Surjective Multihomomorphisms between Cyclic Groups

S. Nenthein and P. Lertwichitsilp

Abstract

A multifunction f from a group G into a group G^{\prime} is called a multihomomorphism if $$
f(x y)=f(x) f(y)(=\{s t \mid s \in f(x) \text { and } t \in f(y)\})
$$ for all $x, y \in G$. Denote by $\operatorname{MHom}\left(G, G^{\prime}\right)$ the set of all multihomomorphisms from G into G^{\prime}. We call $f \in \operatorname{MHom}\left(G, G^{\prime}\right)$ a surjective multihomomorphism if $f(G)=G^{\prime}$ where $f(G)=\underset{x \in G}{\cup} f(x)$. The elements of $\operatorname{MHom}((\mathbb{Z},+),(\mathbb{Z},+))$, $\operatorname{MHom}\left(\left(\mathbb{Z}_{n},+\right),(\mathbb{Z},+)\right), \operatorname{MHom}\left((\mathbb{Z},+),\left(\mathbb{Z}_{n},+\right)\right)$ and $\operatorname{MHom}\left(\left(\mathbb{Z}_{m},+\right),\left(\mathbb{Z}_{n},+\right)\right)$ have been already characterized and counted. Our purpose is to characterize when these multihomomorphisms are surjective. The cardinalities of the subsets of surjective multihomomorphisms are also determined.

Keywords : Multihomomorphism, surjection.
2000 Mathematics Subject Classification : 32A12.

1 Introduction

The cardinality of a set X is denoted by $|X|$. A multifunction from a nonempty set X into a nonempty set Y is a function from X into $P(Y) \backslash\{\emptyset\}$ where $P(Y)$ is the power set of Y. For $A \subseteq X$, we let $f(A)=\underset{x \in A}{\cup} f(x)$.

Semicontinuity of multifunctions between two topological spaces has been studied by Whyburn [6], Smithson [4] and Feichtinger [2]. Triphop, Harnchoowong and Kemprasit [5] have studied multifunctions in an algebraic sense. The definition of multihomomorphisms between groups was given naturally in [5] as follows : A multifunction f from a group G into a group G^{\prime} is a multihomomorphism if

$$
f(x y)=f(x) f(y) \quad(=\{s t \mid s \in f(x) \text { and } t \in f(y)\}) \text { for all } x, y \in G .
$$

The set of all multihomomorphisms from G into G^{\prime} is denoted by $\operatorname{MHom}\left(G, G^{\prime}\right)$. Then $\operatorname{MHom}\left(G, G^{\prime}\right)$ contains all homomorphisms from G into G^{\prime}. We write MHom (G) for $\operatorname{MHom}(G, G)$.

In [5], the authors characterized the elements of $\operatorname{MHom}\left(G, G^{\prime}\right)$ and also determined $\left|\operatorname{MHom}\left(G, G^{\prime}\right)\right|$ where G and G^{\prime} are cyclic groups. It is well-known that
every infinite cyclic group is isomorphic to $(\mathbb{Z},+)$ and every finite cyclic group of order n is isomorphic to $\left(\mathbb{Z}_{n},+\right)$ where $(\mathbb{Z},+)$ and $\left(\mathbb{Z}_{n},+\right)$ are the additive group of integers and the additive group of integers modulo n, respectively. Recall that

$$
\mathbb{Z}_{n}=\left\{[x]_{n} \mid x \in \mathbb{Z}\right\}=\left\{[0]_{n},[1]_{n}, \ldots,[n-1]_{n}\right\}
$$

