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Surjective Multihomomorphisms
between Cyclic Groups

S. Nenthein and P. Lertwichitsilp

Abstract : A multifunction f from a group G into a group G′ is called a multi-
homomorphism if

f(xy) = f(x)f(y)
(
=

{
st | s ∈ f(x) and t ∈ f(y)

})

for all x, y ∈ G. Denote by MHom(G, G′) the set of all multihomomorphisms
from G into G′. We call f ∈ MHom(G,G′) a surjective multihomomorphism
if f(G) = G′ where f(G) = ∪

x∈G
f(x). The elements of MHom

(
(Z, +), (Z, +)

)
,

MHom
(
(Zn,+), (Z, +)

)
, MHom

(
(Z, +), (Zn, +)

)
and MHom

(
(Zm, +), (Zn, +)

)
have

been already characterized and counted. Our purpose is to characterize when these
multihomomorphisms are surjective. The cardinalities of the subsets of surjective
multihomomorphisms are also determined.
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1 Introduction

The cardinality of a set X is denoted by |X|. A multifunction from a nonempty
set X into a nonempty set Y is a function from X into P (Y )\{∅} where P (Y ) is
the power set of Y . For A ⊆ X, we let f(A) = ∪

x∈A
f(x).

Semicontinuity of multifunctions between two topological spaces has been stud-
ied by Whyburn [6], Smithson [4] and Feichtinger [2]. Triphop, Harnchoowong and
Kemprasit [5] have studied multifunctions in an algebraic sense. The definition
of multihomomorphisms between groups was given naturally in [5] as follows : A
multifunction f from a group G into a group G′ is a multihomomorphism if

f(xy) = f(x)f(y)
(
=

{
st | s ∈ f(x) and t ∈ f(y)

})
for all x, y ∈ G.

The set of all multihomomorphisms from G into G′ is denoted by MHom(G,G′).
Then MHom(G,G′) contains all homomorphisms from G into G′. We write MHom(G)
for MHom(G, G).

In [5], the authors characterized the elements of MHom(G,G′) and also de-
termined |MHom(G,G′)| where G and G′ are cyclic groups. It is well-known that
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every infinite cyclic group is isomorphic to (Z, +) and every finite cyclic group of
order n is isomorphic to (Zn, +) where (Z,+) and (Zn,+) are the additive group
of integers and the additive group of integers modulo n, respectively. Recall that

Zn =
{
[x]n | x ∈ Z

}
=

{
[0]n, [1]n, . . . , [n− 1]n

}
.

For a1, . . . , ak ∈ Z not all zero, let (a1, . . . , ak) denote the g.c.d. of a1, . . . , ak.
We let Z+ =

{
x ∈ Z | x > 0

}
, Z+

0 = Z+ ∪ {0}, Z− =
{
x ∈ Z | x < 0

}
and

Z−0 = Z−∪{0}. It is clearly seen that for a, b ∈ Z not both zero, aZ+ bZ = (a, b)Z
and aZn + bZn = (a, b)Zn. We note here that if k |n (k divides n), then |kZn| =
n

k
and kZn =

{
[0]n, [k]n, . . . ,

(n

k
− 1

)
[k]n

}
. Recall that the Euler φ-function is

defined by φ(1) = 1 and for k ∈ Z+ with k > 1, φ(k) is the number of positive
integers less than k and relatively prime to k. Hence

φ(k) =
∣∣∣
{
a ∈ {0, 1, . . . , k − 1

} | (a, k) = 1}
∣∣∣ for all k ∈ Z+.

It is known that
∑

k |n
φ(k) = n ([3], page 191).

An element f ∈ MHom(G, G′) is called a surjective multihomomorphism from
G into G′ if f(G) = G′, that is, ∪

x∈G
f(x) = G′. For convenience, let

SMHom(G, G′) =
{
f ∈ MHom(G, G′) | f is surjective

}
,

that is,
SMHom(G, G′) =

{
f ∈ MHom(G, G′) | f(G) = G′

}
,

and let SMHom(G) = SMHom(G,G).
Our purpose is to characterize the surjective multihomomorphisms in MHom

(Z, +), MHom
(
(Zn,+), (Z, +)

)
, MHom

(
(Z, +), (Zn, +)

)
and MHom

(
(Zm, +), (Zn, +)

)
and determine the cardinalities of SMHom(Z, +), SMHom

(
(Zn,+), (Z, +)

)
,

SMHom
(
(Z,+), (Zn, +)

)
and SMHom

(
(Zm, +), (Zn,+)

)
.

In the remainder, let n and m be positive integers. For a subsemigroup H of
(Z, +) containing 0 and a ∈ Z, define

FH,a(x) = ax + H for all x ∈ Z
and

CH([x]n) = H for all x ∈ Z.

