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1 Introduction

Banach space theory is a classic topic in functional analysis. The study of
the structure of Banach spaces provides a framework for many branches of math-
ematics like differential calculus, linear and nonlinear analysis, abstract analysis,
topology, probability, harmonic analysis, etc. The geometry of Banach spaces
plays an important role in Banach space theory. Since it is easier to do analysis
on a Banach space which has a norm with good geometric properties than on a
general space, we consider in this survey an area of Banach space theory known
as renorming theory. Renorming theory is involved with problems concerning the
construction of equivalent norms on a vector space with nice geometrical proper-
ties of convexity or differentiability. An excellent monograph containing the main
advances on renorming theory until 1993 is [1].

We consider only Banach spaces over the reals. Given a Banach space X with
norm ‖.‖, we denote by S(X) the unit sphere, and by X∗ the dual space with
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(original) dual norm ‖.‖∗. All undefined terms and notation are standard and can
be found, for example, in [2–8].

2 Differentiable Norms

Differentiability of functions on Banach spaces is a natural extension of the
notion of a directional derivative on R

n. A function f : X → R is said to be
Gâteaux differentiable at x ∈ X if there exists a functional g ∈ X∗ such that

g(y) = limt→0
f(x+ty)−f(x)

t
, for all y ∈ X . In this case, g is called Gâteaux

derivative of f . If the limit above exists uniformly for each y ∈ S(X), then
f is called Fréchet differentiable at x with Fréchet derivative g. In this pa-
per, most of our attention will be concentrated on the differentiability of the
norm. Two important more strong notions of differentiability are obtained as
uniform versions of both Fréchet and Gâteaux differentiability. The norm ‖.‖

on X is uniformly Fréchet differentiable if limt→0
‖x+ty‖−‖x‖

t
exists uniformly for

(x, y) ∈ S(X) × S(X). Also, it is uniformly Gâteaux differentiable if for each

y ∈ S(X), limt→0
‖x+ty‖−‖x‖

t
exists uniformly in x ∈ S(X). Clearly, Fréchet

differentiability implies Gâteaux differentiability, but the converse is true only
for finite-dimensional Banach spaces, in general. As an example, the mapping
f : L1[0, π] → R defined by f(x) =

∫ π

0
sin(x(t))dt is every where Gâteaux differ-

entiable, but nowhere Fréchet differentiable [9].
Around the year of 1940, S̆mulyan proved his following fundamental dual char-

acterization of differentiability of norms, which is used in many basic renorming
results.

Theorem 2.1 ([6, Ch. VIII]). For each x ∈ S(X), the following are equivalent:

(i) ‖.‖ is Fréchet differentiable at x.

(ii) For all (fn)∞n=1, (gn)∞n=1 ⊆ S(X∗), if limn→∞ fn(x) = 1 and limn→∞ gn(x) =
1 then limn→∞ ‖fn − gn‖

∗ = 0.

(iii) Each (fn)∞n=1 ⊆ S(X∗) with limn→∞ fn(x) = 1 is convergent in S(X∗).

As a direct application of S̆mulyan’s theorem, we have the following corollary:

Corollary 2.2 ([6, Ch. VIII]). If the dual norm of X∗ is Fréchet differentiable
then X is reflexive.

Proof. A celebrated and deep theorem of James state that X is reflexive if and
only if each nonzero f ∈ X∗ attains its norm at some x ∈ S(X). Let f ∈ S(X∗)
and choose (xn)∞n=1 ∈ S(X) such that limn→∞ f(xn) = 1. By Theorem 2.1,
limn→∞ xn = x ∈ S(X). Therefore f(x) = f(limn→∞ xn) = limn→∞ f(xn) = 1 =
‖f‖∗. If now f ∈ X∗ is non-zero, then f

‖f‖∗
∈ S(X∗) and according to the reasoning

above there exists x ∈ S(X) such that f
‖f‖∗

(x) = 1.

Theorem 2.3. The following assertions imply the reflexivity of X:
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(i) The norm of X is uniformly Fréchet differentiable [5, page 434].

