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Abstract : In this article we prove that for 0 < p < ∞ if a double sequence
is strongly △m

v2
p

-Cesáro summable to L , then it is △m
v -statistically convergent to

L. If a bounded double sequence is △m
v -statistically convergent to L, then it is

strongly △m
v2

p

-Cesaro summable to L.
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1 Introduction

The difference sequence space X(△) was introduced by Kizmaz [1] as follows

X(△) = {x = (xk) ∈ ω : (△xk) ∈ X} for X = l∞, c and c0,

where △xk = xk − xk+1 for all k ∈ IN . Difference sequence spaces have been
studied by Colak and Et [2], Et [3], Et and Esi [4], Khan [5–7] and many others.
The definition of v-invariance of a sequence space X was given by Colak [8] as
follows:

Definition 1.1. Let v = {vk} be any sequence. A sequence space X is v-invariant

if Xv = X , where Xv = {x = (xk) : (vkxk) ∈ X}.
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The definition of v-invariance of the sequence space △m(X) was given by Isik
[9] as follows:

Definition 1.2. The sequence space △m(X) is v-invariant if

△m
v (X) = △m(X),

where △m
v (X) = {x = (xk) : (△m

v xk) ∈ X}, m ∈ IN,

△m
v xk =

m
∑

i=0

(−1)i

[

m
i

]

xk+ivk+i

and X is any sequence space (see Isik [9]).

Note that if X is linear space, then △m
v (X) is also a linear space.

Lemma 1.3. Let X and Y be sequence spaces, v = {vk}, m, n ∈ IN .

1. If X ⊂ Y , then △m
v (X) ⊂ △m

v (Y ) and the inclusion is strict.

2. If n < m, then △n
v (X) ⊂ △m

v (X) and the inclusion is strict.

Proof. See [9].

Let C1 be the Cesaro matrix of order 1, that is (C1)nk = 1/n for 0 ≤ k ≤ n
and 0 for k > n (n = 0, 1, . . .). For 0 < p < ∞ Maddox [10] defined the sets

w0
p = (c0)[C1]p =

{

x = (xk) ∈ ω : lim
n→∞

(

1

n

n
∑

k=1

|xk|
p

)

= 0

}

,

wp =
{

x = (xk) ∈ ω : x − le ∈ w0
p for some complex number ℓ

}

,

w∞

p = (l∞)[C1]p .

In the case X = wp, Isik have introduced △m
v (wp) in [9] as:

△m
v (wp) =

{

x = (xk) :
1

n

n
∑

k=1

|△m
v xk − L|p → 0, n → ∞, p > 0, for some L

}

.

If x ∈ △m
v (wp), then we say that x is strongly △m

vp
-Cesáro summable to L.

In this paper, we denote double sequence by (xjk). Double sequences have
been studied by Hardy [11], Moricz [12], Moricz and Rhoades [13], Tripathy [14]
and others.
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2 Main Results

In this paper, we define the concepts of △m
v -statistically convergent and strongly

Cesáro summable for double sequences as follows:

Definition 2.1. A sequence (xjk) is said to be △m
v -statistically convergent if there

is a complex number L such that

lim
r,n

1

rn
|{j ≤ r, k ≤ n : |△m

v xjk − L| ≥ ε}| = 0,

for every ε > 0.

Definition 2.2.

△m
v (w2

p) =
{

x = (xjk) :
1

rn

r
∑

j=1

n
∑

k=1

|△m
v xjk−L|p → 0, r, n → ∞, p > 0, for some L

}

where w2
p denote the space of all p-Cesáro summable double sequences. If x ∈

△m
v (w2

p), then we say that a double sequence x = (xjk) is strongly △m
v2

p

-Cesáro

summable to L.

Theorem 2.3. Let 0 < p < ∞. If a double sequence is strongly △m
v2

p

-Cesáro

summable to L, then it is △m
v -statistically convergent to L. If a bounded double

squennce is △m
v -statistically convergent to L, then it strongly △m

v2
p

-Cesáro sum-

mable to L.

Proof. Suppose that (xjk) ∈ △m
v (w2

p). Then for any ε > 0 we have

1

rn

r
∑

j=1

n
∑

k=1

|△m
v xjk − L|p ≥

1

rn
|{(j, k) : j ≤ r; k ≤ n and |△m

v xjk − L|p ≥ ε}|εp.

Taking as r, n → ∞ we have (xjk) is △m
v -statistically convergent to L.

Conversely suppose that (xjk) be bounded and △m
v -statistically convergent to

L and let H = ||B||∞ + |L|, where B = (xjk) be a double sequence. Let ε > 0,
then there exist m0, n0 such that

1

rn

∣

∣

∣

∣

{

(j, k) : j ≤ r; k ≤ n and |△m
v xjk − L| ≥

(ε

2

)1/p
}∣

∣

∣

∣

<
ε

2Hp

for all r > m0 and n > n0. Let

Lrn =
{

(j, k) : j ≤ r; k ≤ n and |△m
v xjk − L|p ≥

ε

2

}

.
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Now for all r > m0 and n > n0 we have

1

rn

r
∑

j=1

n
∑

k=1

|△m
v xjk − L|p =

1

rn







∑ ∑

(j,k)∈Lrn

|△m
v xjk − L|p







+
1

rn



























∑

(j, k) ∈ Lrn

j ≤ r, k ≤ n

∑

|△m
v xjk − L|p



























<
1

rn

{

rn
ε

2Hp
Hp + rn

ε

2

}

< ε.

Hence (xjk) is strongly △m
v2

p

-Cesáro summable to L.

Corollary 2.4. Let 0 < p < q < ∞. Then

△m
v (w2

q) ⊆ △m
v (w2

p)

and

△m
v (w2

p) ∩△m
v l2

∞
= △m

v (w2
q) ∩△m

v l2
∞

,

where l2
∞

denote the space of bounded double sequences.

Corollary 2.5. If a bounded double sequence is △m
v -statistically convergent to L,

then it is △m
v2

p

-Cesáro summable to L.
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