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Abstract : We prove the existence of common fixed points for a pair of weakly
compatible selfmaps satisfying Ćirić type weak contractions in cone metric spaces
where the underlying cone is neither regular nor normal. Our theorems extend
the results of Choudhury and Metiya [B.S. Choudhury, N. Metiya, Fixed points
of weak contractions in cone metric spaces, Nonlinear Anal. 72 (2010) 1589–1593]
to non-normal cones. Several examples are provided in support of our results.
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1 Introduction

In 2007, Huang and Zhang [1] introduced cone metric spaces by using ordered
Banach space instead of the set of real numbers as a codomain, and established
Banach contraction principle and some other common fixed point theorems in
cone metric spaces where the underlying cone is normal. Later, many authors
[2–4] proved common fixed point theorems in cone metric spaces.
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In 2011, Jankovic et al. [5] has shown that all fixed point results in cone metric
spaces obtained recently, in which the underlying cone is assumed to be normal,
can be reduced to the corresponding results in metric spaces. They have also
shown that when the underlying cone is non-normal and solid this is not possible.
Also, in recent papers by Du [6] and Amini-Harindi and Fakhar [7] it has been
shown that fixed point results in the setting of cone metric spaces in which linear
contractive conditions appear can be reduced to the respective results in the metric
setting via scalarization method.

In this paper, we use non-linear contractive conditions in cone metric spaces
and establish the existence of point of coincidence and common fixed point theo-
rems for a pair of weakly compatible selfmaps without assuming the normality of
the cone.

Throughout this paper, let R+ denote [0, ∞) and Z+, the set of all positive
integers.

Let E be a real Banach space and P a subset of E. Then P is called a cone if

(i) P is closed, non-empty and P 6= {0};

(ii) a, b ∈ R, a, b ≥ 0 and x, y ∈ P implies ax+ by ∈ P ; and

(iii) P ∩ (−P ) = {0}.

Given a cone P ⊆ E, we define a partial order ‘≤’ with respect to P by “x ≤ y
if and only if y − x ∈ P”. We write “x < y” to denote “x ≤ y but x 6= y” and
“x≪ y” means “y − x ∈ intP”, where intP denotes the interior of P .

A cone P is called normal if there exists a number K > 0 such that for all
x, y ∈ E, 0 ≤ x ≤ y implies ‖x‖ ≤ K‖y‖. The least positive number K satisfying
the above inequality is called the normal constant of P . There are no normal
cones with normal constant K < 1, see [8].

A cone P is said to be regular if every increasing sequence which is bounded
from above is convergent, i.e., if {xn} is a sequence such that x1 ≤ x2 ≤ · · · ≤
xn ≤ · · · ≤ y, for some y ∈ E, then there exists x in E such that ‖ xn− x ‖→ 0 as
n→ ∞.

Equivalently, P is regular if and only if every decreasing sequence which is
bounded from below is convergent.

Every regular cone is normal but it’s converse need not be true [8].
A cone P ⊆ E is said to be solid if intP 6= ∅ [3]. There are ordered Banach

spaces with cone P which is not normal but solid.

Example 1.1 ([8]). Let E = C′

R[0, 1] with ‖f‖ = ‖f‖∞ + ‖f ′‖∞ and P = {f ∈
E/f ≥ 0}. Then P is a non-normal cone with intP 6= ∅.

Definition 1.2. Let X be a non-empty set. If a mapping d : X×X → E satisfies
the following conditions

(i) 0 ≤ d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y,

(ii) d(x, y) = d(y, x) for all x, y ∈ X , and
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(iii) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X ,

then d is called a cone metric on X , and (X, d) is called a cone metric space.

Definition 1.3. Let (X, d) be a cone metric space. Let {xn} be a sequence in X
and x ∈ X . Then we say that {xn} is a

(i) convergent sequence in X , if for every c ∈ E with 0 ≪ c there is an N ∈ Z+

such that d(xn, x) ≪ c for all n > N . We denote it by limn→∞ xn = x or
xn → x as n→ ∞.

(ii) Cauchy sequence in X , if for every c ∈ E with 0 ≪ c there is an N ∈ Z+

such that d(xn, xm) ≪ c for all m, n > N .

A cone metric space (X, d) is said to be complete if every Cauchy sequence in
X is convergent in X .

Remark 1.4. Let E be an ordered Banach space with cone P . Then

(1) if u ≤ v and v ≪ w then u≪ w;

(2) if u≪ v and v ≪ w then u≪ w;

(3) if 0 ≤ u≪ c for each c ∈ intP , then u = 0;

(4) c ∈ intP if and only if [−c, c] is a neighborhood of 0;

(5) if P is a solid cone and if a sequence {xn} is convergent in a cone metric
space (X, d), then the limit of {xn} is unique.

Remark 1.5. If u ≤ v + c for each c ∈ intP then u ≤ v.

Proof. Let c ∈ intP . Then 1
n
c ∈ intP for each n ∈ Z+. Hence by our assumption

u ≤ v + 1
n
c for each n ∈ Z+ i.e., v + 1

n
c− u ∈ P . Now, on letting n tends to ∞,

we get v − u ∈ P . Hence u ≤ v.