(ii) The third dual norm of X is Gâteaux differentiable [6, page 276].

Theorem 2.4 ([6, page 275]). If X is separable and the second dual norm of X
is Gâteaux differentiable then X∗ is separable.

Since the separable and reflexive spaces contain numerous nice structural as-
pects, they have an important role in our investigation. In fact, there are many
renorming characterizations of reflexivity and separability, such as follows:

Theorem 2.5 ([10]). If X is reflexive then can be renormed in such a way that
both X and X∗ have Fréchet differentiable norm.

There exist reflexive spaces which do not admit any equivalent uniformly
Gâteaux differentiable norm. This example can be found in Kutzarova and Troy-
anski [11]. However, S̆mulyan proved the following positive result. His norm was
the predual norm to the norm defined on X∗ by |‖f‖|2 = ‖f‖∗2 +

∑∞
i=1 2−if2(xi),

where (xi)
∞
i=1 is dense in S(X).

Theorem 2.6 ([1, Ch. II]). Any separable space admits an equivalent uniformly
Gâteaux differentiable norm.

Theorem 2.7 (Kadec [12]). If a separable space X admits an equivalent Fréchet
differentiable norm then X∗ is separable.

Proof. Observe that the set B = {‖.‖
′

: x ∈ X, x 6= 0} is norm-separable, where
‖x‖

′

denotes the derivative of ‖.‖ at x. The set B contains all norm-attaining
functionals, and is thus norm-dense in X∗ by the Bishop-Phelps theorem.

The norm ‖.‖ on X is called 2-rotund (resp. weakly 2-rotund) if for every
(xn)∞n=1 ⊆ S(X) such that limm,n→∞ ‖xm + xn‖ = 0, there is an x ∈ X such that
limn→∞ xn = x in the norm (resp. weak) topology of X .

By using Theorem 2.1, it is proved that if a norm on X is 2-rotund then its
dual norm is Fréchet differentiable. Also, if a norm on X is weakly 2-rotund then
its dual norm is Gâteaux differentiable [13].

Theorem 2.8 ([14, page 208]). X is reflexive if and only if it admits an equivalent
weakly 2-rotund norm.

Theorem 2.9 ([14, page 208]). A separable space X is reflexive if and only if X
admits an equivalent 2-rotund norm.

Note that it is not known if the separability of X has to be assumed in theorem
above.

The space X is Hilbert generated space if there is a Hilbert space H and a
bounded linear operator T from H into X such that T (H) is dense in X .

Theorem 2.10 ([13]). X is a subspace of a Hilbert generated space if and only if
X admits an equivalent uniformly Gâteaux differentiable norm.
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3 Asplund Spaces

It is a well-known theorem that every continuous convex function on a sepa-
rable space X is Gâteaux differentiable at the points of a Gδ-dense subset of X
[5, page 384]. Let f be a continuous convex function on X . Then the set G of
all points in X where f is Fréchet differentiable (possibly empty) is a Gδ set in
X [5, page 357]. The space X is said to be Asplund if every continuous convex
function on it is Fréchet differentiable at each point of a dense Gδ subset of X .
There exist many well-known equivalent characterizations of the Asplund spaces.
For example, X is Asplund if and only if Y ∗ is separable whenever Y is a separable
subspace of X . Every Banach space with a Fréchet differentiable norm is Asplund
[15] but, on the other hand, Haydon [16] constructed Asplund spaces admitting
no Gâteaux differentiable norm.

Theorem 3.1 ([15, 17]). For each separable space X the following are equivalent:

(i) X∗ is separable.

(ii) X is Asplund.

(iii) X admits an equivalent Fréchet differentiable norm.

(iv) There is no equivalent rough norm on X.

Recall that the norm ‖.‖ on X is rough if for some ε > 0,

lim sup
h→0

1

‖h‖
(‖x + h‖ + ‖x − h‖ − 2) ≥ ε,

for every x ∈ S(X).
By using the canonical norm of C([0, 1]) as a rough norm, we obtain that

C([0, 1]) does not admit any Fréchet differentiable norm.