For $a_{1}, \ldots, a_{k} \in \mathbb{Z}$ not all zero, let $\left(a_{1}, \ldots, a_{k}\right)$ denote the g.c.d. of a_{1}, \ldots, a_{k}. We let $\mathbb{Z}^{+}=\{x \in \mathbb{Z} \mid x>0\}, \mathbb{Z}_{0}^{+}=\mathbb{Z}^{+} \cup\{0\}$, $\mathbb{Z}^{-}=\{x \in \mathbb{Z} \mid x<0\}$ and $\mathbb{Z}_{0}^{-}=\mathbb{Z}^{-} \cup\{0\}$. It is clearly seen that for $a, b \in \mathbb{Z}$ not both zero, $a \mathbb{Z}+b \mathbb{Z}=(a, b) \mathbb{Z}$ and $a \mathbb{Z}_{n}+b \mathbb{Z}_{n}=(a, b) \mathbb{Z}_{n}$. We note here that if $k \mid n(k$ divides $n)$, then $\left|k \mathbb{Z}_{n}\right|=$ $\frac{n}{k}$ and $k \mathbb{Z}_{n}=\left\{[0]_{n},[k]_{n}, \ldots,\left(\frac{n}{k}-1\right)[k]_{n}\right\}$. Recall that the Euler ϕ-function is defined by $\phi(1)=1$ and for $k \in \mathbb{Z}^{+}$with $k>1, \phi(k)$ is the number of positive integers less than k and relatively prime to k. Hence

$$
\phi(k)=|\{a \in\{0,1, \ldots, k-1\} \mid(a, k)=1\}| \text { for all } k \in \mathbb{Z}^{+}
$$

It is known that $\sum_{k \mid n} \phi(k)=n([3]$, page 191).
An element $f \in \operatorname{MHom}\left(G, G^{\prime}\right)$ is called a surjective multihomomorphism from G into G^{\prime} if $f(G)=G^{\prime}$, that is, $\underset{x \in G}{\cup} f(x)=G^{\prime}$. For convenience, let

$$
\operatorname{SMHom}\left(G, G^{\prime}\right)=\left\{f \in \operatorname{MHom}\left(G, G^{\prime}\right) \mid f \text { is surjective }\right\}
$$

that is,

$$
\operatorname{SMHom}\left(G, G^{\prime}\right)=\left\{f \in \operatorname{MHom}\left(G, G^{\prime}\right) \mid f(G)=G^{\prime}\right\}
$$

and let $\operatorname{SMHom}(G)=\operatorname{SMHom}(G, G)$.
Our purpose is to characterize the surjective multihomomorphisms in MHom $(\mathbb{Z},+), \operatorname{MHom}\left(\left(\mathbb{Z}_{n},+\right),(\mathbb{Z},+)\right), \operatorname{MHom}\left((\mathbb{Z},+),\left(\mathbb{Z}_{n},+\right)\right)$ and $\operatorname{MHom}\left(\left(\mathbb{Z}_{m},+\right),\left(\mathbb{Z}_{n},+\right)\right)$ and determine the cardinalities of $\operatorname{SMHom}(\mathbb{Z},+)$, $\operatorname{SMHom}\left(\left(\mathbb{Z}_{n},+\right),(\mathbb{Z},+)\right)$, $\operatorname{SMHom}\left((\mathbb{Z},+),\left(\mathbb{Z}_{n},+\right)\right)$ and $\operatorname{SMHom}\left(\left(\mathbb{Z}_{m},+\right),\left(\mathbb{Z}_{n},+\right)\right)$.

In the remainder, let n and m be positive integers. For a subsemigroup H of $(\mathbb{Z},+)$ containing 0 and $a \in \mathbb{Z}$, define

$$
F_{H, a}(x)=a x+H \text { for all } x \in \mathbb{Z}
$$

and

$$
C_{H}\left([x]_{n}\right)=H \quad \text { for all } x \in \mathbb{Z}
$$

If $k, a \in \mathbb{Z}, k \neq 0$ and $\left.\frac{k}{(k, n)} \right\rvert\, a$, let

$$
D_{k, a}\left([x]_{n}\right)=a x+k \mathbb{Z} \text { for all } x \in \mathbb{Z} .
$$