In 2010, Choudhury and Metiya [9] established the following fixed point the-
orem for a weakly contractive map in cone metric spaces with regular cone.

Theorem 1.6. Let (X, d) be a complete cone metric space with regular cone P
such that d(x, y) ∈ intP for x, y ∈ X with x 6= y. Let T : X → X be a mapping
satisfying the inequality

d(x, y) ≤ d(x, y) − ϕ(d(x, y)) for each x, y ∈ X

where ϕ : intP ∪{0} → intP ∪{0} is continuous and monotone increasing function
with

(i) ϕ(t) = 0 if and only if t = 0;

(ii) ϕ(t) ≪ t, for t ∈ intP ;

(iii) either ϕ(t) ≤ d(x, y) or d(x, y) ≤ ϕ(t), for t ∈ intP ∪ {0} and x, y ∈ X.
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Then T has a unique fixed point in X.

Definition 1.7. Let X be any nonempty set. Let f, g be selfmaps of X . Then
the pair (f, g) is said to be weakly compatible if fgx = gfx whenever fx = gx,
x ∈ X .

In 2011, Arandjelovic et al. [10] defined a comparison function in cone metric
spaces and established the following fixed point theorem.

Theorem 1.8. Let (X, d) be a complete cone metric space with solid cone P . Let
(f, g) be a pair of weakly compatible self mappings on X such that

d(fx, fy) ≤ ϕ(u), for x, y ∈ X

where u ∈ {d(gx, gy), d(fx, gx), d(fy, gy)} and ϕ : P → P is a function such that

(i) k1 ≤ k2 implies ϕ(k1) ≤ ϕ(k2);

(ii) ϕ(0) = 0 and 0 < ϕ(k) < k for k ∈ P r {0};

(iii) k ∈ intP implies k − ϕ(k) ∈ intP ; and

(iv) if k ∈ P r {0} and c ∈ intP , then there exists n0 ∈ Z+ such that ϕn(k) ≪ c
for each n ≥ n0.

Suppose that f(X) ⊆ g(X) and that either f(X) or g(X) is a complete subspace
of X. Then the mappings f and g have a unique common fixed point in X.

Definition 1.9. Let (X, d) be a cone metric space with cone P . Suppose that
f and g are selfmaps of X such that f(X) ⊆ g(X). Let x0 ∈ X . Then we can
construct the sequences {xn} and {yn} in X such that yn = fxn = gxn+1, n =
0, 1, 2, . . . .

We say that the pair (f, g) is asymptotically regular at x0 if for each c ∈ intP
there exists n0 ∈ Z+ such that d(yn, yn+1) ≪ c ∀ n ≥ n0.

If the pair (f, g) is asymptotically regular at each point of X then we say that
(f, g) is asymptotically regular on X . If g = IX , the identity map on X , then
clearly f is asymptotically regular on X .

Example 1.10. Let E = C′

R[0, 1] with supremum norm and P = {x ∈ E/x ≥ 0}.
Let X = [0, 1] and d : X × X → E be defined by d(x, y) = |x − y|ϕ, ϕ(t) =

et, t ≥ 0. We define f, g : X → X by f(x) = x2

2 and g(x) = x
2 . Let x0 ∈ X.

Since f(X) ⊆ g(X), we can construct the sequences {xn} and {yn} such that

yn = fxn = gxn+1, n = 0, 1, 2, . . . . where yn =
(x2

o

2

)2n

, n = 0, 1, 2, . . . . Then

d(yn, yn+1) = |
(x2

o

2

)2n

−
(x2

o

2

)2n+1

| → 0 as n tends to ∞, because x0 ≤ 1. Hence
(f, g) is asymptotically regular on X.

Definition 1.11 ([11]). Let (X, d) be a cone metric space with cone P . Then
the pair of selfmaps (f, g) of X is said to satisfy property (E. A) if there exists a
sequence {xn} in X and a point z in X such that limn→∞ fxn = limn→∞ gxn = z.
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Remark 1.12. Asymptotic regularity and property (E. A) are independent of each
other.

Example 1.13. Let X = [0,∞). E,P and d be as in Example 1.10. We define
f, g : X → X by f(x) = x

2 and g(x) = x
3 . Then the pair (f, g) satisfies property (E.

A) with the sequence {xn} defined by xn = 1
n
, n = 1, 2, 3, . . . . But the pair (f, g)

is not asymptotically regular on X. For, let x0 = 1
2 . Since f(X) ⊆ g(X), we can

construct the sequences {xn} and {yn} such that yn = fxn = gxn+1 = 1
4

(

3
2

)n
, n =

0, 1, 2, . . . . Here we observe that d(yn, yn+1) = 1
8

(

3
2

)n
et → ∞ as n→ ∞.