4 Kadec-Klee Property

The norm ‖.‖ on X has weak-Kadec-Klee property provided that whenever
(xn)∞n=1 ⊆ X converges weakly to some x ∈ X and limn→∞ ‖xn‖ = ‖x‖, then
limn→∞ ‖xn − x‖ = 0. Also, a dual norm ‖.‖∗ on X∗ has weak∗-Kadec-Klee prop-
erty if limn→∞ ‖fn − f‖∗ = 0, whenever (fn)∞n=1 ⊆ X∗ is weak∗ convergent to
some f ∈ X∗ and limn→∞ ‖fn‖∗ = ‖f‖∗.

The weak-Kadec-Klee norms play an important role in geometric Banach space
theory and its applications.

Theorem 4.1 ([5, page 422]).

(i) Let X be a separable space. If X∗ has the weak∗-Kadec-Klee property then
X∗ is separable.

(ii) If X∗ is separable then X admits an equivalent norm such that X∗ has the
weak∗-Kadec-Klee property.
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5 Strictly Convex Spaces

One interesting and fruitful line of research, dating from the early days of
Banach space theory, has been to relate analytic properties of a Banach space
to various geometric conditions on that space. The simplest example of such a
condition is that of strict convexity.

The space X (or the norm ‖.‖ on X) is called strictly convex (R) if for x, y ∈
S(X), ‖x+y‖ = 2 implies x = y. The following result is a consequence of Theorem
2.1 of S̆mulyan:

Theorem 5.1 ([6, Ch. VIII]). If a dual norm of X∗ is strictly convex (Gâteaux
differentiable) then its predual norm is Gâteaux differentiable (strictly convex).

The converse implications in the theorem above are true for reflexive spaces,
but not in general. Strict convexity is not preserved by equivalent norms. It is well
known that ‖.‖∞ and ‖.‖2 are equivalent norms on R

n, ‖.‖2 is strictly convex but
‖.‖∞ is not. A most common strictly convex renorming is based on the following
simple observation. Let Y be a strictly convex space and T : X → Y a linear
one-to-one bounded operator; then ‖|x|‖ = ‖x‖ + ‖T (x)‖, x ∈ X , is an equivalent
strictly convex norm on X .

Theorem 5.2 ([12, 18]). Any separable space X admits an equivalent norm whose
dual norm is strictly convex.

Proof. Let {xi}
∞
i=1 be dense in S(X). Define a norm ‖|.|‖ on X∗ by |‖f‖|2 =

‖f‖∗2 +
∑∞

i=1 2−if2(xi). It is not hard to show that |‖.‖| is a weak∗ lower semi-
continuous function on X∗ equivalent with ‖.‖∗. Hence |‖.‖| is the dual of a norm
|.| equivalent with ‖.‖, and also it is strictly convex.

6 Locally Uniformly Convex Spaces

The concept of a locally uniformly convex norm was introduced by Lovaglia
in [19]. The space X (or the norm ‖.‖ on X) is said to be locally uniformly convex
(LUR) if

lim
n→∞

(
2‖x‖2 + 2‖xn‖

2 − ‖x + xn‖
2
)

= 0 =⇒ lim
n→∞

‖x − xn‖ = 0,

for any sequence (xn)∞n=1 and x in X .
Lovaglia showed, as a straightforward consequence of Theorem 2.1, that the

norm of a Banach space is Fréchet differentiable if the dual norm is LUR. The
converse does not hold, even up to renormings. In fact, there exists a space with
a Fréchet differentiable norm, which does not admit any equivalent norm with a
strictly convex dual norm [1]. However, in the class of spaces with unconditional
bases, we do have equivalence up to a renorming.Many efforts have been dedicated
in the renorming theory to obtain sufficient conditions for a Banach space to admit
an equivalent LUR norm. In 1979, Troyanski stated the first characterization of
existence of LUR renormings.
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Theorem 6.1 ([20]). If X∗ has a dual LUR norm then X admits an equivalent
LUR norm.

