

Surjective Multihomomorphisms between Cyclic Groups

S. Nenthein and P. Lertwichitsilp

Abstract : A multifunction f from a group G into a group G' is called a *multi-homomorphism* if

$$f(xy) = f(x)f(y) \ \left(= \left\{st \mid s \in f(x) \text{ and } t \in f(y)\right\}\right)$$

for all $x, y \in G$. Denote by $\operatorname{MHom}(G, G')$ the set of all multihomomorphisms from G into G'. We call $f \in \operatorname{MHom}(G, G')$ a surjective multihomomorphism if f(G) = G' where $f(G) = \bigcup_{x \in G} f(x)$. The elements of $\operatorname{MHom}((\mathbb{Z}, +), (\mathbb{Z}, +))$, $\operatorname{MHom}((\mathbb{Z}_n, +), (\mathbb{Z}, +))$, $\operatorname{MHom}((\mathbb{Z}, +), (\mathbb{Z}_n, +))$ and $\operatorname{MHom}((\mathbb{Z}_m, +), (\mathbb{Z}_n, +))$ have been already characterized and counted. Our purpose is to characterize when these multihomomorphisms are surjective. The cardinalities of the subsets of surjective multihomomorphisms are also determined.

Keywords : Multihomomorphism, surjection. 2000 Mathematics Subject Classification : 32A12.

1 Introduction

The cardinality of a set X is denoted by |X|. A *multifunction* from a nonempty set X into a nonempty set Y is a function from X into $P(Y) \setminus \{\emptyset\}$ where P(Y) is the power set of Y. For $A \subseteq X$, we let $f(A) = \bigcup_{x \in A} f(x)$.

Semicontinuity of multifunctions between two topological spaces has been studied by Whyburn [6], Smithson [4] and Feichtinger [2]. Triphop, Harnchoowong and Kemprasit [5] have studied multifunctions in an algebraic sense. The definition of multihomomorphisms between groups was given naturally in [5] as follows : A multifunction f from a group G into a group G' is a multihomomorphism if

 $f(xy) = f(x)f(y) \ \left(=\left\{st \mid s \in f(x) \text{ and } t \in f(y)\right\}\right) \text{ for all } x, y \in G.$

The set of all multihomomorphisms from G into G' is denoted by $\operatorname{MHom}(G, G')$. Then $\operatorname{MHom}(G, G')$ contains all homomorphisms from G into G'. We write $\operatorname{MHom}(G)$ for $\operatorname{MHom}(G, G)$.

In [5], the authors characterized the elements of MHom(G, G') and also determined |MHom(G, G')| where G and G' are cyclic groups. It is well-known that

every infinite cyclic group is isomorphic to $(\mathbb{Z}, +)$ and every finite cyclic group of order n is isomorphic to $(\mathbb{Z}_n, +)$ where $(\mathbb{Z}, +)$ and $(\mathbb{Z}_n, +)$ are the additive group of integers and the additive group of integers modulo n, respectively. Recall that

$$\mathbb{Z}_n = \{ [x]_n \mid x \in \mathbb{Z} \} = \{ [0]_n, [1]_n, \dots, [n-1]_n \}.$$

For $a_1, \ldots, a_k \in \mathbb{Z}$ not all zero, let (a_1, \ldots, a_k) denote the g.c.d. of a_1, \ldots, a_k . We let $\mathbb{Z}^+ = \{x \in \mathbb{Z} \mid x > 0\}, \mathbb{Z}_0^+ = \mathbb{Z}^+ \cup \{0\}, \mathbb{Z}^- = \{x \in \mathbb{Z} \mid x < 0\}$ and $\mathbb{Z}_0^- = \mathbb{Z}^- \cup \{0\}$. It is clearly seen that for $a, b \in \mathbb{Z}$ not both zero, $a\mathbb{Z} + b\mathbb{Z} = (a, b)\mathbb{Z}$ and $a\mathbb{Z}_n + b\mathbb{Z}_n = (a, b)\mathbb{Z}_n$. We note here that if $k \mid n$ (k divides n), then $|k\mathbb{Z}_n| = \frac{n}{k}$ and $k\mathbb{Z}_n = \{[0]_n, [k]_n, \ldots, (\frac{n}{k} - 1)[k]_n\}$. Recall that the Euler ϕ -function is defined by $\phi(1) = 1$ and for $k \in \mathbb{Z}^+$ with k > 1, $\phi(k)$ is the number of positive integers less than k and relatively prime to k. Hence