Also, for $k, a \in \mathbb{Z}$, define

$$
G_{k, a}(x)=[a x]_{n}+k \mathbb{Z}_{n} \text { for all } x \in \mathbb{Z}
$$

and for $k, a \in \mathbb{Z}$ with $\left.\frac{(k, n)}{(k, m, n)} \right\rvert\, a$, let

$$
I_{k, a}\left([x]_{m}\right)=[a x]_{n}+k \mathbb{Z}_{n} \text { for all } x \in \mathbb{Z}
$$

The following results will be referred and they were proved in [5].
Theorem 1.1 ([5]) The following statements about MHom($\mathbb{Z},+$) are true.
(a) $\operatorname{MHom}(\mathbb{Z},+)=\left\{F_{H, a} \mid H\right.$ is subsemigroup of $(\mathbb{Z},+)$ containing 0 and $\left.a \in \mathbb{Z}\right\}$.
(b) $|\operatorname{MHom}(\mathbb{Z},+)|=\aleph_{0}$.

Theorem 1.2 ([5]) The following statements about $\operatorname{MHom}\left(\left(\mathbb{Z}_{n},+\right),(\mathbb{Z},+)\right)$ are true.
(a) $\operatorname{MHom}\left(\left(\mathbb{Z}_{n},+\right),(\mathbb{Z},+)\right)=\left\{C_{H} \mid H\right.$ is a subsemigroup of $(\mathbb{Z},+)$ containing 0$\}$

$$
\cup\left\{D_{k, a} \mid k, a \in \mathbb{Z}, k \neq 0 \text { and } \left.\frac{k}{(k, n)} \right\rvert\, a\right\} .
$$

(b) $\left|\operatorname{MHom}\left(\left(\mathbb{Z}_{n},+\right),(\mathbb{Z},+)\right)\right|=\aleph_{0}$.

Brown and Curtis [1] noted that every subsemigroup of $\left(\mathbb{Z}_{0}^{+},+\right)$containing 0 is finitely generated. This fact is useful to obtain Theorem 1.1(b) and Theorem 1.2(b).

Theorem 1.3 ([5]) The following statements about $\operatorname{MHom}\left((\mathbb{Z},+),\left(\mathbb{Z}_{n},+\right)\right)$ are true.
(a) $\operatorname{MHom}\left((\mathbb{Z},+),\left(\mathbb{Z}_{n},+\right)\right)=\left\{G_{k, a} \mid k, a \in \mathbb{Z}\right\}$.
(b) If $k, l \in \mathbb{Z}^{+}, k|n, l| n, a \in\{0,1, \ldots, k-1\}, b \in\{0,1, \ldots, l-1\}$ and $G_{k, a}=$ $G_{l, b}$, then $k=l$ and $a=b$.
(c) $\operatorname{MHom}\left((\mathbb{Z},+),\left(\mathbb{Z}_{n},+\right)\right)=\left\{G_{k, a}\left|k \in \mathbb{Z}^{+}, k\right| n\right.$ and $\left.a \in\{0,1, \ldots, k-1\}\right\}$.
(d) $\left|\operatorname{MHom}\left((\mathbb{Z},+),\left(\mathbb{Z}_{n},+\right)\right)\right|=\sum_{\substack{k \in \mathbb{Z}^{+} \\ k \mid n}} k$.