Theorem 6.2 ([5, page 387]). Any space X with a Fréchet differentiable norm
which has a Gâteaux differentiable dual norm admits an equivalent LUR norm.

Theorem 6.3 (Kadec [18]).

(i) If X is separable then X admits an equivalent LUR norm.

(ii) If X∗ is separable then X admits an equivalent norm whose dual norm is
LUR.

Proof. We show the second statement. Suppose that {xi}
∞
i=1 be dense in S(X)

and {fi}
∞
i=1 be dense in S(X∗). For i ∈ N, put Fi = span{f1, f2, ..., fi}. Define a

norm |‖.‖| on X∗ by

|‖f‖|2 = ‖f‖∗2 +
∞∑

i=1

2−idist(f, Fi)
2 +

∞∑

i=1

2−if2(xi).

It is not hard to show that |‖.‖| is a weak∗ lower semicontinuous function on X∗

equivalent with ‖.‖∗. Hence |‖.‖| is the dual of a norm |.| equivalent with ‖.‖, and
also it is LUR.

The theorem above shows that, in particular, every separable space admits an
equivalent strictly convex norm. By using Theorems 3.1 and 6.3, we see that if X
is an Asplund space then X∗ admits an equivalent LUR norm. The next theorem
is a powerful result of Troyanski [21]:

Theorem 6.4. X admits an equivalent LUR norm if and only if it admits an
equivalent weak-Kadec-Klee norm and an equivalent strictly convex norm.

Theorem 6.5 ([22]). Let Y be a closed subspace of X such that both Y and X/Y
admit equivalent norms whose dual norms are LUR. Then X admits an equivalent
norm whose dual norm is LUR.

Let us mention here that the analogue of Theorem 6.5 for Fréchet differentiable
norms is still an open question. Talagrand [23] proved that the corresponding result
for Gâteaux differentiable norms is false. Here we offer a characterization of LUR
spaces in terms of Lipschitz separated spaces:

Given a positive scalar M , we will let LX,M be the space of all functions
f : X → R such that |f(x) − f(y)| ≤ ‖x − y‖ for each x, y ∈ X and sup{|f(x)| :
x ∈ X} ≤ M endowed with the metric ρ(f, g) = sup{|f(x) − g(x)| : x ∈ X}.
With this metric, LX,M is a complete metric space. Given a closed nonempty

subset Y ⊆ X and f ∈ LX,M , we let Lf,M = {f̃ ∈ LX,M : f̃|Y = f}. We say
X is Lipschitz separated if for every proper closed subspace Y ⊆ X and every
f ∈ LY,M , we have sup ef∈Lf,M

f̃(x) > inf ef∈Lf,M
f̃(x) for all x ∈ X \ Y .
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Theorem 6.6 ([24]). The separable space X can be equivalently renormed so that
it is LUR but not Lipschitz separated.

Theorem 6.7 ([24]). Any space X with a separable dual admits an equivalent
norm under which X is Lipschitz separated but not LUR.

7 Uniformly Convex Spaces

A Banach space is strictly convex if the midpoint of each chord of the unit
ball lies beneath the surface. In 1936, Clarkson introduced the stronger notion
of uniform convexity. A Banach space is uniformly convex if the midpoints of all
chords of the unit ball whose lengths are bounded below by a positive number
are uniformly buried beneath the surface. The class of uniformly convex Banach
spaces is very interesting and has numerous applications. The space X (or the
norm ‖.‖ on X) is said to be uniformly convex (UR) if for all sequences (xn)∞n=1,
(yn)∞n=1 ⊆ X

lim
n→∞

(
2‖xn‖

2 + 2‖yn‖
2 − ‖xn + yn‖

2
)

= 0 =⇒ lim
n→∞

‖xn − yn‖ = 0.

