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Surjective Multihomomorphisms
between Cyclic Groups

S. Nenthein and P. Lertwichitsilp

Abstract : A multifunction f from a group G into a group G’ is called a multi-
homomorphism if

flzy) = f(x)f(y) (={st|se f(x)andte f(y)})

for all ,y € G. Denote by MHom(G, G’) the set of all multihomomorphisms

from G into G'. We call f € MHom(G,G’) a surjective multihomomorphism

if f/(G) = G’ where f(G) = UGf(:v). The elements of MHom((Z, +), (Z,4+)),
EAS

MHom ((Zy, +), (Z,+)), MHom ((Z, +), (Zy,, +)) and MHom ((Z,, +), (Zy,, +)) have
been already characterized and counted. Our purpose is to characterize when these
multihomomorphisms are surjective. The cardinalities of the subsets of surjective
multihomomorphisms are also determined.
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1 Introduction

The cardinality of a set X is denoted by |X|. A multifunction from a nonempty
set X into a nonempty set Y is a function from X into P(Y)\{0} where P(Y) is
the power set of Y. For A C X, we let f(A) = UAf(x).

zE

Semicontinuity of multifunctions between two topological spaces has been stud-
ied by Whyburn [6], Smithson [4] and Feichtinger [2]. Triphop, Harnchoowong and
Kemprasit [5] have studied multifunctions in an algebraic sense. The definition
of multihomomorphisms between groups was given naturally in [5] as follows : A
multifunction f from a group G into a group G’ is a multihomomorphism if

flzy) = f(x)f(y) (: {st | s€ f(z)and t € f(y)}) for all z,y € G.

The set of all multihomomorphisms from G into G’ is denoted by MHom(G, G').
Then MHom(G, G”) contains all homomorphisms from G into G’. We write MHom(G)
for MHom(G, G).

In [5], the authors characterized the elements of MHom(G, G’) and also de-
termined [MHom(G, G’)| where G and G’ are cyclic groups. It is well-known that
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every infinite cyclic group is isomorphic to (Z,+) and every finite cyclic group of
order n is isomorphic to (Z,, +) where (Z,+) and (Z,,+) are the additive group
of integers and the additive group of integers modulo n, respectively. Recall that

Ly = {[:v]n |z € Z} = {[O]n, nyey[n— 1]n}
For ay,...,ar € Z not all zero, let (aq,...,ax) denote the g.c.d. of aq,...,a.
Welet Zt ={z € Z |z >0}, Z§ =ZTU{0}, Z~ = {z € Z |z < 0} and

Zy = Z~UJ{0}. It is clearly seen that for a,b € Z not both zero, aZ+bZ = (a,b)Z
and aZ,, + bZ, = (a,b)Z,,. We note here that if k|n (k divides n), then |kZ,| =

% and kZn = {[0]n, [F]n, .-, (% —1)[k]}. Recall that the Euler ¢-function is

defined by ¢(1) = 1 and for k € Z* with k > 1, ¢(k) is the number of positive
integers less than k£ and relatively prime to k. Hence

qs(k):‘{ae{o,L...,k—l} | (a,k):l}‘ for all k € Z™.

It is known that Zgb(k) =n ([3], page 191).
k|n
An element f € MHom(G, G’) is called a surjective multihomomorphism from
G into G' if f(G) = G, that is, ng(a:) = @’. For convenience, let

SMHom(G, G') = {f € MHom(G, G') | f is surjective},
that is,
SMHom(G, G') = {f € MHom(G, G") | f(G) = G'},

and let SMHom(G) = SMHom(G, G).

Our purpose is to characterize the surjective multihomomorphisms in MHom
(Z,+), MHom((Zn, +), (Z, +)), MHom((Z7 +), (Zn, —|—)) and MHom((Zm, +), (Zn, —|—))
and determine the cardinalities of SMHom(Z, +), SMHom((Zn, +), (Z, —|—)),
SMHom((Z, +), (Zn, —I—)) and SMHom((Zm, +), (Zp, —I—))

In the remainder, let n and m be positive integers. For a subsemigroup H of
(Z,+) containing 0 and a € Z, define

Frolx)=ax+ H forallz € Z

and
Cu([z]n) = H for all x € Z.