Theorem 1.4 ([5]) The following statements about $\operatorname{MHom}\left(\left(\mathbb{Z}_{m},+\right),\left(\mathbb{Z}_{n},+\right)\right)$ are true.
(a) $\operatorname{MHom}\left(\left(\mathbb{Z}_{m},+\right),\left(\mathbb{Z}_{n},+\right)\right)=\left\{I_{k, a} \mid k, a \in \mathbb{Z}\right.$ and $\left.\left.\frac{(k, n)}{(k, m, n)} \right\rvert\, a\right\}$.
(b) If $k, l \in \mathbb{Z}^{+}, k|n, l| n, a \in\{0,1, \ldots, k-1\}, b \in\{0,1, \ldots, l-1\}, \left.\frac{k}{(k, m)} \right\rvert\, a$, $\left.\frac{l}{(l, m)} \right\rvert\, b$ and $I_{k, a}=I_{l, b}$, then $k=l$ and $a=b$.
(c) $\operatorname{MHom}\left(\left(\mathbb{Z}_{m},+\right),\left(\mathbb{Z}_{n},+\right)\right)=\left\{I_{k, a}\left|k \in \mathbb{Z}^{+}, k\right| n, a \in\{0,1, \ldots, k-1\}\right.$ and $\left.\left.\frac{k}{(k, m)} \right\rvert\, a\right\}$.
(d) $\left|\operatorname{MHom}\left(\left(\mathbb{Z}_{m},+\right),\left(\mathbb{Z}_{n},+\right)\right)\right|=\sum_{\substack{k \in \mathbb{Z}^{+} \\ k \mid n}}(k, m)$.

2 Surjective Multihomomorphisms

We shall characterize surjective multihomomorphisms between cyclic groups by using the notations introduced above.

Theorem 2.1 Let H be a subsemigroup of $(\mathbb{Z},+)$ containing 0 and $a \in \mathbb{Z}$. Then $F_{H, a} \in \operatorname{SMHom}(\mathbb{Z},+)$ if and only if the following two statements are satisfied.
(i) a is relatively prime to some $h \in H$.
(ii) $a=0$ implies $H=\mathbb{Z}$.

Proof. We have $F_{H, a}(\mathbb{Z})=a \mathbb{Z}+H$ by the definition of $F_{H, a}$. Assume that $F_{H, a}$ is surjective. Then $F_{H, a}(\mathbb{Z})=a \mathbb{Z}+H=\mathbb{Z}$, so $a s+h=1$ for some $s \in \mathbb{Z}$ and $h \in H$. This implies that $(a, h)=1$. If $a=0$, then $H=a \mathbb{Z}+H=\mathbb{Z}$.

Conversely, assume that (i) and (ii) hold. From (i), $a s+h t=1$ for some $s, t \in \mathbb{Z}$. If $a=0$, then by (ii), $H=\mathbb{Z}$, so $F_{H, a}(\mathbb{Z})=H=\mathbb{Z}$. Next, assume that $a \neq 0$.

Case 1: $t \geq 0$. Then $h t \in H$ since H is a subsemigroup of $(\mathbb{Z},+)$ and $0 \in H$, so $1=a s+h t \in a \mathbb{Z}+H$. Hence for all $x \in \mathbb{Z}_{0}^{+}, x=a s x+h t x \in a \mathbb{Z}+H$. Let $y \in \mathbb{Z}^{-}$. Since $a \neq 0, y+a r \in \mathbb{Z}^{+}$for some $r \in \mathbb{Z}$. From the above proof, $y+a r \in a \mathbb{Z}+H$ which implies that $y \in a \mathbb{Z}+H-a r=a \mathbb{Z}+H$.

Case 2: $t<0$. Then $-h t=h(-t) \in H$, so $-1=-a s+(-h t) \in a \mathbb{Z}+H$. Consequently, for all $x \in \mathbb{Z}_{0}^{+},-x=-a s x+(-h t x) \in a \mathbb{Z}+H$. This shows that $x \in a \mathbb{Z}+H$ for all $x \in \mathbb{Z}_{0}^{-}$. If $y \in \mathbb{Z}^{+}$, then $y+a r \in \mathbb{Z}^{-}$for some $r \in \mathbb{Z}$ since $a \neq 0$. This implies that $y+a r \in a \mathbb{Z}+H$. Thus $y \in a \mathbb{Z}+H-a r=a \mathbb{Z}+H$.