$$\phi(k) = \left| \left\{ a \in \{0, 1, \dots, k-1\} \mid (a, k) = 1 \right\} \right| \text{ for all } k \in \mathbb{Z}^+.$$

It is known that $\sum_{k \mid n} \phi(k) = n$ ([3], page 191).

An element $f \in MHom(G, G')$ is called a *surjective multihomomorphism* from G into G' if f(G) = G', that is, $\bigcup_{x \in G} f(x) = G'$. For convenience, let

 $SMHom(G, G') = \{ f \in MHom(G, G') \mid f \text{ is surjective} \},\$

that is,

$$SMHom(G, G') = \left\{ f \in MHom(G, G') \mid f(G) = G' \right\}$$

and let SMHom(G) = SMHom(G, G).

Our purpose is to characterize the surjective multihomomorphisms in MHom $(\mathbb{Z}, +)$, MHom $((\mathbb{Z}_n, +), (\mathbb{Z}, +))$, MHom $((\mathbb{Z}, +), (\mathbb{Z}_n, +))$ and MHom $((\mathbb{Z}_m, +), (\mathbb{Z}_n, +))$ and determine the cardinalities of SMHom $(\mathbb{Z}, +)$, SMHom $((\mathbb{Z}_n, +), (\mathbb{Z}, +))$, SMHom $((\mathbb{Z}, +), (\mathbb{Z}_n, +))$ and SMHom $((\mathbb{Z}_m, +), (\mathbb{Z}_n, +))$.

In the remainder, let n and m be positive integers. For a subsemigroup H of $(\mathbb{Z}, +)$ containing 0 and $a \in \mathbb{Z}$, define

$$F_{H,a}(x) = ax + H$$
 for all $x \in \mathbb{Z}$

and

$$C_H([x]_n) = H$$
 for all $x \in \mathbb{Z}$.

If
$$k, a \in \mathbb{Z}, k \neq 0$$
 and $\frac{k}{(k, n)} | a$, let
 $D_{k,a}([x]_n) = ax + k\mathbb{Z}$ for all $x \in \mathbb{Z}$.

Also, for $k, a \in \mathbb{Z}$, define

$$G_{k,a}(x) = [ax]_n + k\mathbb{Z}_n \text{ for all } x \in \mathbb{Z},$$

Surjective Multihomomorphisms between Cyclic Groups

and for $k, a \in \mathbb{Z}$ with $\frac{(k, n)}{(k, m, n)} | a$, let

$$I_{k,a}([x]_m) = [ax]_n + k\mathbb{Z}_n \text{ for all } x \in \mathbb{Z}.$$

The following results will be referred and they were proved in [5].

Theorem 1.1 ([5]) The following statements about $MHom(\mathbb{Z}, +)$ are true.

- (a) $MHom(\mathbb{Z}, +) = \{F_{H,a} \mid H \text{ is subsemigroup of } (\mathbb{Z}, +) \text{ containing } 0 \text{ and } a \in \mathbb{Z}\}.$
- (b) $|MHom(\mathbb{Z},+)| = \aleph_0$.

Theorem 1.2 ([5]) The following statements about $MHom((\mathbb{Z}_n, +), (\mathbb{Z}, +))$ are true.