If k,a € Z,k # 0 and L| a, let
(k,n)

Dy, o([z]n) = ax + kKZ for all xz € Z.
Also, for k,a € Z, define

Gr.o() = [azx], + kZ,, for all z € Z,
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(k, n)

and for k,a € Z with
( ? m’ n)

| a, let

I o ([x]m) = [ax]n + kZ,, for all x € Z.

The following results will be referred and they were proved in [5].

Theorem 1.1 ([5]) The following statements about MHom(Z,+) are true.

(a) MHom(Z,+) = {Fu,q | H is subsemigroup of (Z,+) containing0 anda € Z}.

(b) |MHom(Z,+)| = No.
Theorem 1.2 ([5]) The following statements about MHom((Zy,+),(Z,+)) are
true.

(a) MHom((Zn,+),(Z,+)) = {Cu | H is a subsemigroup of (Z,+) containing 0}

k
U {Dk,a | k,a € Z,k #0 and m| a}.

(b) [MHom((Zn, +), (Z,+))| = Ro.

Brown and Curtis [1] noted that every subsemigroup of (Zar ,+) containing 0
is finitely generated. This fact is useful to obtain Theorem 1.1(b) and Theorem
1.2(b).

Theorem 1.3 ([5]) The following statements about MHom((Z,+), (Zy,+)) are
true.
(a) MHom((Z,+),(Zy,+)) = {Gra | k,a € Z}.

(b) Ifk,1€Z", kin,l|n,ac{0,1,....k—1},b€{0,1,...,1 =1} and G, =
Gy, then k=1 and a = b.

(¢c) MHom ((Z,+),(Zn,+)) = {Gra |k €ZT k|n and a € {0,1,...,k —1}}.

(d) |MHom((Z, +), (Zo, +))| = 3 k.

kezt
k|n

Theorem 1.4 ([5]) The following statements about MHom((Zu,, +), (Zy,+)) are
true.

(a) MHom((Zm,—|-)7 (an—)) = {Ik,a | k,a € Z and M| a}.

() Ifk,1€Z, k|nd|n, ac{0,1,....k—1}, be {0,1,...,1— 1},
b
(1,m)

K

k.
(k,m)
| band I o =1I1p, thenk =1 and a =b.
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(¢c) MHom ((Zm,+), (Zy,+)) = {Ina | k € ZT,k|n,a € {0,1,...,k — 1} and

k
7(k,m)| a}.
(d) |MHom((Zm,+), (Zn, +))| = Y _ (k,m).
kez™
k|n

2 Surjective Multihomomorphisms

We shall characterize surjective multihomomorphisms between cyclic groups
by using the notations introduced above.

Theorem 2.1 Let H be a subsemigroup of (Z,+) containing 0 and a € Z. Then
Fy o € SMHom(Z,+) if and only if the following two statements are satisfied.

(i) a is relatively prime to some h € H.

(i) a =0 implies H =7Z.

Proof. We have Fy (Z) = aZ + H by the definition of Fi . Assume that Fy ,
is surjective. Then Fy(Z) = aZ + H = Z, so as + h = 1 for some s € Z and
h € H. This implies that (a,h) = 1. If a =0, then H = aZ + H = Z.

Conversely, assume that (i) and (ii) hold. From (i), as + ht = 1 for some

s,t € Z. If a = 0, then by (ii), H = Z, so Fy 4(Z) = H = Z. Next, assume that
a #0.
Case 1: t > 0. Then ht € H since H is a subsemigroup of (Z,+) and 0 € H, so
1 =as+ht € aZ+ H. Hence for all z € Z$ ,x = asx + htx € aZ + H. Let y € Z~.
Since a # 0, y + ar € Z* for some r € Z. From the above proof, y 4+ ar € aZ + H
which implies that y € aZ + H —ar = aZ + H.