From Case 1 and Case 2, $a \mathbb{Z}+H=\mathbb{Z}$. Hence $F_{H, a}$ is surjective.
Corollary 2.2 $|\operatorname{SMHom}(\mathbb{Z},+)|=\aleph_{0}$.
Proof. Note that $F_{H, 1}(0)=H$ for every subsemigroup H of $(\mathbb{Z},+)$ containing 0 . This implies $F_{k \mathbb{Z}, 1} \neq F_{l \mathbb{Z}, 1}$ for all distinct $k, l \in \mathbb{Z}^{+}$. By Theorem 2.1, $F_{k \mathbb{Z}, 1} \in$ $\operatorname{SMHom}(\mathbb{Z},+)$ for every $k \in \mathbb{Z}$. Then

$$
\begin{aligned}
|\operatorname{SMHom}(\mathbb{Z},+)| & \geq\left|\left\{F_{k \mathbb{Z}, 1} \mid k \in \mathbb{Z}^{+}\right\}\right| \\
& =\left|\mathbb{Z}^{+}\right|=\aleph_{0} .
\end{aligned}
$$

But $|\operatorname{MHom}(\mathbb{Z},+)|=\aleph_{0}$ by Theorem 1.1(b), so we have $|\operatorname{SMHom}(\mathbb{Z},+)|=\aleph_{0}$.

Theorem 2.3 Let $k, a \in \mathbb{Z}$ be such that $k \neq 0$ and $\left.\frac{k}{(k, n)} \right\rvert\, a$. Then $D_{k, a} \in$ $\operatorname{SMHom}\left(\left(\mathbb{Z}_{n},+\right),(\mathbb{Z},+)\right)$ if and only if k and a are relatively prime.

Proof. We have that $D_{k, a}\left(\mathbb{Z}_{n}\right)=a \mathbb{Z}+k \mathbb{Z}=(k, a) \mathbb{Z}$, and $(k, a) \mathbb{Z}=\mathbb{Z}$ if and only if $(k, a)=1$. Hence $D_{k, a} \in \operatorname{SMHom}\left(\left(\mathbb{Z}_{n},+\right),(\mathbb{Z},+)\right)$ if and only if $(k, a)=1$.

Corollary 2.4 $\left|\operatorname{SMHom}\left(\left(\mathbb{Z}_{n},+\right),(\mathbb{Z},+)\right)\right|=n$.
Proof. First, we note that for a subsemigroup H of $(\mathbb{Z},+)$ containing $0, C_{H} \in$ SMHom $\left(\left(\mathbb{Z}_{n},+\right),(\mathbb{Z},+)\right)$ if and only if $H=\mathbb{Z}$. Also, we have that $C_{\mathbb{Z}}=D_{1,0}$ and $(1,0)=1$. Hence by Theorem 2.3, we have

$$
\operatorname{SMHom}\left(\left(\mathbb{Z}_{n},+\right),(\mathbb{Z},+)\right)=\left\{D_{k, a}\left|k, a \in \mathbb{Z}, k \neq 0, \frac{k}{(k, n)}\right| a \text { and }(k, a)=1\right\}
$$

Let

$$
K=\left\{D_{k, a}\left|k \in \mathbb{Z}^{+}, k\right| n, a \in\{0,1, \ldots, k-1\} \text { and }(k, a)=1\right\} .
$$

To show that $\operatorname{SMHom}\left(\left(\mathbb{Z}_{n},+\right),(\mathbb{Z},+)\right)=K$, it is clear that $K \subseteq \operatorname{SMHom}\left(\left(\mathbb{Z}_{n},+\right)\right.$, $(\mathbb{Z},+))$. For the reverse inclusion, let $k, a \in \mathbb{Z}, k \neq 0, \left.\frac{k}{(k, n)} \right\rvert\, a$ and $(k, a)=1$. Let $s, b \in \mathbb{Z}$ be such that $a=s|k|+b$ and $b \in\{0,1, \ldots,|k|-1\}$. Then