For example, any Hilbert space is uniformly convex and it can be shown that Lp

spaces are uniformly convex whenever 1 < p < ∞. We have (UR)⇒(LUR)⇒(R)
but the converse is not true. For example, define a norm |‖.‖| on C([0, 1]) by
|‖f‖|2 = ‖f‖2

∞ + ‖f‖2
2, where ‖.‖∞ denotes the standard supremum norm of

C([0, 1]) and ‖.‖2 denotes the canonical norm of L2[0, 1]. Then |‖.‖| is strictly
convex but not LUR on C([0, 1]). There is a complete duality between uniform
convexity and uniform Fréchet differentiability.

Theorem 7.1 (Lindenstrauss [25]). For any space X, the dual norm of X∗ is
uniformly convex if and only if its predual norm is uniformly Fréchet differentiable.
Also, the dual norm of X∗ is uniformly Fréchet differentiable if and only if its
predual norm is uniformly convex.

One of the first theorems to relate the geometry of the norm to linear topo-
logical properties is the following:

Theorem 7.2 ([3, pages 37-50]). Any uniformly convex Banach space is reflexive.

Proof. Assume that the norm of X is uniformly convex. Then the dual norm of
X∗ is uniformly Fréchet differentiable by Theorem 7.1. Therefore X∗ is reflexive
by Theorem 2.3 and thus X is reflexive.

The theorem above shows that any Hilbert space is a reflexive Banach space
which is a well-known result in functional analysis. Note that the class of uniformly
convex Banach spaces does not coincide with the all reflexive Banach spaces: an
example of a reflexive Banach space which is not uniformly convex can be given.
Notice that, the space C([0, 1]) is a separable non reflexive space. Consequently,
C([0, 1]) admits no equivalent uniformly convex norm, although, by Theorem 6.3,
it does admit an equivalent LUR norm.
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Theorem 7.3 ([6, Ch. XI]). Any space that admits an equivalent WUR norm is
an Asplund space.

The norm ‖.‖ on X is weakly uniformly convex (WUR) if for all sequences
(xn)∞n=1, (yn)∞n=1 ⊆ X with limn→∞ 2‖xn‖

2 + 2‖yn‖
2 − ‖xn + yn‖

2 = 0, then
limn→∞ xn − yn = 0, in the weak topology of X . Using Theorems 3.1 and 7.3,
we have the following corollary.

Corollary 7.4. If the norm of a separable space X is WUR then X∗ is separable.

8 Super-Reflexive Spaces

Given Banach space Y , we say that Y is finitely representable in X if for every
ε > 0 and for every finite-dimensional subspace Z of Y , there is an isomorphism
T of Z onto T (Z) ⊆ X such that ‖T ‖‖T−1‖ < 1 + ε. The space X is said to be
super-reflexive if every finitely representable space in X is reflexive. Clearly, every
super-reflexive space is reflexive. One of the well-known super-reflexive spaces are
Hilbert spaces. The Lp spaces for 1 < p < ∞ are other examples of super-reflexive
spaces. But there are many other super-reflexive spaces. This class is mapped by
the following equivalence.

Theorem 8.1 ([5, page 436]). The following assertions are equivalent:

(i) X is super-reflexive.

(ii) X admits an equivalent uniformly convex norm.

(iii) X admits an equivalent uniformly Fréchet differentiable norm.

(iv) X admits an equivalent norm which is uniformly convex and uniformly
Fréchet differentiable.

9 Mazur Intersection Property

In 1933, it was Mazur who first studied Banach spaces which have the so
called Mazur intersection property (MIP): every bounded closed convex set can
be represented as an intersection of closed balls. A systematic study of this topic
was initiated by Phelps [26]. In 1978, Giles, Gregory and Sims gave some charac-
terizations of this property [27]. They raised the question whether every Banach
space with the MIP is an Asplund space. They also characterized the associated
property for a dual space, called the weak∗ Mazur intersection property: every
bounded weak∗ closed convex set can be represented as an intersection of closed
dual balls. Associated with MIP, we have also the following concepts:

A set C in X is a Mazur set if given f ∈ X∗ with sup f(C) < λ, then there
exists a closed ball D such that C ⊆ D and sup f(D) < λ. The space X is called
a Mazur space provided that any intersection of closed balls in X is a Mazur set.
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Theorem 9.1 ([28]). Any space with Fréchet differentiable norm satisfies the MIP.
Also, every space whose dual satisfies the MIP is reflexive and each reflexive space
with a Fréchet differentiable norm is a Mazur space. Finally, Mazur spaces with
the MIP are Asplund and Gâteaux differentiable.