Example 1.14. Let E and P be as in Example 1.10. Let X = {x1, x2, x3, . . .}

where xn =
n
∑

i=1

1
i
. We define d : X × X → E by d(x, y) = |x − y|ϕ, ϕ(t) = et,

t ≥ 0. We define f, g : X → X by f(xn) = xn+1 and g(xn) = xn, n = 1, 2, 3, . . . .
Then f(X) ⊆ g(X) and so we construct a sequence {yn} in X such that yn =
fxn = gxn+1, n = 0, 1, 2, . . . . Now, d(yn, yn+1) = 1

n+1ϕ → 0 as n → ∞. Hence
(f, g) is asymptotically regular on X. Here we observe that the pair (f, g) does not
satisfy property (E. A), because for any sequence {xn} in X the sequences {fxn}
and {gxn} diverge to ∞.

Ćirić et al. [12] defined Ćirić type weak contractions on metric spaces and
proved a common fixed point theorem for maps satisfying Ćirić type weak con-
traction.

Definition 1.15. Let (X, d) be a metric space and f, T be selfmaps of X . Then T
is said to be a Ćirić type f-weak contraction if there exists a mapping ϕ : R+ → R+

satisfying

(i) ϕ(t) > 0 for all t > 0,

(ii) lims→t+ ϕ(s) > 0 for all t > 0,

(iii) t− ϕ(t) is non-decreasing,

(iv) limt→∞ ϕ(t) = ∞,

such that
d(Tx, T y) ≤M(x, y) − ϕ(M(x, y)) ∀ x, y ∈ X

where M(x, y) = max{d(fx, fy), d(fx, Tx), d(fy, T y), d(fx, T y), d(fy, Tx)}.

Theorem 1.16 ([12]). Let K be a subset of a metric space (X, d) and let f and
T be self mappings of K. Assume that clT (K) ⊆ f(K), clT (K) is complete and
T is a Ćirić type f -weak contraction. Then T and f have a unique coincidence
point in K. If, in addition, the pair (f, T ) is weakly compatible then T and f have
a unique common fixed point in K. Here clT (K) denotes the closure of T (K).

In this paper, we prove common fixed point theorems for Ćirić type weak con-
tractions in cone metric spaces where the underlying cone is neither regular nor
normal, using asymptotic regularity (Theorem 2.1) and property (E. A) (Theorem
2.9). These results extend Theorem 1.6 to non-normal cones. Also, we prove a
common fixed point theorem (Theorem 2.11) which improves Theorem 1.8. Sup-
porting examples are provided to the results established in this paper.
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2 Main Results

Theorem 2.1. Let (X, d) be a cone metric space with solid cone P . Suppose
that f and g are selfmaps of X such that f(X) ⊆ g(X) and the pair (f, g) is
asymptotically regular at some point x0 ∈ X. Suppose that there exists a mapping
ϕ : P → P satisfying ϕ is continuous, ϕ(0) = 0 and ϕ(t) > 0 for t ∈ P r {0} such
that

d(fx, fy) ≤ P (x, y) − ϕ(P (x, y)) for all x, y ∈ X, (2.1.1)

where P (x, y) ∈ {d(gx, gy), d(fx, gx), d(fy, gy), d(fx, gy), d(fy, gx)}. If either
f(X) or g(X) is a complete subspace of X then f and g have a unique point
of coincidence. Moreover, if the pair (f, g) is weakly compatible then f and g have
a unique common fixed point in X.

Proof. Let x0 ∈ X . Since f(X) ⊆ g(X) there exists x1 ∈ X such that fx0 =
gx1 = y0 (say). Having defined yn, we define

yn+1 = fxn+1 = gxn+2, n = 0, 1, 2, . . . .

Since (f, g) is asymptotically regular at x0, for each c ∈ intP there exists n0 ∈ Z+

such that d(yn, yn+1) ≪ c ∀ n ≥ n0. We now show that {yn} is a Cauchy sequence
in X . Fix a positive integer n such that n ≥ n0. We first show that

d(yn, yn+p) ≪ c for each c ∈ intP and p = 1, 2, 3, . . . . (2.1.2)

By induction. Clearly (2.1.2) holds with p = 1. We suppose that (2.1.2) is
true for some k. Hence, we have d(yn, yn+k) ≪ c for each c ∈ intP . Now consider,

d(yn, yn+k+1) ≤ d(yn, yn+1) + d(yn+1, yn+k+1)

= d(yn, yn+1) + d(fxn+1, fxn+k+1)

≤ d(yn, yn+1) + P (xn+1, xn+k+1) − ϕ(P (xn+1, xn+k+1)) (2.1.3)

where

P (xn+1, xn+k+1) ∈ {d(gxn+1, gxn+k+1), d(fxn+1, gxn+1), d(fxn+k+1, gxn+k+1),

d(fxn+1, gxn+k+1), d(fxn+k+1, gxn+1)}

= {d(yn, yn+k), d(yn+1, yn), d(yn+k+1, yn+k), d(yn+1, yn+k),

d(yn, yn+k+1)}.

For infinitely many n, we get the following five cases:

Case (i): P (xn+1, xn+k+1) = d(yn, yn+k). Then (2.1.3) implies

d(yn, yn+k+1) ≤ d(yn, yn+1) + d(yn, yn+k) − ϕ(d(yn, yn+k))

≤ d(yn, yn+1) + d(yn, yn+k)

≪
c

2
+
c

2
= c.
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Hence, d(yn, yn+k+1) ≪ c for each c ∈ intP .