Case 2: t < 0. Then —ht = h(—t) € H, so -1 = —as + (—ht) € aZ + H.
Consequently, for all x € Z{,—x = —asx + (—htx) € aZ + H. This shows that
r €al+ H forall x € Zy. If y € Z", then y + ar € Z~ for some r € Z since
a # 0. This implies that y + ar € aZ+ H. Thusy € aZ+ H —ar =aZ + H.

From Case 1 and Case 2, aZ + H = 7. Hence Fpy , is surjective. O
Corollary 2.2 |SMHom(Z,+)| = No.

Proof. Note that Fiy1(0) = H for every subsemigroup H of (Z,+) containing 0.
This implies Fyz1 # Fiz1 for all distinct k,1 € 7Z*. By Theorem 2.1, Fyuza1 €
SMHom(Z, +) for every k € Z. Then

ISMHom(Z,+)| > |{Fiz1| k€ Z'}|
= |ZF| = No.

But [MHom(Z, +)| = 8¢ by Theorem 1.1(b), so we have |SMHom(Z, +)| = Rg. O
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Theorem 2.3 Let k,a € Z be such that k # 0 and

k
. Then Dy, €
() | & Then D
SMHom ((Zn,+), (Z,+)) if and only if k and a are relatively prime.

Proof. We have that Dy, ,(Z,) = aZ+ kZ = (k,a)Z, and (k,a)Z = Z if and only
if (k,a) = 1. Hence Dy, , € SMHom ((Z,,,+), (Z,+)) if and only if (k,a) =1. O

Corollary 2.4 |SMHom((Zy,+),(Z,+))| = n.

Proof. First, we note that for a subsemigroup H of (Z,+) containing 0, Cy €
SMHom ((Zn, +),(Z, +)) if and only if H = Z. Also, we have that Cz = D1 o and
(1,0) = 1. Hence by Theorem 2.3, we have

SMHom ((Zy, 4), (Z,+)) = {Dg,a | k,a € Z,k #0, ﬁ| a and (k,a) = 1}.
Let
K ={Dialk€Z k|n,ac{0,1,...,k—1} and (k,a) = 1}.
To show that SMHom ((Zy,, +), (Z,+)) = K, it is clear that K C SMHom ((Zy,, +),
(Z, —|—)) For the reverse inclusion, let k,a € Z,k # 0, (ljn)’ a and (k,a) = 1. Let
s,b € Z be such that a = s|k| +band b€ {0,1,...,|k| —1}. Then
ax —bx = slklxz € |k|Z=kZ forallz € Z
which implies that
ax + kZ = bx + |k|Z for all x € Z.

By assumption, k|a(k,n) and (k,a) = 1. Then k| (k,n), so k|n. Hence |k||n.
Since (|k|,a) = (k,a) = 1 and |k||a — b, it follows that (|k|,b) = 1. Consequently,
Dk,a = D\k|,b € K.

If k,l € Z*, k|n, l|n, a € {0,1,...,k — 1} and b € {0,1,...,] — 1} are
such that Dy, = Dy, then kZ = Dy, o([0],) = Dy ([0]n) = IZ and a + kZ =
Dy o([1]n) = Dip([1]) = b+ IZ. Tt follows that k = I, |a — b| € {0,1,...,k — 1}
and 0 < |a —b| € kZ. Thus a —b =0, so a = b. Hence

[SMHom ((Zn, +),(Z,+))]
= {Dpa | k€ Z¥ k|n,a€{0,1,...,k—1} and (k,a) = 1}|
= [{(k,a) |k € Z",k|n,a € {0,1,...,k — 1} and (k,a) = 1}|

=Y o(k)=n

k|n

where (k,a) denotes the ordered pair of k and a. O

Theorem 2.5 For k,a € Z, Gy, € SMHom ((Z,+), (Zy,+)) if and only if (k,n)
and a are relatively prime.
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Proof. By the definition of Gy, 4, Gk,o(Z) = aZ,, + kZ,,.
First, assume that Gy, € SMHom ((Z, +), (Zy,+)). Then aZ,, + kZ,, = Z,.
Then [1],, = [as + kt],, for some s,t € Z. Hence 1 = as+ kt +nl for some | € Z. Tt

follows that as + (k:,n)((kfin)t + (l:in)l) = 1. This implies that ((k,n),a) = 1.