Theorem 9.2 ([29]). A Mazur space with the MIP admits an equivalent Fréchet
differentiable norm.

Theorem 9.3 ([22]). Let Y be a subspace of X such that both Y ∗ and (X/Y )∗

can be renormed to have the weak∗ Mazur intersection property. Then X∗ can be
renormed to have the weak∗ Mazur intersection property.

10 Weakly Compactly Generated Spaces

The space X is said to be weakly compactly generated (WCG) if X is the closed
linear span of a weakly compact set K ⊆ X . The class of WCG spaces has been
intensively studied during the last forty years and now is in the core of modern
Banach space theory [3–5]. Recall that the space X is separable if there exists
a countable set {xn}

∞
n=1 with {xn}∞n=1 = X . An important characterization of

reflexivity is the result that X is reflexive if and only if B(X), the closed unit
ball of X , is weakly compact. Notice that if X is reflexive, then one may take
K = B(X) in the definition above, whereas if X is separable, with {xn}

∞
n=1 dense

in the S(X), we can take K = {n−1xn}
∞
n=1

⋃
{0}. In this way we see that both

separable and reflexive spaces are WCG.

Theorem 10.1.

(i) If X is WCG then X admits an equivalent norm that is simultaneously LUR
and Gâteaux differentiable [30, 31].

(ii) If X∗ is WCG then X admits an equivalent norm |.| the dual norm of which
is LUR. In particular, |.| is Fréchet differentiable [32].

The first part of theorem above shows that every reflexive space admits an
equivalent norm with weak-Kadec-Klee property.

Corollary 10.2 ([5, page 589]). If X∗ is WCG then X is Asplund.

The corollary above shows that any reflexive Banach space is Asplund.

Theorem 10.3 ([30]). If X is WCG then X∗ admits an equivalent strictly convex
dual norm.

Theorem 10.4 ([33]). If X is WCG and Asplund then X∗ admits an equivalent
LUR dual norm.

If M is a bounded total set in X (i.e., a bounded set M in X such that
spanM = X), we will say that the norm of X is dually M -2-rotund if (fn)∞n=1 is
convergent to some f ∈ B(X∗) uniformly on M whenever fn ∈ S(X∗) are such
that limm,n→∞ ‖fm + fn‖

∗ = 0.
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Theorem 10.5 ([13]). X is WCG if and only if X admits an equivalent dually
M -2-rotund norm for some bounded total set in X.

11 Vašák Spaces

A class of spaces wider than WCG spaces, known as weakly countably deter-
mined or Vašák spaces, was originally defined and investigated by Vašák. The
space X is Vašák if there is a sequence (Bn)∞n=1 of weak∗ compact sets in X∗∗

such that given x ∈ X and u ∈ X∗∗\X , there is n ∈ N such that x ∈ Bn and
u 6∈ Bn.

Theorem 11.1 ([6, Ch. XI]). If X∗ is Vašák then X admits an equivalent Fréchet
differentiable norm.

Theorem 11.2 ([34]). Every Vašák space has an equivalent norm the dual norm
of which is strictly convex.

Many of the renorming results for WCG spaces are actually valid for Vašák
spaces. For example, any Vašák space admits a Gâteaux differentiable norm [1,
Ch. VII]. Further details can be found in [4, Ch. VII].

12 Uniform Eberlein Compact Spaces

A compact space K is said to be uniform Eberlein if K is homeomorphic to a
weakly compact subset of a Hilbert space in its weak topology.

Theorem 12.1 ([5, page 624]).

(i) (B(X∗), w∗) is uniform Eberlein compact if and only if X admits an equiv-
alent uniformly Gâteaux differentiable norm.