(a)
$$MHom((\mathbb{Z}_n, +), (\mathbb{Z}, +)) = \{C_H \mid H \text{ is a subsemigroup of } (\mathbb{Z}, +) \text{ containing } 0\}$$

 $\cup \{D_{k,a} \mid k, a \in \mathbb{Z}, k \neq 0 \text{ and } \frac{k}{(k,n)} \mid a\}.$

(b) $|MHom((\mathbb{Z}_n, +), (\mathbb{Z}, +))| = \aleph_0.$

Brown and Curtis [1] noted that every subsemigroup of $(\mathbb{Z}_0^+, +)$ containing 0 is finitely generated. This fact is useful to obtain Theorem 1.1(b) and Theorem 1.2(b).

Theorem 1.3 ([5]) The following statements about $MHom((\mathbb{Z}, +), (\mathbb{Z}_n, +))$ are true.

- (a) $MHom((\mathbb{Z}, +), (\mathbb{Z}_n, +)) = \{G_{k,a} \mid k, a \in \mathbb{Z}\}.$
- (b) If $k, l \in \mathbb{Z}^+$, $k \mid n, l \mid n, a \in \{0, 1, \dots, k-1\}$, $b \in \{0, 1, \dots, l-1\}$ and $G_{k,a} = G_{l,b}$, then k = l and a = b.
- (c) $MHom((\mathbb{Z},+),(\mathbb{Z}_n,+)) = \{G_{k,a} \mid k \in \mathbb{Z}^+, k \mid n \text{ and } a \in \{0,1,\ldots,k-1\}\}.$

(d)
$$|MHom((\mathbb{Z},+),(\mathbb{Z}_n,+))| = \sum_{\substack{k \in \mathbb{Z}^+ \\ k \mid n}} k.$$

Theorem 1.4 ([5]) The following statements about $MHom((\mathbb{Z}_m, +), (\mathbb{Z}_n, +))$ are true.

- (a) $MHom((\mathbb{Z}_m, +), (\mathbb{Z}_n, +)) = \{I_{k,a} \mid k, a \in \mathbb{Z} \text{ and } \frac{(k, n)}{(k, m, n)} | a\}.$
- (b) If $k, l \in \mathbb{Z}^+$, $k \mid n, l \mid n, a \in \{0, 1, \dots, k-1\}, b \in \{0, 1, \dots, l-1\}, \frac{k}{(k,m)} \mid a, \frac{l}{(l,m)} \mid b \text{ and } I_{k,a} = I_{l,b}, \text{ then } k = l \text{ and } a = b.$

(c)
$$MHom((\mathbb{Z}_m, +), (\mathbb{Z}_n, +)) = \{I_{k,a} \mid k \in \mathbb{Z}^+, k \mid n, a \in \{0, 1, \dots, k-1\} \text{ and } \frac{k}{(k,m)} \mid a\}.$$

(d) $|MHom((\mathbb{Z}_m, +), (\mathbb{Z}_n, +))| = \sum_{\substack{k \in \mathbb{Z}^+ \\ k \mid n}} (k, m).$

2 Surjective Multihomomorphisms

We shall characterize surjective multihomomorphisms between cyclic groups by using the notations introduced above.

Theorem 2.1 Let H be a subsemigroup of $(\mathbb{Z}, +)$ containing 0 and $a \in \mathbb{Z}$. Then $F_{H,a} \in SMHom(\mathbb{Z}, +)$ if and only if the following two statements are satisfied.

- (i) a is relatively prime to some $h \in H$.
- (ii) a = 0 implies $H = \mathbb{Z}$.

Proof. We have $F_{H,a}(\mathbb{Z}) = a\mathbb{Z} + H$ by the definition of $F_{H,a}$. Assume that $F_{H,a}$ is surjective. Then $F_{H,a}(\mathbb{Z}) = a\mathbb{Z} + H = \mathbb{Z}$, so as + h = 1 for some $s \in \mathbb{Z}$ and $h \in H$. This implies that (a, h) = 1. If a = 0, then $H = a\mathbb{Z} + H = \mathbb{Z}$.