Case (ii): P (xn+1, xn+k+1) = d(yn, yn+1). Now (2.1.3) implies

d(yn, yn+k+1) ≤ d(yn, yn+1) + d(yn+1, yn) − ϕ(d(yn+1, yn))

≤ d(yn, yn+1) + d(yn, yn+1)

≪
c

2
+
c

2
= c.

Therefore, d(yn, yn+k+1) ≪ c for each c ∈ intP .

Case (iii): P (xn+1, xn+k+1) = d(yn+k+1, yn+k). Then (2.1.3) implies

d(yn, yn+k+1) ≤ d(yn, yn+1) + d(yn+k+1, yn+k) − ϕ(d(yn+k+1, yn+k))

≤ d(yn, yn+1) + d(yn+k+1, yn+k)

≪
c

2
+
c

2
= c.

Therefore, d(yn, yn+k+1) ≪ c for each c ∈ intP .

Case (iv): P (xn+1, xn+k+1) = d(yn+1, yn+k). Therefore from (2.1.3), we get

d(yn, yn+k+1) ≤ d(yn, yn+1) + d(yn+1, yn+k) − ϕ(d(yn+1, yn+k))

≤ d(yn, yn+1) + d(yn+1, yn+k)

≤ d(yn, yn+1) + d(yn+1, yn) + d(yn, yn+k)

≪
c

3
+
c

3
+
c

3
= c.

Hence, d(yn, yn+k+1) ≪ c for each c ∈ intP .

Case (v): P (xn+1, xn+k+1) = d(yn, yn+k+1). Now (2.1.3) implies

d(yn, yn+k+1) ≤ d(yn, yn+1) + d(yn, yn+k+1) − ϕ(d(yn, yn+k+1)).

This implies ϕ(d(yn, yn+k+1)) ≤ d(yn, yn+1) ≪ c. Hence 0 ≤ ϕ(d(yn, yn+k+1)) ≪
c for each c ∈ intP . Therefore, from Remark 1.4 (3), we get ϕ(d(yn, yn+k+1)) = 0
which implies that d(yn, yn+k+1) = 0. Hence d(yn, yn+k+1) ≪ c for each c ∈ intP .

From all the above five cases, we conclude that d(yn, yn+k+1) ≪ c for each
c ∈ intP . Hence (2.1.2) holds for each p = 1, 2, 3, . . . . Therefore {yn} is a Cauchy
sequence in X .

Suppose that g(X) is a complete subspace of X . Hence there exists z ∈ g(X)
such that

lim
n→∞

yn = lim
n→∞

fxn = lim
n→∞

gxn+1 = z.

Since z ∈ g(X), there exists u ∈ X such that z = gu.
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We show that
fu = z (2.1.4)

Now,

d(fu, z) ≤ d(fu, fxn) + d(fxn, z)

≤ P (u, xn) − ϕ(P (u, xn) + d(fxn, z) (2.1.5)

where

P (u, xn) ∈ {d(gu, gxn), d(fu, gu), d(fxn, gxn), d(fu, gxn), d(fxn, gu)}

= {d(z, gxn), d(fu, z), d(fxn, gxn), d(fu, gxn), d(z, fxn)}.

For infinitely many n we get the following cases:

Case 1: P (u, xn) = d(z, gxn). Then from (2.1.5), we get

d(fu, z) ≤ d(z, gxn) − ϕ(d(z, gxn)) + d(fxn, z)

≤ d(z, gxn) + d(fxn, z)

≪
c

2
+
c

2
for eachn ≥ n0 = n0(c)

= c.

Hence 0 ≤ d(fu, z) ≪ c for each c ∈ intP . Therefore d(fu, z) = 0.

Case 2: P (u, xn) = d(fu, z). Then from (2.1.5), we get

d(fu, z) ≤ d(fu, z)− ϕ(d(fu, z)) + d(fxn, z).

This implies ϕ(d(fu, z)) ≤ d(fxn, z) ≪ c for each n ≥ n0 = n0(c) Hence 0 ≤
d(fu, z) ≪ c for each c ∈ intP . Therefore ϕ(d(fu, z)) = 0 so that d(fu, z) = 0.

Case 3: P (u, xn) = d(fxn, gxn). Then from (2.1.5), we get

d(fu, z) ≤ d(fxn, gxn) − ϕ(d(fxn, gxn)) + d(fxn, z)

≤ d(fxn, gxn) + d(fxn, z)

≤ d(fxn, z) + d(z, gxn) + d(fxn, z)

≪
c

3
+
c

3
+
c

3
for eachn ≥ n0 = n0(c)

= c.

Hence 0 ≤ d(fu, z) ≪ c for each c ∈ intP . Therefore d(fu, z) = 0.

Case 4: P (u, xn) = d(fu, gxn). Then from (2.1.5), we get

d(fu, z) ≤ d(fu, gxn) − ϕ(d(fu, gxn)) + d(fxn, z)

≤ d(fu, z) + d(z, gxn) − ϕ(d(fu, gxn)) + d(fxn, z).
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This implies,

ϕ(d(fu, gxn)) ≤ d(z, gxn) + d(fxn, z)

≪
c

2
+
c

2
for eachn ≥ n0 = n0(c)

= c.