(ii) Let K be a compact space. C(K) admits an equivalent uniformly Gâteaux
differentiable norm if and only if K is uniform Eberlein.

13 Bases and Renorming Theory

A Schauder basis for X is a sequence (xn)∞n=1 of vectors in X such that every
vector in X has a unique representation of the form

∑∞
n=1 anxn with each an a

scalar and where the sum is converges in the norm topology. Recall that a series∑∞
n=1 xn is said to be unconditionally convergent if the series

∑∞
n=1 xni

converges
for every choice of n1 < n2 < n3 < · · · . A Shauder basis (xn)∞n=1 for X is said to
be unconditional if for every x ∈ X , its expansion in terms of the basis

∑∞
n=1 anxn

converges unconditionally.

Theorem 13.1 ([35]). Let X have an unconditional basis. Then X admits an
equivalent norm with an LUR dual norm whenever X admits an equivalent Fréchet
differentiable norm.
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A biorthogonal system {xi; fi}i∈I in X ×X∗
(
i.e., fi(xj) = δij (the Kronecker

delta) for i, j ∈ I
)

is called fundamental provided that span(xi)i∈I = X . A
fundamental biorthogonal system {xi; fi}i∈I is a Markushevich basis if (fi)i∈I

separates the points of X . A Markushevich basis {xi; fi}i∈I is called shrinking if
span(fi)i∈I = X∗. Clearly, every Schauder basis is Markushevich. An example of
a Markushevich basis that is not a Schauder basis is the sequence of trigonometric
polynomials {ei2πnt : n = 0,±1,±2, ...} in the C̃([0, 1]) of complex continuous
functions on [0, 1] whose values at 0, 1 are equal, with the sup-norm. If X∗ is
separable then X has a shrinking Markushevich basis [5, page 231].

A compact space K is called a Corson compact space if K is homeomorphic to a
subset C of [−1, 1]Γ, for some set Γ, such that each point in C has only a countable
number of nonzero coordinates. For example, any metrizable compact is a Corson
compact or any weakly compact set in a Banach space is a Corson compact or the
dual ball for a Vašák space in its weak∗ topology is a Corson compact [1, Ch. VI].
A Banach space X is called weakly Lindelöf determined (WLD) if (B(X∗), w∗) is
a Corson compact. Every Vašák space is WLD.

Theorem 13.2 ([14, page 211]). For any space X the following are equivalent:

(i) X has a shrinking Markushevich basis.

(ii) X is WCG and Asplund.

(iii) X is WLD and Asplund.

(iv) X is WLD and admits an equivalent norm whose dual norm is LUR.

(v) X is WLD and admits an equivalent Fréchet differentiable norm.

Theorem 13.3 ([28, 36]). Let X have a fundamental biorthogonal system {xi; fi}i∈I

⊆ X × X∗. Then the subspace Y = span(xi)i∈I admits an equivalent LUR norm.

Theorem 13.4 ([36]). Let X have a fundamental biorthogonal system. Then
X∗ admits an equivalent norm with the weak∗ Mazur intersection property (every
bounded weak∗ closed convex set can be represented as an intersection of closed
dual balls).

Proof. A dual Banach space has the weak∗ Mazur intersection property provided
its predual has a dense set of LUR points. Let us consider a biorthogonal system
{xi; fi}i∈I ⊆ X × X∗ such that X = span(xi)i∈I and put Y = span(xi)i∈I .
Using Theorem 13.3, we obtain an equivalent LUR norm |.| on Y. Let ‖.‖ be the
norm |.| extended to X . Then, the unit ball of ‖.‖ is the closure of the unit ball
of |.|. We claim that ‖.‖ is LUR at each point of Y . Take y ∈ Y \{0} and a
sequence (xn)n∈N in X so that limn→∞ 2‖y‖2 + 2‖xn‖

2 − ‖y + xn‖
2 = 0. If we

choose yn ∈ Y with ‖yn − xn‖ < 1
n
, then limn→∞ 2|y|2 + 2|yn|

2 − |y + yn|
2 = 0

and, hence, limn→∞ ‖xn − y‖ = limn→∞ |yn − y| = 0.

