ∈ E(t);

(ii) for any x, y ∈ V (s) with x 6= y, (x, y) ∈ E(s) or (y, x) ∈ E(s) and, there
exists y′ ∈ B∗

y(s), x′ ∈ B∗

x(s) such that (y′, y′) ∈ E(s) and (x′, x′) ∈ E(s)
if and only if (x, y) ∈ E(t) or (y, x) ∈ E(t) and, there exists y′′ ∈ B∗

y(t),
x′′ ∈ B∗

x(t) such that (y′′, y′′) ∈ E(t) and (x′′, x′′) ∈ E(t).
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Proof. The proof is similar to the proof of Theorem 3.1.

Theorem 3.7. Let s ≈ t be a non-trivial equation, L(s) = L(t), V (s) = V (t).
Then, s ≈ t ∈ IdK3 if and only if the following conditions are satisfied:

(i) for any x ∈ V (s), there exists y ∈ C∗

x(s) such that (y, y) ∈ E(s) if and only
if there exists y′ ∈ C∗

x(t) such that (y′, y′) ∈ E(t);

(ii) for any x, y ∈ V (s) with x 6= y, (x, y) ∈ E(s) or (y, x) ∈ E(s), there exists
y′ ∈ C∗

y (s) such that (y′, y′) ∈ E(s) and there exists x′ ∈ C∗

x(s) such that
(x′, x′) ∈ E(s) if and only if (x, y) ∈ E(t) or (y, x) ∈ E(t), there exists
y′′ ∈ C∗

y (t) such that (y′′, y′′) ∈ E(t) and there exists x′′ ∈ C∗

x(t) such that
(x′′, x′′) ∈ E(t).

Proof. The proof is similar to the proof of Theorem 3.1.

Theorem 3.8. Let s ≈ t be a non-trivial equation, L(s) = L(t), V (s) = V (t).
Then, s ≈ t ∈ IdK4 if and only if the following conditions are satisfied:

(i) for any x ∈ V (s), there exists y ∈ D∗

x(s) such that (y, y) ∈ E(s) if and only
if there exists y′ ∈ D∗

x(t) such that (y′, y′) ∈ E(t);

(ii) for any x, y ∈ V (s) with x 6= y, (x, y) ∈ E(s) or (y, x) ∈ E(s) and, there
exists y′ ∈ D∗

y(s), x′ ∈ D∗

x(s) such that (y′, y′) ∈ E(s) and (x′, x′) ∈ E(s)
if and only if (x, y) ∈ E(t) or (y, x) ∈ E(t) and, there exists y′′ ∈ D∗

y(t),
x′′ ∈ D∗

x(t) such that (y′′, y′′) ∈ E(t) and (x′′, x′′) ∈ E(t).

Proof. The proof is similar to the proof of Theorem 3.1.

Theorem 3.9. Let s ≈ t be a non-trivial equation , L(s) = L(t), V (s) = V (t).
Then, s ≈ t ∈ IdK5 if and only if the following are satisfied:

(i) for any x ∈ V (s), there exists y ∈ F ∗

x (s) such that (y, y) ∈ E(s) if and only
if there exists y′ ∈ F ∗

x (t) such that (y′, y′) ∈ E(s);

(ii) for any x, y ∈ V (s) with x 6= y, (x, y) ∈ E(s) or (y, x) ∈ E(s) and, there
exists S ⊆ E(s) such that if G ∈ K5 and h is a homomorphism from G(s)
into G, then (h(x), h(y)) ∈ E if and only if (x, y) ∈ E(t) or (y, x) ∈ E(t)
and, there exists S′ ⊆ E(t) such that if G′ ∈ K5 and h′ is a homomorphism
from G(t) into G′, then (h′(x), h′(y)) ∈ E′.

Proof. Suppose that there exists x ∈ V (s) which there is y ∈ F ∗

x (s) such that
(y, y) ∈ E(s) but (y′, y′) /∈ E(t) for all y′ ∈ F ∗

x (t). Consider the graph G = (V, E)
which obtains from G(t) by adding minimum edges to G(t) until G ∈ K5. Let
h : V (s) −→ V such that h(x) = x for all x ∈ V (s). We have that h(s) = ∞,
h(t) = h(L(t)). Hence s ≈ t /∈ IdK5. Suppose that there exist x, y ∈ V (s) with
x 6= y, such that (ii) true for G(s) but it is not true for G(t). If (x, y) /∈ E(t)
and (y, x) /∈ E(t), then consider the graph G = (V, E) such that V = {0, 1, 2},
E = {(0, 0), ((0, 1), (1, 0), (1, 1), (0, 2), (2, 0), (2, 2)}. By Table 1, we see that G ∈
K5. Let h : V (s) −→ V such that h(x) = 1, h(y) = 2 and h(z) = 0 for all other
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z ∈ V (s). We see that h(s) = ∞, h(t) = h(L(t)). Hence, s ≈ t /∈ IdK5. Otherwise,
consider the graph G = (V, E) which obtains from G(t) by adding minimum edges
to G(t) until G ∈ K5. Let h : V (s) −→ V such that h(x) = x for all x ∈ V (s). We
have that h(s) = ∞, h(t) = h(L(t)). Hence s ≈ t /∈ IdK5.