$$
a x-b x=s|k| x \in|k| \mathbb{Z}=k \mathbb{Z} \text { for all } x \in \mathbb{Z}
$$

which implies that

$$
a x+k \mathbb{Z}=b x+|k| \mathbb{Z} \text { for all } x \in \mathbb{Z}
$$

By assumption, $k \mid a(k, n)$ and $(k, a)=1$. Then $k \mid(k, n)$, so $k \mid n$. Hence $|k| \mid n$. Since $(|k|, a)=(k, a)=1$ and $|k| \mid a-b$, it follows that $(|k|, b)=1$. Consequently, $D_{k, a}=D_{|k|, b} \in K$.

If $k, l \in \mathbb{Z}^{+}, k|n, l| n, a \in\{0,1, \ldots, k-1\}$ and $b \in\{0,1, \ldots, l-1\}$ are such that $D_{k, a}=D_{l, b}$, then $k \mathbb{Z}=D_{k, a}\left([0]_{n}\right)=D_{l, b}\left([0]_{n}\right)=l \mathbb{Z}$ and $a+k \mathbb{Z}=$ $D_{k, a}\left([1]_{n}\right)=D_{l, b}\left([1]_{n}\right)=b+l \mathbb{Z}$. It follows that $k=l,|a-b| \in\{0,1, \ldots, k-1\}$ and $0 \leq|a-b| \in k \mathbb{Z}$. Thus $a-b=0$, so $a=b$. Hence

$$
\begin{aligned}
\mid \operatorname{SMHom}\left(\left(\mathbb{Z}_{n},+\right),\right. & (\mathbb{Z},+)) \mid \\
& =\mid\left\{D_{k, a}\left|k \in \mathbb{Z}^{+}, k\right| n, a \in\{0,1, \ldots, k-1\} \text { and }(k, a)=1\right\} \mid \\
& =\mid\left\{\langle k, a\rangle\left|k \in \mathbb{Z}^{+}, k\right| n, a \in\{0,1, \ldots, k-1\} \text { and }(k, a)=1\right\} \mid \\
& =\sum_{k \mid n} \phi(k)=n
\end{aligned}
$$

where $\langle k, a\rangle$ denotes the ordered pair of k and a.
Theorem 2.5 For $k, a \in \mathbb{Z}, G_{k, a} \in \operatorname{SMHom}\left((\mathbb{Z},+),\left(\mathbb{Z}_{n},+\right)\right)$ if and only if (k, n) and a are relatively prime.

Proof. By the definition of $G_{k, a}, G_{k, a}(\mathbb{Z})=a \mathbb{Z}_{n}+k \mathbb{Z}_{n}$.
First, assume that $G_{k, a} \in \operatorname{SMHom}\left((\mathbb{Z},+),\left(\mathbb{Z}_{n},+\right)\right)$. Then $a \mathbb{Z}_{n}+k \mathbb{Z}_{n}=\mathbb{Z}_{n}$. Then $[1]_{n}=[a s+k t]_{n}$ for some $s, t \in \mathbb{Z}$. Hence $1=a s+k t+n l$ for some $l \in \mathbb{Z}$. It follows that as $+(k, n)\left(\frac{k}{(k, n)} t+\frac{n}{(k, n)} l\right)=1$. This implies that $((k, n), a)=1$.

For the converse, assume that (k, n) and a are relatively prime. Then $1=$ as $+(k, n) t$ for some $s, t \in \mathbb{Z}$, and thus for every $x \in \mathbb{Z},[x]_{n}=[a s x+(k, n) t x]_{n} \in$ $a \mathbb{Z}_{n}+(k, n) \mathbb{Z}_{n}$. Hence $\mathbb{Z}_{n}=a \mathbb{Z}_{n}+(k, n) \mathbb{Z}_{n}=a \mathbb{Z}_{n}+k \mathbb{Z}_{n}$. Therefore $G_{k, a} \in$ SMHom $\left((\mathbb{Z},+),\left(\mathbb{Z}_{n},+\right)\right)$, as desired.