For the converse, assume that (k,n) and a are relatively prime. Then 1 =
as + (k,n)t for some s,t € Z, and thus for every x € Z, [z], = [asx + (k,n)tx], €
aZy, + (k,n)Z,,. Hence Z,, = aZ, + (k,n)Z, = aZy, + kZ,. Therefore Gy, €
SMHom ((Z,+), (Zn,+)), as desired. O

Corollary 2.6 |SMHom((Z,+),(Zn,+))| = n.
Proof. By Theorem 1.3(c),
MHom ((Z, +), (Zn,+)) = {Gra | k € ZT,k|n and a € {0,1,...,k — 1}}.
From this fact and Theorem 2.5, we have
SMHom((Z,+), (Zn,+)) = {Gra | k € ZT,k|n,a € {0,1,...,k—1},and (k,a) = 1}.
Hence by Theorem 1.3(b),
|SMHom ((Z, +), (Zn,+))| = [{(k.a) | k € Z¥ k|n,a € {0,1,...,k — 1}

and (k,a) = 1}|
= Zqﬁ(k) =n.
kln
O
(k,n)

Theorem 2.7 Let k,a € 7Z be such that | a. Then I, € SMHom

(k,m,n)
((Zm, +), (Zn, —i—)) if and only if (k,n) and a are relatively prime.

Proof. We have from the definition of Iy, that Iy o(Z,,) = aZ, + kZ,. The
remainder of the proof is exactly the same as that of Theorem 2.5. O

Corollary 2.8 ‘SMHom((Zm,—i—), (Z,, —&-))’ = (m,n).

Proof. By Theorem 1.4(c),

k
MHom ((Zn, +), (Zn;+)) = {Ika | k€ Z",k|n,a€{0,1,...,k—1} and W’ a}.
This fact and Theorem 2.7 yield

SMHom((Z,m—i—)7 (Zn,—i—)) :{Ik,a |keZt kin,aec{0,1,...,k—1},
k
(k,m)

| @ and (k,a) = 1}.



Surjective Multihomomorphisms between Cyclic Groups 41
Then it follows from Theorem 1.4(b) that

|SMHom ((Zin, +), (Zn, +))| =|{(k,a) | k € ZT ,k|n,a € {0,1,... .k — 1},
k
(k,m)

| a and (k,a) =1}|.
Claim that for k € Z* and a € {0,1,...,k — 1},

k
k|n, W‘ a and (k,a) =1 < k|(m,n) and (k,a) = 1.

k
If k|n, W‘ a and (k,a) = 1, then k| n, k|a(k,m) and (k,a) = 1. This implies
,m

that k| n and k| (k,m), so k |n and k | m. Hence k | (m,n). The converse is evident.
Consequently,

|SMHom((Zun, +), (Zn, +))]
— [{(ha) | k€ 2, k| (mon).a € {0, L.k~ 1} and (k,a) = 1}

= Y ok)=(mn).

k| (m,n)

Example 2.9. It follows from Corollary 2.4 and Corollary 2.6 that
|SMHom ((Z12, +), (Z,+))| = 12 = |SMHom ((Z, +), (Z12,+))| -
Then by Theorem 1.2(b) and Theorem 1.3(d), we have respectively that
|{f € MHom((Z12,+),(Z,+)) | f is not surjective}| = Ry
and

|{f € MHom((Z,+), (Z12,+)) | f is not Surjective}‘ = Z k—12=28-12 = 16.
k|12

We have from Corollary 2.8 that
|SMHom ((Z12,+), (Z15,+))| = (12,15) = 3.

Hence by Theorem 1.4(d),

|{f € MHom((Z12, +), (Z15,+)) | f is not surjective }| = Z(k, 12)—3 =8-3 = 5.
k|15
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