Conversely, assume that (i) and (ii) hold. From (i), as + ht = 1 for some $s, t \in \mathbb{Z}$. If a = 0, then by (ii), $H = \mathbb{Z}$, so $F_{H,a}(\mathbb{Z}) = H = \mathbb{Z}$. Next, assume that $a \neq 0$.

Case 1: $t \ge 0$. Then $ht \in H$ since H is a subsemigroup of $(\mathbb{Z}, +)$ and $0 \in H$, so $1 = as + ht \in a\mathbb{Z} + H$. Hence for all $x \in \mathbb{Z}_0^+$, $x = asx + htx \in a\mathbb{Z} + H$. Let $y \in \mathbb{Z}^-$. Since $a \ne 0$, $y + ar \in \mathbb{Z}^+$ for some $r \in \mathbb{Z}$. From the above proof, $y + ar \in a\mathbb{Z} + H$ which implies that $y \in a\mathbb{Z} + H - ar = a\mathbb{Z} + H$.

Case 2: t < 0. Then $-ht = h(-t) \in H$, so $-1 = -as + (-ht) \in a\mathbb{Z} + H$. Consequently, for all $x \in \mathbb{Z}_0^+, -x = -asx + (-htx) \in a\mathbb{Z} + H$. This shows that $x \in a\mathbb{Z} + H$ for all $x \in \mathbb{Z}_0^-$. If $y \in \mathbb{Z}^+$, then $y + ar \in \mathbb{Z}^-$ for some $r \in \mathbb{Z}$ since $a \neq 0$. This implies that $y + ar \in a\mathbb{Z} + H$. Thus $y \in a\mathbb{Z} + H - ar = a\mathbb{Z} + H$.

From Case 1 and Case 2, $a\mathbb{Z} + H = \mathbb{Z}$. Hence $F_{H,a}$ is surjective.

Corollary 2.2 $|SMHom(\mathbb{Z},+)| = \aleph_0$.

Proof. Note that $F_{H,1}(0) = H$ for every subsemigroup H of $(\mathbb{Z}, +)$ containing 0. This implies $F_{k\mathbb{Z},1} \neq F_{l\mathbb{Z},1}$ for all distinct $k, l \in \mathbb{Z}^+$. By Theorem 2.1, $F_{k\mathbb{Z},1} \in$ SMHom $(\mathbb{Z}, +)$ for every $k \in \mathbb{Z}$. Then

$$|\text{SMHom}(\mathbb{Z}, +)| \geq |\{F_{k\mathbb{Z},1} \mid k \in \mathbb{Z}^+\}|$$
$$= |\mathbb{Z}^+| = \aleph_0.$$

But $|MHom(\mathbb{Z}, +)| = \aleph_0$ by Theorem 1.1(b), so we have $|SMHom(\mathbb{Z}, +)| = \aleph_0$. \Box

Surjective Multihomomorphisms between Cyclic Groups

Theorem 2.3 Let $k, a \in \mathbb{Z}$ be such that $k \neq 0$ and $\frac{k}{(k,n)} \mid a$. Then $D_{k,a} \in SMHom((\mathbb{Z}_n, +), (\mathbb{Z}, +))$ if and only if k and a are relatively prime.

Proof. We have that $D_{k,a}(\mathbb{Z}_n) = a\mathbb{Z} + k\mathbb{Z} = (k, a)\mathbb{Z}$, and $(k, a)\mathbb{Z} = \mathbb{Z}$ if and only if (k, a) = 1. Hence $D_{k,a} \in \text{SMHom}((\mathbb{Z}_n, +), (\mathbb{Z}, +))$ if and only if (k, a) = 1. \Box