Corollary 2.6 $\left|\operatorname{SMHom}\left((\mathbb{Z},+),\left(\mathbb{Z}_{n},+\right)\right)\right|=n$.
Proof. By Theorem 1.3(c),

$$
\operatorname{MHom}\left((\mathbb{Z},+),\left(\mathbb{Z}_{n},+\right)\right)=\left\{G_{k, a}\left|k \in \mathbb{Z}^{+}, k\right| n \text { and } a \in\{0,1, \ldots, k-1\}\right\}
$$

From this fact and Theorem 2.5, we have
$\operatorname{SMHom}\left((\mathbb{Z},+),\left(\mathbb{Z}_{n},+\right)\right)=\left\{G_{k, a}\left|k \in \mathbb{Z}^{+}, k\right| n, a \in\{0,1, \ldots, k-1\}\right.$, and $\left.(k, a)=1\right\}$.
Hence by Theorem 1.3(b),

$$
\begin{aligned}
\left|\operatorname{SMHom}\left((\mathbb{Z},+),\left(\mathbb{Z}_{n},+\right)\right)\right|= & \mid\left\{\langle k, a\rangle\left|k \in \mathbb{Z}^{+}, k\right| n, a \in\{0,1, \ldots, k-1\}\right. \\
& \quad \text { and }(k, a)=1\} \mid \\
= & \sum_{k \mid n} \phi(k)=n .
\end{aligned}
$$

Theorem 2.7 Let $k, a \in \mathbb{Z}$ be such that $\left.\frac{(k, n)}{(k, m, n)} \right\rvert\, a$. Then $I_{k, a} \in$ SMHom $\left(\left(\mathbb{Z}_{m},+\right),\left(\mathbb{Z}_{n},+\right)\right)$ if and only if (k, n) and a are relatively prime.

Proof. We have from the definition of $I_{k, a}$ that $I_{k, a}\left(\mathbb{Z}_{m}\right)=a \mathbb{Z}_{n}+k \mathbb{Z}_{n}$. The remainder of the proof is exactly the same as that of Theorem 2.5.

Corollary 2.8 $\left|\operatorname{SMHom}\left(\left(\mathbb{Z}_{m},+\right),\left(\mathbb{Z}_{n},+\right)\right)\right|=(m, n)$.
Proof. By Theorem 1.4(c),
$\operatorname{MHom}\left(\left(\mathbb{Z}_{m},+\right),\left(\mathbb{Z}_{n},+\right)\right)=\left\{I_{k, a}\left|k \in \mathbb{Z}^{+}, k\right| n, a \in\{0,1, \ldots, k-1\}\right.$ and $\left.\left.\frac{k}{(k, m)} \right\rvert\, a\right\}$.
This fact and Theorem 2.7 yield

$$
\begin{gathered}
\operatorname{SMHom}\left(\left(\mathbb{Z}_{m},+\right),\left(\mathbb{Z}_{n},+\right)\right)=\left\{I_{k, a}\left|k \in \mathbb{Z}^{+}, k\right| n, a \in\{0,1, \ldots, k-1\},\right. \\
\left.\left.\frac{k}{(k, m)} \right\rvert\, a \text { and }(k, a)=1\right\}
\end{gathered}
$$

Then it follows from Theorem 1.4(b) that

$$
\begin{gathered}
\left|\operatorname{SMHom}\left(\left(\mathbb{Z}_{m},+\right),\left(\mathbb{Z}_{n},+\right)\right)\right|=\mid\left\{\langle k, a\rangle\left|k \in \mathbb{Z}^{+}, k\right| n, a \in\{0,1, \ldots, k-1\},\right. \\
\left.\left.\frac{k}{(k, m)} \right\rvert\, a \text { and }(k, a)=1\right\} \mid .
\end{gathered}
$$