If k, a ∈ Z, k 6= 0 and
k

(k, n)

∣∣ a, let

Dk,a([x]n) = ax + kZ for all x ∈ Z.

Also, for k, a ∈ Z, define

Gk,a(x) = [ax]n + kZn for all x ∈ Z,
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and for k, a ∈ Z with
(k, n)

(k, m, n)

∣∣ a, let

Ik,a([x]m) = [ax]n + kZn for all x ∈ Z.

The following results will be referred and they were proved in [5].

Theorem 1.1 ([5]) The following statements about MHom(Z,+) are true.

(a) MHom(Z, +) =
{
FH,a | H is subsemigroup of (Z,+) containing 0 and a ∈ Z

}
.

(b) |MHom(Z, +)| = ℵ0.

Theorem 1.2 ([5]) The following statements about MHom
(
(Zn, +), (Z, +)

)
are

true.

(a) MHom
(
(Zn, +), (Z,+)

)
=

{
CH | H is a subsemigroup of (Z,+) containing 0

}

∪ {
Dk,a | k, a ∈ Z, k 6= 0 and

k

(k, n)

∣∣ a
}
.

(b) |MHom((Zn,+), (Z, +))| = ℵ0.

Brown and Curtis [1] noted that every subsemigroup of (Z+
0 ,+) containing 0

is finitely generated. This fact is useful to obtain Theorem 1.1(b) and Theorem
1.2(b).

Theorem 1.3 ([5]) The following statements about MHom
(
(Z, +), (Zn, +)

)
are

true.

(a) MHom
(
(Z, +), (Zn,+)

)
=

{
Gk,a | k, a ∈ Z}

.

(b) If k, l ∈ Z+, k |n, l |n, a ∈ {0, 1, . . . , k− 1}, b ∈ {0, 1, . . . , l− 1} and Gk,a =
Gl,b, then k = l and a = b.

(c) MHom ((Z,+), (Zn,+)) =
{
Gk,a | k ∈ Z+, k |n and a ∈ {0, 1, . . . , k − 1}}.

(d)
∣∣MHom

(
(Z, +), (Zn,+)

)∣∣ =
∑

k∈Z+

k |n

k.

Theorem 1.4 ([5]) The following statements about MHom
(
(Zm, +), (Zn, +)

)
are

true.

(a) MHom
(
(Zm,+), (Zn, +)

)
=

{
Ik,a | k, a ∈ Z and

(k, n)
(k,m, n)

∣∣ a
}
.

(b) If k, l ∈ Z+, k |n, l |n, a ∈ {0, 1, . . . , k − 1}, b ∈ {0, 1, . . . , l − 1}, k

(k,m)

∣∣ a,

l

(l, m)

∣∣ b and Ik,a = Il,b, then k = l and a = b.
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(c) MHom ((Zm, +), (Zn, +)) =
{
Ik,a | k ∈ Z+, k |n, a ∈ {0, 1, . . . , k − 1} and

k

(k, m)

∣∣ a
}
.

(d)
∣∣MHom

(
(Zm, +), (Zn, +)

)∣∣ =
∑

k∈Z+

k |n

(k, m).

2 Surjective Multihomomorphisms

We shall characterize surjective multihomomorphisms between cyclic groups
by using the notations introduced above.

Theorem 2.1 Let H be a subsemigroup of (Z, +) containing 0 and a ∈ Z. Then
FH,a ∈ SMHom(Z,+) if and only if the following two statements are satisfied.

(i) a is relatively prime to some h ∈ H.

(ii) a = 0 implies H = Z.

Proof. We have FH,a(Z) = aZ+ H by the definition of FH,a. Assume that FH,a

is surjective. Then FH,a(Z) = aZ + H = Z, so as + h = 1 for some s ∈ Z and
h ∈ H. This implies that (a, h) = 1. If a = 0, then H = aZ+ H = Z.

Conversely, assume that (i) and (ii) hold. From (i), as + ht = 1 for some
s, t ∈ Z. If a = 0, then by (ii), H = Z, so FH,a(Z) = H = Z. Next, assume that
a 6= 0.

Case 1: t ≥ 0. Then ht ∈ H since H is a subsemigroup of (Z,+) and 0 ∈ H, so
1 = as+ht ∈ aZ+H. Hence for all x ∈ Z+

0 , x = asx+htx ∈ aZ+H. Let y ∈ Z−.
Since a 6= 0, y + ar ∈ Z+ for some r ∈ Z. From the above proof, y + ar ∈ aZ+ H
which implies that y ∈ aZ+ H − ar = aZ+ H.