In the theorem above, in fact, we prove that every Banach space with a funda-
mental biorthogonal system admits an equivalent norm with a dense set of locally
uniformly convex points.
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Theorem 13.5 ([22]). Let X∗ be a dual Banach space with a fundamental biorthog-
onal system {xi; fi}i∈I ⊆ X∗ × X. Then X admits an equivalent norm with the
MIP.

14 Some Interesting Problems

According to the author’s knowledge and taste, the following problems in this
area arise:

(Q1) If the space X has the Radon-Nikodym property (i.e., for every ε > 0 every
bounded subset of X has a non-empty slice of diameter less than ε), does it
follow that X admits an equivalent weak-Kadec-Klee norm? Does it admits
an equivalent strictly convex norm? Is it true that X admits an equivalent
LUR norm?

(Q2) Does every Asplund space admit an equivalent SSD norm?
(
If X admits an

equivalent SSD norm, then X is Asplund (G. Godefroy)
)
. Recall that the

norm ‖.‖ on X is called strongly subdifferentiale (SSD) if for each x ∈ X , the

one-sided limit limt→0+
‖x+ty‖−‖x‖

t
exists uniformly for y in S(X). Note that

the norm ‖.‖ is Fréchet differentiable if and only if it is Gâteaux differentiable
and at the same time SSD.

(Q3) Assume that a Banach space X admits an equivalent Gâteaux differentiable
norm and that X admits also an equivalent SSD norm. Does X admit an
equivalent Fréchet differentiable norm?

(Q4) Assume that X is a nonseparable non Asplund space. Does X admit an
equivalent norm that is nowhere SSD except at the origin? For separable
non Asplund space the answer is yes.

(Q5) Assume that the norm of a separable Banach space X has the property that
its restriction to every infinite dimensional closed subspace Y ⊆ X has a
point of Fréchet differentiability on Y . Is then X∗ necessarily separable?

(Q6) Assume that X is Vašák. Does X admit an equivalent norm that has the fol-
lowing property: (fn)∞n=1 is weak convergent to some f ∈ B(X∗) whenever
fn ∈ S(X∗) are such that limn,m→∞ ‖fn + fm‖∗ = 2?

(Q7) Assume that X has an unconditional basis and admits a Gâteaux differ-
entiable norm. Does X admit a norm the dual norm of which is strictly
convex?

(Q8) (Godefroy) Assume an Asplund space X has a Markushevich basis {xi, fi}i∈I

with span{fi}i∈I norming X∗. Is X WCG?

(Q9) Assume X admits an equivalent Fréchet differentiable norm. Does X admits
an equivalent LUR norm?
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(Q10) It is proved in [24] that every weakly uniformly convex Banach space is Lip-
schitz separated. Can a Lipschitz separated Banach space be equivalently
renormed with a weakly uniformly convex norm? A related question is if
Lipschitz separated Banach space necessarily an Asplund space?

(Q11) Is it true that an equivalent Fréchet differentiable norm in a subspace of
a separable and reflexive Banach space can be extended to an equivalent
Fréchet differentiable norm in the whole space?

(Q12) Assume that for every nonempty closed, bounded and convex subset A of
X∗ there exists x ∈ X which attains its supremum on A. Is X Asplund?

(Q13) Is it true that an equivalent Fréchet differentiable norm in a subspace of
a separable and reflexive Banach space can be extended to an equivalent
Fréchet differentiable norm in the whole space?

(Q14) A separable Banach space X is reflexive if and only if X admits an equiva-
lent 2-rotund norm. Is it true in general for nonseparable spaces?

(Q15) Assume that the norm of a separable Banach space X is such that the re-
striction of it to every subspace of X is Fréchet differentiable at a point.
Must X∗ be separable?

(Q16) Let X be a WLD space and X admits a Gâteaux differentiable norm. Does
X admit a norm whose dual norm is strictly convex?

(Q17) Let X be a WLD space. Is every convex continuous function on X Gâteaux
differentiable at some points?
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