Claim that for $k \in \mathbb{Z}^{+}$and $a \in\{0,1, \ldots, k-1\}$,

$$
k\left|n, \frac{k}{(k, m)}\right| a \text { and }(k, a)=1 \Leftrightarrow k \mid(m, n) \text { and }(k, a)=1 .
$$

If $k\left|n, \frac{k}{(k, m)}\right| a$ and $(k, a)=1$, then $k|n, k| a(k, m)$ and $(k, a)=1$. This implies that $k \mid n$ and $k \mid(k, m)$, so $k \mid n$ and $k \mid m$. Hence $k \mid(m, n)$. The converse is evident. Consequently,

$$
\begin{aligned}
\mid \operatorname{SMHom} & \left(\left(\mathbb{Z}_{m},+\right),\left(\mathbb{Z}_{n},+\right)\right) \mid \\
& =\mid\left\{\langle k, a\rangle\left|k \in \mathbb{Z}^{+}, k\right|(m, n), a \in\{0,1, \ldots, k-1\} \text { and }(k, a)=1\right\} \mid \\
& =\sum_{k \mid(m, n)} \phi(k)=(m, n) .
\end{aligned}
$$

Example 2.9. It follows from Corollary 2.4 and Corollary 2.6 that

$$
\left|\operatorname{SMHom}\left(\left(\mathbb{Z}_{12},+\right),(\mathbb{Z},+)\right)\right|=12=\left|\operatorname{SMHom}\left((\mathbb{Z},+),\left(\mathbb{Z}_{12},+\right)\right)\right|
$$

Then by Theorem 1.2(b) and Theorem 1.3(d), we have respectively that

$$
\mid\left\{f \in \operatorname{MHom}\left(\left(\mathbb{Z}_{12},+\right),(\mathbb{Z},+)\right) \mid f \text { is not surjective }\right\} \mid=\aleph_{0}
$$

and
$\mid\left\{f \in \operatorname{MHom}\left((\mathbb{Z},+),\left(\mathbb{Z}_{12},+\right)\right) \mid f\right.$ is not surjective $\} \mid=\sum_{k \mid 12} k-12=28-12=16$.
We have from Corollary 2.8 that

$$
\left|\operatorname{SMHom}\left(\left(\mathbb{Z}_{12},+\right),\left(\mathbb{Z}_{15},+\right)\right)\right|=(12,15)=3
$$

Hence by Theorem 1.4(d),
$\mid\left\{f \in \operatorname{MHom}\left(\left(\mathbb{Z}_{12},+\right),\left(\mathbb{Z}_{15},+\right)\right) \mid f\right.$ is not surjective $\} \mid=\sum_{k \mid 15}(k, 12)-3=8-3=5$.

References

[1] W. C. Brown and F. Curtis, Numerical semigroups of maximal and almost maximal length, Semigroup Forum, 42(1991), 218-235.
[2] O. Feichtinger, More on lower semi-continuity, Amer. Math. Monthly, 83 (1976), 39.
[3] I. Niven, H. S. Zuckerman and H. L. Montgomery, An Introduction to the Theory of Numbers, John Wiley \& Sons, New York, 1991.
[4] R. E. Smithson, A characterization of lower semicontinuity, Amer. Math. Monthly, 75(1968), 505.
[5] N. Triphop, A. Harnchoowong and Y. Kemprasit, Multihomomorphisms between cyclic groups, Set-valued Mathematics and Applications, to appear.
[6] G. T. Whyburn, Continuity of multifunctions, Proc. Nat. Acad. Sciences, 54(1965), 1494-1501.
(Received 21 February 2006)

S. Nenthein
Department of Mathematics
Faculty of Science
Chulalongkorn University
Bangkok 10330, Thailand.
e-mail : Sansanee.N@student.chula.ac.th
P. Lertwichitsilp
Department of Mathematics
Faculty of Science
Kasetsart University
Bangkok 10900, Thailand.
e-mail : lpatch2@hotmail.com