Corollary 2.4 $|SMHom((\mathbb{Z}_n, +), (\mathbb{Z}, +))| = n.$

Proof. First, we note that for a subsemigroup H of $(\mathbb{Z}, +)$ containing $0, C_H \in$ SMHom $((\mathbb{Z}_n, +), (\mathbb{Z}, +))$ if and only if $H = \mathbb{Z}$. Also, we have that $C_{\mathbb{Z}} = D_{1,0}$ and (1,0) = 1. Hence by Theorem 2.3, we have

SMHom
$$((\mathbb{Z}_n, +), (\mathbb{Z}, +)) = \{D_{k,a} \mid k, a \in \mathbb{Z}, k \neq 0, \frac{k}{(k,n)} \mid a \text{ and } (k,a) = 1\}.$$

Let

S

$$K = \{ D_{k,a} \mid k \in \mathbb{Z}^+, k \mid n, a \in \{0, 1, \dots, k-1\} \text{ and } (k, a) = 1 \}.$$

To show that SMHom $((\mathbb{Z}_n, +), (\mathbb{Z}, +)) = K$, it is clear that $K \subseteq$ SMHom $((\mathbb{Z}_n, +), (\mathbb{Z}, +))$. For the reverse inclusion, let $k, a \in \mathbb{Z}, k \neq 0, \frac{k}{(k,n)} \mid a \text{ and } (k,a) = 1$. Let $s, b \in \mathbb{Z}$ be such that a = s|k| + b and $b \in \{0, 1, \dots, |k| - 1\}$. Then

$$ax - bx = s|k|x \in |k|\mathbb{Z} = k\mathbb{Z}$$
 for all $x \in \mathbb{Z}$

which implies that

$$ax + k\mathbb{Z} = bx + |k|\mathbb{Z}$$
 for all $x \in \mathbb{Z}$.

By assumption, k | a(k, n) and (k, a) = 1. Then k | (k, n), so k | n. Hence |k| | n. Since (|k|, a) = (k, a) = 1 and |k| | a - b, it follows that (|k|, b) = 1. Consequently, $D_{k,a} = D_{|k|,b} \in K$.

If $k, l \in \mathbb{Z}^+$, $k \mid n, l \mid n, a \in \{0, 1, \dots, k-1\}$ and $b \in \{0, 1, \dots, l-1\}$ are such that $D_{k,a} = D_{l,b}$, then $k\mathbb{Z} = D_{k,a}([0]_n) = D_{l,b}([0]_n) = l\mathbb{Z}$ and $a + k\mathbb{Z} = D_{k,a}([1]_n) = D_{l,b}([1]_n) = b + l\mathbb{Z}$. It follows that $k = l, |a - b| \in \{0, 1, \dots, k-1\}$ and $0 \leq |a - b| \in k\mathbb{Z}$. Thus a - b = 0, so a = b. Hence

$$\begin{aligned} \text{MHom}\big((\mathbb{Z}_n, +), (\mathbb{Z}, +)\big) \big| \\ &= \big| \{ D_{k,a} \mid k \in \mathbb{Z}^+, k \mid n, a \in \{0, 1, \dots, k-1\} \text{ and } (k, a) = 1\} \big| \\ &= \big| \{ \langle k, a \rangle \mid k \in \mathbb{Z}^+, k \mid n, a \in \{0, 1, \dots, k-1\} \text{ and } (k, a) = 1\} \big| \\ &= \sum_{k \mid n} \phi(k) = n \end{aligned}$$

where $\langle k, a \rangle$ denotes the ordered pair of k and a.

Theorem 2.5 For $k, a \in \mathbb{Z}$, $G_{k,a} \in SMHom((\mathbb{Z}, +), (\mathbb{Z}_n, +))$ if and only if (k, n) and a are relatively prime.

Proof. By the definition of $G_{k,a}$, $G_{k,a}(\mathbb{Z}) = a\mathbb{Z}_n + k\mathbb{Z}_n$.