Conversely, suppose that s ≈ t is a non-trivial equation, L(s) = L(t), V (s) =
V (t) satisfying (i) and (ii). Let G = (V, E) be a graph in K5 and let h : V (s) −→ V
be a function. Suppose that h is a homomorphism from G(s) into G and let
(x, y) ∈ E(t). If x = y, then by (i) there exists y′ ∈ F ∗

x (s) such that (y′, y′) ∈ E(s).
By Table 1. and h is a homomorphism, we have (h(x), h(x)) ∈ E. If x 6= y, then
(ii) true for the graph G(s). If (x, y) ∈ E(s), then (h(x), h(y)) ∈ E. Suppose
(x, y) /∈ E(s). Then, by (ii), we get that (y, x) ∈ E(s) and there exists S ⊆ E(s)
such that (h(x), h(y)) ∈ E. Therefore, h is a homomorphism from G(t) into G.
In the same way, we can prove that if h is a homomorphism from G(t) into G,
then it is a homomorphism from G(s) into G. Hence by Proposition 3.3, we get
s ≈ t ∈ IdK5.

Theorem 3.10. Let s ≈ t be a non-trivial equation, L(s) = L(t), V (s) = V (t).
Then, s ≈ t is an identity in the graph variety K6 if and only if

(i) for any x ∈ V (s), there exists y ∈ H∗

x(s) such that (y, y) ∈ E(s) if and only
if there exists y′ ∈ H∗

x(t) such that (y′, y′) ∈ E(t);

(ii) for any x, y ∈ V (s) with x 6= y, (x, y) ∈ E(s) or (y, x) ∈ E(s) and, there
exist y′ ∈ H∗

y (s), x′ ∈ H∗

x(s) such that (y′, y′) ∈ E(s) and (x′, x′) ∈ E(s)
if and only if (x, y) ∈ E(t) or (y, x) ∈ E(t) and, there exist y′′ ∈ H∗

y (t),
x′′ ∈ H∗

x(t) such that (y′′, y′′) ∈ E(t) and (x′′, x′′) ∈ E(t).

Proof. The proof is similar to the proof of Theorem 3.1.

Theorem 3.11. Let s ≈ t be a non-trivial equation, L(s) = L(t), V (s) = V (t).
Then, s ≈ t is an identity in the graph variety K7 if and only if

(i) for any x ∈ V (s), there exists y ∈ I∗x(s) such that (y, y) ∈ E(s) if and only
if there exists y′ ∈ I∗x(t) such that (y′, y′) ∈ E(t);

(ii) for any x, y ∈ V (s) with x 6= y, (x, y) ∈ E(s) or (y, x) ∈ E(s) and, there
exists S ⊆ E(s) such that if G ∈ K7 and h is a homomorphism from G(s)
into G, then (h(x), h(y)) ∈ E if and only if (x, y) ∈ E(t) or (y, x) ∈ E(t)
and, there exists S′ ⊆ E(t) such that if G′ ∈ K7 and h′ is a homomorphism
from G(t) into G′, then (h′(x), h′(y)) ∈ E′.

Proof. The proof is similar to the proof of Theorem 3.5.

Theorem 3.12. Let s ≈ t be a non-trivial equation, L(s) = L(t), V (s) = V (t).
Then, s ≈ t ∈ IdK8 if and only if the following conditions are satisfied:

(i) for any x ∈ V (s), there exists y ∈ A∗

x(s) ∪ B∗

x(s) such that (y, y) ∈ E(s) if
and only if there exists y′ ∈ A∗

x(t) ∪ B∗

x(t) such that (y′, y′) ∈ E(t);
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(ii) for any x, y ∈ V (s) with x 6= y, (x, y) ∈ E(s) or (y, x) ∈ E(s) and, there
exists y′ ∈ A∗

y(s) ∪ B∗

y(s) such that (y′, y′) ∈ E(s) and there exists x′ ∈
A∗

x(s) ∪ B∗

x(s) such that (x′, x′) ∈ E(s) if and only if (x, y) ∈ E(t) or
(y, x) ∈ E(t) and, there exists y′′ ∈ A∗

y(t) ∪ B∗

y(t) such that (y′′, y′′) ∈ E(t)
and there exists x′′ ∈ A∗

x(t) ∪ B∗

x(t) such that (x′′, x′′) ∈ E(t).

Proof. The proof is similar to the proof of Theorem 3.1.
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