Case 2: t < 0. Then −ht = h(−t) ∈ H, so −1 = −as + (−ht) ∈ aZ + H.
Consequently, for all x ∈ Z+

0 ,−x = −asx + (−htx) ∈ aZ + H. This shows that
x ∈ aZ + H for all x ∈ Z−0 . If y ∈ Z+, then y + ar ∈ Z− for some r ∈ Z since
a 6= 0. This implies that y + ar ∈ aZ+ H. Thus y ∈ aZ+ H − ar = aZ+ H.

From Case 1 and Case 2, aZ+ H = Z. Hence FH,a is surjective. ¤

Corollary 2.2 |SMHom(Z,+)| = ℵ0.

Proof. Note that FH,1(0) = H for every subsemigroup H of (Z,+) containing 0.
This implies FkZ,1 6= FlZ,1 for all distinct k, l ∈ Z+. By Theorem 2.1, FkZ,1 ∈
SMHom(Z, +) for every k ∈ Z. Then

|SMHom(Z,+)| ≥ ∣∣{FkZ,1 | k ∈ Z+}∣∣
= |Z+| = ℵ0.

But |MHom(Z,+)| = ℵ0 by Theorem 1.1(b), so we have |SMHom(Z, +)| = ℵ0. ¤
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Theorem 2.3 Let k, a ∈ Z be such that k 6= 0 and
k

(k, n)
| a. Then Dk,a ∈

SMHom ((Zn, +), (Z, +)) if and only if k and a are relatively prime.

Proof. We have that Dk,a(Zn) = aZ+kZ = (k, a)Z, and (k, a)Z = Z if and only
if (k, a) = 1. Hence Dk,a ∈ SMHom ((Zn,+), (Z, +)) if and only if (k, a) = 1. ¤

Corollary 2.4
∣∣SMHom

(
(Zn,+), (Z, +)

)∣∣ = n.

Proof. First, we note that for a subsemigroup H of (Z, +) containing 0, CH ∈
SMHom

(
(Zn, +), (Z,+)

)
if and only if H = Z. Also, we have that CZ = D1,0 and

(1, 0) = 1. Hence by Theorem 2.3, we have

SMHom
(
(Zn, +), (Z,+)

)
=

{
Dk,a | k, a ∈ Z, k 6= 0,

k

(k, n)

∣∣ a and (k, a) = 1
}
.

Let
K =

{
Dk,a | k ∈ Z+, k |n, a ∈ {0, 1, . . . , k − 1} and (k, a) = 1

}
.

To show that SMHom
(
(Zn,+), (Z, +)

)
= K, it is clear that K ⊆ SMHom

(
(Zn,+),

(Z, +)
)
. For the reverse inclusion, let k, a ∈ Z, k 6= 0,

k

(k, n)

∣∣ a and (k, a) = 1. Let

s, b ∈ Z be such that a = s|k|+ b and b ∈ {0, 1, . . . , |k| − 1}. Then

ax− bx = s|k|x ∈ |k|Z = kZ for all x ∈ Z

which implies that
ax + kZ = bx + |k|Z for all x ∈ Z.

By assumption, k | a(k, n) and (k, a) = 1. Then k | (k, n), so k |n. Hence |k| |n.
Since (|k|, a) = (k, a) = 1 and |k| | a− b, it follows that (|k|, b) = 1. Consequently,
Dk,a = D|k|,b ∈ K.

If k, l ∈ Z+, k |n, l |n, a ∈ {0, 1, . . . , k − 1} and b ∈ {0, 1, . . . , l − 1} are
such that Dk,a = Dl,b, then kZ = Dk,a([0]n) = Dl,b([0]n) = lZ and a + kZ =
Dk,a([1]n) = Dl,b([1]n) = b + lZ. It follows that k = l, |a − b| ∈ {0, 1, . . . , k − 1}
and 0 ≤ |a− b| ∈ kZ. Thus a− b = 0, so a = b. Hence
∣∣SMHom

(
(Zn, +),(Z, +)

)∣∣
=

∣∣{Dk,a | k ∈ Z+, k |n, a ∈ {0, 1, . . . , k − 1} and (k, a) = 1}
∣∣

=
∣∣{〈k, a〉 | k ∈ Z+, k |n, a ∈ {0, 1, . . . , k − 1} and (k, a) = 1}∣∣

=
∑

k |n
φ(k) = n

where 〈k, a〉 denotes the ordered pair of k and a. ¤

Theorem 2.5 For k, a ∈ Z, Gk,a ∈ SMHom ((Z, +), (Zn, +)) if and only if (k, n)
and a are relatively prime.
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Proof. By the definition of Gk,a, Gk,a(Z) = aZn + kZn.
First, assume that Gk,a ∈ SMHom((Z, +), (Zn,+)). Then aZn + kZn = Zn.