First, assume that $G_{k,a} \in \text{SMHom}\left((\mathbb{Z},+),(\mathbb{Z}_n,+)\right)$. Then $a\mathbb{Z}_n + k\mathbb{Z}_n = \mathbb{Z}_n$. Then $[1]_n = [as+kt]_n$ for some $s, t \in \mathbb{Z}$. Hence 1 = as+kt+nl for some $l \in \mathbb{Z}$. It follows that $as + (k,n)\left(\frac{k}{(k,n)}t + \frac{n}{(k,n)}l\right) = 1$. This implies that ((k,n),a) = 1.

For the converse, assume that (k, n) and a are relatively prime. Then 1 = as + (k, n)t for some $s, t \in \mathbb{Z}$, and thus for every $x \in \mathbb{Z}$, $[x]_n = [asx + (k, n)tx]_n \in a\mathbb{Z}_n + (k, n)\mathbb{Z}_n$. Hence $\mathbb{Z}_n = a\mathbb{Z}_n + (k, n)\mathbb{Z}_n = a\mathbb{Z}_n + k\mathbb{Z}_n$. Therefore $G_{k,a} \in$ SMHom $((\mathbb{Z}, +), (\mathbb{Z}_n, +))$, as desired.

Corollary 2.6 $|SMHom((\mathbb{Z},+),(\mathbb{Z}_n,+))| = n.$

Proof. By Theorem 1.3(c),

$$\mathrm{MHom}((\mathbb{Z},+),(\mathbb{Z}_n,+)) = \{G_{k,a} \mid k \in \mathbb{Z}^+, k \mid n \text{ and } a \in \{0,1,\ldots,k-1\}\}.$$

From this fact and Theorem 2.5, we have

SMHom $((\mathbb{Z}, +), (\mathbb{Z}_n, +)) = \{G_{k,a} \mid k \in \mathbb{Z}^+, k \mid n, a \in \{0, 1, \dots, k-1\}, \text{and } (k, a) = 1\}.$ Hence by Theorem 1.3(b),

$$|\mathrm{SMHom}((\mathbb{Z},+),(\mathbb{Z}_n,+))| = |\{\langle k,a\rangle \mid k \in \mathbb{Z}^+, k \mid n, a \in \{0,1,\ldots,k-1\} \\ \text{and } (k,a) = 1\}| \\ = \sum_{k \mid n} \phi(k) = n.$$

Theorem 2.7 Let $k, a \in \mathbb{Z}$ be such that $\frac{(k,n)}{(k,m,n)} \mid a$. Then $I_{k,a} \in SMHom$ $((\mathbb{Z}_m, +), (\mathbb{Z}_n, +))$ if and only if (k, n) and a are relatively prime.

Proof. We have from the definition of $I_{k,a}$ that $I_{k,a}(\mathbb{Z}_m) = a\mathbb{Z}_n + k\mathbb{Z}_n$. The remainder of the proof is exactly the same as that of Theorem 2.5.

Corollary 2.8 $|SMHom((\mathbb{Z}_m, +), (\mathbb{Z}_n, +))| = (m, n).$

Proof. By Theorem 1.4(c),

$$\mathrm{MHom}((\mathbb{Z}_m, +), (\mathbb{Z}_n, +)) = \{I_{k,a} \mid k \in \mathbb{Z}^+, k \mid n, a \in \{0, 1, \dots, k-1\} \text{ and } \frac{k}{(k,m)} \mid a\}$$

This fact and Theorem 2.7 yield

SMHom
$$((\mathbb{Z}_m, +), (\mathbb{Z}_n, +)) = \{I_{k,a} \mid k \in \mathbb{Z}^+, k \mid n, a \in \{0, 1, \dots, k-1\}, \frac{k}{(k,m)} \mid a \text{ and } (k,a) = 1\}.$$

Then it follows from Theorem 1.4(b) that

SMHom
$$((\mathbb{Z}_m, +), (\mathbb{Z}_n, +))| = |\{\langle k, a \rangle \mid k \in \mathbb{Z}^+, k \mid n, a \in \{0, 1, \dots, k-1\}, \frac{k}{(k, m)}| a \text{ and } (k, a) = 1\}|.$$