Therefore for each c ∈ intP there exists n0 = n0(c) ∈ Z+ such that ϕ(d(fu, gxn)) ≪
c for all n ≥ n0, i.e., limn→∞ ϕ(d(fu, gxn)) = 0. Since ϕ is continuous, we get
limn→∞ d(fu, gxn) = 0. Hence, limn→∞ gxn = fu. Therefore, fu = z.

Case 5: P (u, xn) = d(z, fxn). Then from (2.1.5), we get

d(fu, z) ≤ d(z, fxn) − ϕ(d(z, fxn)) + d(fxn, z)

≤ d(z, fxn) + d(fxn, z)

≪
c

2
+
c

2
for eachn ≥ n0 = n0(c)

= c.

Hence 0 ≤ d(fu, z) ≪ c for each c ∈ intP . Therefore d(fu, z) = 0.

Hence from all the above cases we get fu = z so that (2.1.4) holds. Therefore,
fu = gu = z. That is z is a point of coincidence of f and g. We now show that
this z is unique. Now suppose that there exist u′, z′ ∈ X such that fu′ = gu′ = z′.
Then

d(z, z′) = d(fu, fu′) ≤ P (u, u′) − ϕ(P (u, u′)),

where

P (u, u′) = {d(gu, gu′), d(fu, gu), d(fu′, gu′), d(fu, gu′), d(fu′, gu)}

= {d(z, z′), 0, 0, d(z, z′), d(z, z′)}

= {0, d(z, z′)}.

If P (u, u′) = 0 then d(z, z′) = 0 so that z = z′. If P (u, u′) = d(z, z′) then
d(z, z′) ≤ d(z, z′)−ϕ(d(z, z′)). Hence ϕ(d(z, z′)) = 0 which implies that d(z, z′) =
0. Therefore z is the unique point of coincidence of f and g.

If (f, g) is weakly compatible then fz = fgu = gfu = gz = w (say). That is
w is a point of coincidence of f and g. But since z is a unique point of coincidence
of f and g, we have w = z. Hence fz = gz = z. Therefore z is a unique common
fixed point of f and g.

Now, if f(X) is complete, since f(X) ⊆ g(X) there exists z ∈ g(X) such that
limn→∞ yn = limn→∞ fxn = limn→∞ gxn+1 = z, and the proof in this case is
similar as above.

The following results follow as corollaries to Theorem 2.1.
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Corollary 2.2. Let (X, d) be a cone metric space with solid cone P . Suppose
that f and g are selfmaps of X such that f(X) ⊆ g(X) and the pair (f, g) is
asymptotically regular at some point x0 ∈ X. Suppose that there exists a mapping
ϕ : P → P satisfying ϕ is continuous, ϕ(0) = 0 and ϕ(t) > 0 for t ∈ P r {0} such
that

d(fx, fy) ≤ d(gx, gy) − ϕ(d(gx, gy)) for each x, y ∈ X.

If either f(X) or g(X) is a complete subspace of X then f and g have a unique
point of coincidence. Moreover, if the pair (f, g) is weakly compatible then f and
g have a unique common fixed point in X.

Corollary 2.3. Let (X, d) be a complete cone metric space with solid cone P .
Suppose that f is a selfmap of X which is asymptotically regular at some point
x0 ∈ X. Suppose that there exists a mapping ϕ : P → P satisfying ϕ is continuous,
ϕ(0) = 0 and ϕ(t) > 0 for t ∈ P r {0} such that

d(fx, fy) ≤ P (x, y) − ϕ(P (x, y)) for all x, y ∈ X, (2.3.1)

where P (x, y) ∈ {d(x, y), d(x, fx), d(y, fy), d(x, fy), d(y, fx)}. Then f has a unique
fixed point in X.

Proof. The conclusion of this corollary follows by taking g = IX , the identity map
on X , in Theorem 2.1.

Corollary 2.4. Let (X, d) be a complete cone metric space with solid cone P .
Suppose that f is a selfmap of X which is asymptotically regular at some point
x0 ∈ X. Suppose that there exists a mapping ϕ : P → P satisfying ϕ is continuous,
ϕ(0) = 0 and ϕ(t) > 0 for t ∈ P r {0} such that

d(fx, fy) ≤ d(x, y) − ϕ(d(x, y)) for all x, y ∈ X, (2.4.1)

Then f has a unique fixed point in X.

Proof. By taking u = d(x, y), in Corollary 2.3, the conclusion of this corollary
follows.

Remark 2.5. Corollary 2.4 extends Theorem 1.6 to non-normal cones. Also,
properties (ii), (iii) and monotone increasing property of ϕ in Theorem 1.6 can be
relaxed.

Example 2.6. Let E = C′

R[0, 1] with ‖x‖ = ‖x‖∞ + ‖x′‖∞ and P = {x ∈ E/x ≥
0}. Then P is a non-normal solid cone. Let X = [0, 1]. We define d : X×X → E
by d(x, y) = |x− y|ψ, ψ(t) = et, t ≥ 0. We define f : X → X by

fx =







x2

4 , if x ∈ [0, 1
2 ]

x
2 , if x ∈ (1

2 , 1].
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Then f is asymptotically regular at each point on X. We define ϕ : P → P by

ϕ(x(t)) = x(t)
4 , x(t) ≥ 0. We now show that f satisfies (2.3.1).