Then [1]n = [as+ kt]n for some s, t ∈ Z. Hence 1 = as+ kt+nl for some l ∈ Z. It

follows that as + (k, n)
( k

(k, n)
t +

n

(k, n)
l
)

= 1. This implies that ((k, n), a) = 1.

For the converse, assume that (k, n) and a are relatively prime. Then 1 =
as + (k, n)t for some s, t ∈ Z, and thus for every x ∈ Z, [x]n = [asx + (k, n)tx]n ∈
aZn + (k, n)Zn. Hence Zn = aZn + (k, n)Zn = aZn + kZn. Therefore Gk,a ∈
SMHom((Z,+), (Zn, +)), as desired. ¤

Corollary 2.6
∣∣SMHom

(
(Z,+), (Zn, +)

)∣∣ = n.

Proof. By Theorem 1.3(c),

MHom
(
(Z,+), (Zn, +)

)
=

{
Gk,a | k ∈ Z+, k |n and a ∈ {0, 1, . . . , k − 1}}.

From this fact and Theorem 2.5, we have

SMHom
(
(Z,+), (Zn, +)

)
=

{
Gk,a | k ∈ Z+, k |n, a ∈ {0, 1, . . . , k−1}, and (k, a) = 1

}
.

Hence by Theorem 1.3(b),
∣∣SMHom

(
(Z, +), (Zn,+)

)∣∣ =
∣∣{〈k, a〉 | k ∈ Z+, k |n, a ∈ {0, 1, . . . , k − 1}
and (k, a) = 1

}∣∣
=

∑

k |n
φ(k) = n.

¤

Theorem 2.7 Let k, a ∈ Z be such that
(k, n)

(k, m, n)

∣∣ a. Then Ik,a ∈ SMHom
(
(Zm, +), (Zn,+)

)
if and only if (k, n) and a are relatively prime.

Proof. We have from the definition of Ik,a that Ik,a(Zm) = aZn + kZn. The
remainder of the proof is exactly the same as that of Theorem 2.5. ¤

Corollary 2.8
∣∣SMHom

(
(Zm, +), (Zn, +)

)∣∣ = (m, n).

Proof. By Theorem 1.4(c),

MHom
(
(Zm, +), (Zn,+)

)
=

{
Ik,a | k ∈ Z+, k |n, a ∈ {0, 1, . . . , k−1} and

k

(k, m)

∣∣ a
}
.

This fact and Theorem 2.7 yield

SMHom
(
(Zm, +), (Zn,+)

)
=

{
Ik,a | k ∈ Z+, k |n, a ∈ {0, 1, . . . , k − 1},

k

(k, m)

∣∣ a and (k, a) = 1
}
.
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Then it follows from Theorem 1.4(b) that
∣∣SMHom

(
(Zm, +), (Zn, +)

)∣∣ =
∣∣{〈k, a〉 | k ∈ Z+, k |n, a ∈ {0, 1, . . . , k − 1},

k

(k, m)

∣∣ a and (k, a) = 1
}∣∣.

Claim that for k ∈ Z+ and a ∈ {0, 1, . . . , k − 1},

k |n,
k

(k,m)

∣∣ a and (k, a) = 1 ⇔ k|(m, n) and (k, a) = 1.

If k |n,
k

(k,m)

∣∣ a and (k, a) = 1, then k |n, k | a(k,m) and (k, a) = 1. This implies

that k |n and k | (k, m), so k |n and k |m. Hence k | (m,n). The converse is evident.
Consequently,

∣∣SMHom
(
(Zm, +), (Zn,+)

)∣∣
=

∣∣{〈k, a〉 | k ∈ Z+, k | (m,n), a ∈ {0, 1, . . . , k − 1} and (k, a) = 1}
∣∣

=
∑

k| (m,n)

φ(k) = (m,n).

¤

Example 2.9. It follows from Corollary 2.4 and Corollary 2.6 that
∣∣SMHom

(
(Z12, +), (Z,+)

)∣∣ = 12 =
∣∣SMHom

(
(Z, +), (Z12, +)

)∣∣ .

Then by Theorem 1.2(b) and Theorem 1.3(d), we have respectively that
∣∣{f ∈ MHom

(
(Z12,+), (Z, +)

) | f is not surjective
}∣∣ = ℵ0

and
∣∣{f ∈ MHom

(
(Z,+), (Z12, +)

) | f is not surjective
}∣∣ =

∑

k|12
k− 12 = 28− 12 = 16.

We have from Corollary 2.8 that
∣∣SMHom

(
(Z12, +), (Z15, +)

)∣∣ = (12, 15) = 3.

Hence by Theorem 1.4(d),

∣∣{f ∈ MHom
(
(Z12, +), (Z15, +)

) | f is not surjective
}∣∣ =

∑

k|15
(k, 12)−3 = 8−3 = 5.
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