Claim that for $k \in \mathbb{Z}^+$ and $a \in \{0, 1, \dots, k-1\},\$

$$k \mid n, \ \frac{k}{(k,m)} \mid a \text{ and } (k,a) = 1 \iff k \mid (m,n) \text{ and } (k,a) = 1.$$

If $k \mid n, \frac{k}{(k,m)} \mid a$ and (k, a) = 1, then $k \mid n, k \mid a(k,m)$ and (k, a) = 1. This implies that $k \mid n$ and $k \mid (k, m)$, so $k \mid n$ and $k \mid m$. Hence $k \mid (m, n)$. The converse is evident. Consequently,

$$\begin{aligned} \left| \text{SMHom} \big((\mathbb{Z}_m, +), (\mathbb{Z}_n, +) \big) \right| \\ &= \left| \{ \langle k, a \rangle \mid k \in \mathbb{Z}^+, k \mid (m, n), a \in \{0, 1, \dots, k-1\} \text{ and } (k, a) = 1 \} \right| \\ &= \sum_{k \mid (m, n)} \phi(k) = (m, n). \end{aligned}$$

Example 2.9. It follows from Corollary 2.4 and Corollary 2.6 that

 $|\text{SMHom}((\mathbb{Z}_{12}, +), (\mathbb{Z}, +))| = 12 = |\text{SMHom}((\mathbb{Z}, +), (\mathbb{Z}_{12}, +))|.$

Then by Theorem 1.2(b) and Theorem 1.3(d), we have respectively that

$$\left|\left\{f \in \mathrm{MHom}((\mathbb{Z}_{12}, +), (\mathbb{Z}, +)) \mid f \text{ is not surjective}\right\}\right| = \aleph_0$$

and

$$|\{f \in \mathrm{MHom}((\mathbb{Z}, +), (\mathbb{Z}_{12}, +))| f \text{ is not surjective}\}| = \sum_{k|12} k - 12 = 28 - 12 = 16.$$

We have from Corollary 2.8 that

$$\mathrm{SMHom}((\mathbb{Z}_{12}, +), (\mathbb{Z}_{15}, +)) = (12, 15) = 3.$$

Hence by Theorem 1.4(d),

$$\left|\left\{f \in \mathrm{MHom}((\mathbb{Z}_{12}, +), (\mathbb{Z}_{15}, +)) \mid f \text{ is not surjective}\right\}\right| = \sum_{k|15} (k, 12) - 3 = 8 - 3 = 5$$

References

- W. C. Brown and F. Curtis, Numerical semigroups of maximal and almost maximal length, *Semigroup Forum*, 42(1991), 218–235.
- [2] O. Feichtinger, More on lower semi-continuity, Amer. Math. Monthly, 83 (1976), 39.
- [3] I. Niven, H. S. Zuckerman and H. L. Montgomery, An Introduction to the Theory of Numbers, John Wiley & Sons, New York, 1991.
- [4] R. E. Smithson, A characterization of lower semicontinuity, Amer. Math. Monthly, 75(1968), 505.
- [5] N. Triphop, A. Harnchoowong and Y. Kemprasit, Multihomomorphisms between cyclic groups, *Set-valued Mathematics and Applications*, to appear.
- [6] G. T. Whyburn, Continuity of multifunctions, Proc. Nat. Acad. Sciences, 54(1965), 1494–1501.

(Received 21 February 2006)

S. Nenthein Department of Mathematics Faculty of Science Chulalongkorn University Bangkok 10330, Thailand. e-mail : Sansanee.N@student.chula.ac.th

P. Lertwichitsilp Department of Mathematics Faculty of Science Kasetsart University Bangkok 10900, Thailand. e-mail : lpatch2@hotmail.com