Case (i): x, y ∈ [0, 1
2 ]. In this case, d(fx, fy) = 1

4 |x
2 − y2|ψ and d(x, y) =

|x− y|ψ. Now

d(fx, fy) =
1

4
|x2 − y2|ψ =

1

4
|x+ y||x− y|ψ

<
3

4
|x− y|ψ

= |x− y|ψ − ϕ(|x − y|ψ)

= d(x, y) − ϕ(d(x, y)).

Case (ii): x ∈ [0, 1
2 ], y ∈ (1

2 , 1]. In this case d(fx, fy) = |x
2

4 − y

2 |ψ and

d(y, fx) = (y − x2

4 )ψ. Now

d(fx, fy) = |
x2

4
−
y

2
|ψ =

1

2
(y −

x2

2
)ψ ≤

1

2
(y −

x2

4
)ψ

<
3

4
(y −

x2

2
)ψ

= d(y, fx) − ϕ(d(y, fx))

Case (iii): x, y ∈ (1
2 , 1]. In this case d(fx, fy) = 1

2 |x − y|ψ and d(x, y) =
|x− y|ψ. Now

d(fx, fy) =
1

2
|x− y|ψ <

3

4
|x− y|ψ = |x− y|ψ − ϕ(|x − y|ψ)

= d(x, y) − ϕ(d(x, y)).

Hence from all the above cases, it is clear that (2.3.1) holds and 0 is the unique
fixed point of f . Further, we observe that when x = 1

2 and y = 3
4 , d(fx, fy) = 5

16
and d(x, y) = 1

4 so that (1.6.1) does not hold for any ϕ. Hence Theorem 1.6 is not
applicable.

One more example in this direction is the following.

Example 2.7. Let E,P,X and d be as in Example 2.6. We define f, g : X → X
and ϕ : P → P by

fx =







x
4 , if x ∈ [0, 1)

1
5 , if x = 1.

and ϕ(x(t)) =
x(t)2

ψ(t) + x(t)
, x(t) ≥ 0.

Then f is asymptotically regular at each point on X. We now verify the inequality
(2.3.1). Since (2.3.1) is symmetric in x, y we consider only the following cases.
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Case (i): x, y ∈ [0, 1). In this case d(fx, fy) = 1
4 |x−y|ψ and d(x, y) = |x−y|ψ

so that

d(fx, fy) =
1

4
|x− y|ψ < |x− y|ψ −

(|x − y|ψ)2

ψ + |x− y|ψ
= d(x, y) − ϕ(d(x, y)).

Case (ii): x ∈ [0, 1), y = 1. In this case d(fx, fy) = |x4−
1
5 |ψ and d(y, fy) = 4

5 .
Therefore,

d(fx, fy) = |
x

4
−

1

5
|ψ ≤

4

5
−

(4
5 )2

ψ + 4
5ψ

= d(y, fy) − ϕ(d(y, fy).

Case (iii): x = 1, y = 1. In this case d(fx, fy) = 0 so that (2.3.1) holds.

Hence all the hypotheses of Corollary 2.3 hold and 0 is the unique fixed point
of f . Further, with x = 24

25 and y = 1, we get d(fx, fy) = 1
25 and d(x, y) = 1

25 so
that (1.6.1) does not hold for any ϕ. Hence Theorem 1.6 is not applicable.

The following is an example in support of Theorem 2.1.

Example 2.8. Let E,P and d be as in Example 2.6. Let X = (0, 1]. We define
f, g : X → X and ϕ : P → P by

fx =























2
5 , if x ∈ (0, 2

3 )

1 − x
2 , if x ∈ [23 , 1)

23
30 , if x = 1.

and gx =







23
30 , if x ∈ (0, 2

3 )

4
3 − x, if x ∈ [23 , 1].

and ϕ(x(t)) = x(t)2

4ψ(t) , x(t) ≥ 0. Here f(X) = { 2
5 ,

23
30} ∪ (1

2 ,
2
3 ] and g(X) = { 23

30} ∪

[13 ,
2
3 ] so that f(X) ⊂ g(X) and g(X) is complete subspace of X. We now verify

the inequality (2.1.1). Since (2.1.1) is symmetric in x, y we consider only the
following cases.

Case (i): x, y ∈ (0, 2
3 ). In this case d(fx, fy) = 0 so that (2.1.1) holds

obviously.

Case (ii): x ∈ (0, 2
3 ), y ∈ [23 , 1). In this case d(fx, fy) = (3

5 − y

2 )ψ and
d(fx, gx) = 11

30ψ. Now

d(fx, fy) = (
3

5
−
y

2
)ψ <

11

30
ψ −

(11
30ψ)2

4ψ
= d(fx, gx) − ϕ(d(fx, gx)).

Case (iii): x ∈ (0, 2
3 ), y = 1. In this case d(fx, fy) = 11

30ψ and d(gx, gy) =
13
30ψ. Now

d(fx, fy) =
11

30
ψ ≤

13

30
ψ −

(13
30ψ)2

4ψ
= d(gx, gy) − ϕ(d(gx, gy)).
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Case (iv): x, y ∈ [23 , 1). In this case d(fx, fy) = 1
2 |x − y|ψ and d(gx, gy) =

|x− y|ψ so that

d(fx, fy) =
1

2
|x− y|ψ < |x− y|ψ −

(|x− y|ψ)2

4ψ
= d(gx, gy) − ϕ(d(gx, gy)).

Case (v): x ∈ [23 , 1), y = 1. In this case d(fx, fy) = (x2−
7
30 )ψ and d(fy, gy) =

13
30ψ. Now

d(fx, fy) = (
x

2
−

7

30
)ψ <

13

30
ψ −

(13
30ψ)2

4ψ
= d(fy, gy)− ϕ(d(fy, gy)).

Case (vi): x = 1, y = 1. In this case d(fx, fy) = 0 so that (2.1.1) holds
obviously.

Hence all the hypotheses of Theorem 2.1 hold and 2
3 is the unique common

fixed point of f and g.

We now relax the containment relation f(X) ⊆ g(X) of range spaces and
asymptotic regularity of the pair (f, g) in Theorem 2.1 and by imposing property
(E. A) and prove the following theorem.

Theorem 2.9. Let (X, d) be a cone metric space with solid cone P . Suppose
that f and g are selfmaps of X satisfying (2.1.1) and suppose that the pair (f, g)
satisfies property (E. A). If g(X) is closed subspace of X then f and g have a
unique point of coincidence. Moreover, if the pair (f, g) is weakly compatible then
f and g have a unique common fixed point in X.

Proof. Since the pair (f, g) satisfies property (E. A), there exists a sequence {xn}
in X and a point z in X such that limn→∞ fxn = limn→∞ gxn = z. Since g(X)
is a closed subspace of X there exists u in X such that gu = z. We show that
fu = z. From here onwards we proceed on the similar lines from (2.1.4) as in the
proof of Theorem 2.1, and the conclusion follows.

The following is an example in support of Theorem 2.9.

Example 2.10. Let E,P,X and d be as in Example 2.8. We define f, g : X → X
and ϕ : P → P by

fx =







2
3 , if x ∈ (0, 3

4 ), x = 1

1 − x
3 , if x ∈ [34 , 1).

and gx =







1, if x ∈ (0, 3
4 )

x, if x ∈ [34 , 1].

and ϕ(x(t)) = x(t)2

2ψ(t) , x(t) ≥ 0. Here f(X) = (1
3 ,

3
4 ) and g(X) = { 5

6} ∪ [34 , 1].

so that neither f(X) ⊆ g(X) nor g(X) ⊆ f(X). Also g(X) is closed subspace
of X. The pair (f, g) satisfies property (E. A) with the sequence {xn} defined by
xn = 3

4 + 1
n
, n = 1, 2, 3, . . . . We now verify the inequality (2.1.1). Since (2.1.1) is

symmetric in x, y we consider only the following cases.
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Case (i): x, y ∈ (0, 3
4 ). In this case d(fx, fy) = 0 so that (2.1.1) holds obvi-

ously.

Case (ii): x ∈ (0, 3
4 ), y ∈ [34 , 1). In this case d(fx, fy) = 1

3 |1 − y|ψ and
d(gx, gy) = |1 − y|ψ so that

d(fx, fy) =
1

3
|1 − y|ψ < |1 − y|ψ −

(|1 − y|ψ)2

2ψ
= d(gx, gy) − ϕ(d(gx, gy)).

Case (iii): x ∈ (0, 3
4 ), y = 1. In this case d(fx, fy) = 0 so that (2.1.1) holds

obviously.

Case (iv): x, y ∈ [34 , 1). In this case d(fx, fy) = 1
3 |x − y|ψ and d(gx, gy) =

|x− y|ψ so that

d(fx, fy) =
1

3
|x− y|ψ < |x− y|ψ −

(|x− y|ψ)2

2ψ
= d(gx, gy) − ϕ(d(gx, gy)).

Case (v): x ∈ [34 , 1), y = 1. In this case d(fx, fy) = 1
3 |1−x|ψ and d(gx, gy) =

|1 − x|ψ so that

d(fx, fy) =
1

3
|1 − x|ψ < |1 − x|ψ −

(|1 − x|ψ)2

2ψ
= d(gx, gy) − ϕ(d(gx, gy)).

Case (vi): x = 1, y = 1. In this case d(fx, fy) = 0 so that (2.1.1) holds
obviously.

Hence all the hypotheses of Theorem 2.9 hold and 3
4 is the unique common

fixed point of f and g.

Theorem 2.11. Let (X, d) be a cone metric space with solid cone P . Suppose
that f and g are selfmaps of X and suppose that the pair (f, g) satisfies property
(E. A). Suppose that there exists a mapping ϕ : P → P satisfying ϕ(0) = 0 and
0 < ϕ(t) < t for t ∈ P r {0} such that

d(fx, fy) ≤ ϕ(P (x, y)) for all x, y ∈ X, (2.11.1)

where P (x, y) ∈ {d(gx, gy), d(fx, gx), d(fy, gy), 1
2 [d(fx, gy)+d(fy, gx)]}. If either

f(X) or g(X) is a complete subspace of X then f and g have a unique point of
coincidence. Moreover, if the pair (f, g) is weakly compatible then f and g have a
unique common fixed point in X.

Proof. Since the pair (f, g) satisfies property (E. A), there exists a sequence {xn}
in X and a point z in X such that limn→∞ fxn = limn→∞ gxn = z. Since g(X)
is a closed subspace of X there exists u in X such that gu = z. We show that
fu = z. Consider

d(fu, z) ≤ d(fu, fxn) + d(fxn, z)

≤ ϕ(P (u, xn) + d(fxn, z) (2.11.2)
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where

P (u, xn) ∈

{

d(gu, gxn), d(fu, gu), d(fxn, gxn),
1

2
[d(fu, gxn) + d(fxn, gu)]

}

=

{

d(z, gxn), d(fu, z), d(fxn, gxn),
1

2
[d(fu, gxn) + d(z, fxn)]

}

.

For infinitely many n we get the following cases:

Case 1: P (u, xn) = d(z, gxn). Then from (2.11.2), we get

d(fu, z) ≤ ϕ(d(z, gxn)) + d(fxn, z)

< d(z, gxn) + d(fxn, z)

≪
c

2
+
c

2
for each n ≥ n0 = n0(c)

= c.

Hence 0 ≤ d(fu, z) ≪ c for each c ∈ intP . Therefore d(fu, z) = 0.

Case 2: P (u, xn) = d(fu, z). Now from (2.11.2), we get

d(fu, z) ≤ ϕ(d(fu, z)) + d(fxn, z)

≪ ϕ(d(fu, z)) + c for each n ≥ n0 = n0(c).

Hence 0 ≤ d(fu, z) ≪ ϕ(d(fu, z)) + c for each c ∈ intP . Therefore d(fu, z) ≤
ϕ(d(fu, z)) < d(fu, z), a contradiction.

Case 3: P (u, xn) = d(fxn, gxn). Then from (2.11.2), we get

d(fu, z) ≤ ϕ(d(fxn, gxn)) + d(fxn, z)

< d(fxn, gxn) + d(fxn, z)

≤ d(fxn, z) + d(z, gxn) + d(fxn, z)

≪
c

3
+
c

3
+
c

3
for each n ≥ n0 = n0(c)

= c.

Hence 0 ≤ d(fu, z) ≪ c for each c ∈ intP . Therefore d(fu, z) = 0.

Case 4: P (u, xn) = 1
2 [d(fu, gxn) + d(z, fxn)]. Now from (2.11.2), we get

d(fu, z) ≤ ϕ(
1

2
[d(fu, gxn) + d(z, fxn)]) + d(fxn, z)

<
1

2
[d(fu, gxn) + d(z, fxn)] + d(fxn, z)

≤
1

2
[d(fu, z) + d(z, gxn) + d(z, fxn)] + d(fxn, z).
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This implies,

d(fu, z) ≤ d(z, gxn) + 3d(fxn, z)

≪
c

2
+ 3

c

6
for each n ≥ n0 = n0(c)

= c.

Hence 0 ≤ d(fu, z) ≪ c for each c ∈ intP . Therefore d(fu, z) = 0.

Hence from all the above cases we get fu = z. Therefore, fu = gu = z. That
is z is a point of coincidence of f and g. We now show that this z is unique. Now
suppose that there exist u′, z′ ∈ X such that fu′ = gu′ = z′. Suppose z 6= z′.
Then

d(z, z′) = d(fu, fu′) ≤ ϕ(P (u, u′)),

where

P (u, u′) =

{

d(gu, gu′), d(fu, gu), d(fu′, gu′),
1

2
[d(fu, gu′) + d(fu′, gu)]

}

= {d(z, z′), 0, 0, d(z, z′)}

= {0, d(z, z′)}.

If P (u, u′) = 0 then d(z, z′) = 0 so that z = z′. If P (u, u′) = d(z, z′) then
d(z, z′) ≤ ϕ(d(z, z′)) < d(z, z′), a contradiction. Therefore z is the unique point
of coincidence of f and g.

If (f, g) is weakly compatible then fz = fgu = gfu = gz = w (say). That is
w is a point of coincidence of f and g. But since z is a unique point of coincidence
of f and g, we have w = z. Hence fz = gz = z. Therefore z is a unique common
fixed point of f and g.

Property (E. A) of the pair (f, g) of Theorem 2.11, relaxes the containment
f(X) ⊆ g(X) of range spaces and properties (i), (iii) and (iv) of ϕ in Theorem 1.8.

Example 2.12. Let E,P,X, d and f, g be as in Example 2.10. We define ϕ : P →

P by ϕ(x(t)) = x(t)(2ψ(t)+x(t))
2(ψ(t)+x(t)) , x(t) ≥ 0. Clearly ϕ(0) = 0 and 0 < ϕ(x(t)) < x(t)

for each x(t) ∈ Pr{0}. With this ϕ, f and g satisfy all the hypotheses of Theorem
2.11 and 3

4 is the unique common fixed point of f and g.
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