Meir and Keeler Type Fixed Point Theorem for Set-Valued Generalized Contractions in Metrically Convex Spaces

Ladlay Khan ${ }^{\dagger, 1}$ and M. Imdad ${ }^{\ddagger}$
${ }^{\dagger}$ Department of Applied Sciences, Mewat Engineering College (Wakf)
Palla, Nuh, Mewat 122 107, Haryana, India
e-mail : k_ladlay@yahoo.com
\ddagger Department of Mathematics, Aligarh Muslim University
Aligarh 202 002, India
e-mail : mhimdad@yahoo.co.in

Abstract

A fixed point theorem for generalized set-valued contraction in metrically convex spaces has been proved which generalizes a fixed point theorem due to Rhoades [B.E. Rhoades, A fixed point theorem for some non-self mappings, Math. Japonica. 23 (4) (1978) 457-459]. An illustrative example is also discussed.

Keywords : metrically convex metric spaces; non-self mappings; set-valued mappings; metric convexity; Meir-Keeler type condition.
2010 Mathematics Subject Classification : 54H25; 47 H 10.

1 Introduction

Meir and Keeler [1] established that classical Banach contraction principle remains true for weakly uniformly strict contractions:

Given $\epsilon>0$ there exists a $\delta>0$ such that

$$
\begin{equation*}
\epsilon \leq d(x, y)<\epsilon+\delta \text { implies } d(T x, T y)<\epsilon \tag{1.1}
\end{equation*}
$$

In recent years this result due to Meir and Keeler [1] has been generalized,

[^0]extended and improved in various ways and by now there exists a considerable literature in this direction for self mappings. To mention a few we cite $[2-8]$.

In this note, we establish a Meir and Keeler [1] type fixed point theorem for setvalued generalized contraction in metrically convex spaces. In proving our result we follow the definition and convention of Assad and Kirk [9] and Nadler [10]. Before formulating our result, for the sake of completeness we state the following result due to Rhoades [11].

Theorem 1.1. Let (X, d) be a complete metrically convex metric space and $K a$ nonempty closed convex subset of X. Let $T: K \rightarrow X$ be a map satisfying:

$$
d(T x, T y) \leq M(x, y)
$$

where

$$
\begin{equation*}
M(x, y)=h \max \left\{\frac{1}{2} d(x, y), d(x, T x), d(y, T y), \frac{d(x, T y)+d(y, T x)}{q}\right\} \tag{1.2}
\end{equation*}
$$

for all $x, y \in K$, with $x \neq y$, where $0<h<1, q \geq 1+2 h$, and
(i) $T x \in K$ for each $x \in \delta K$.

Then T has a fixed point in K.
We now state relevant definition and lemmas which are used in the sequel.
Definition 1.2 ([9]). A metric space (X, d) is said to be metrically convex if for any $x, y \in X$ with $x \neq y$ there exists a point $z \in X, x \neq z \neq y$ such that

$$
d(x, z)+d(z, y)=d(x, y) .
$$

Lemma 1.3 ([9]). Let K be a nonempty closed subset of a metrically convex metric space X. If $x \in K$ and $y \notin K$ then there exists a point $z \in \delta K$ (the boundary of K) such that

$$
d(x, z)+d(z, y)=d(x, y) .
$$

In what follows, $C B(X)$ denotes the set of all closed and bounded subsets of (X, d), while $C(X)$ for collection of all compact subsets of (X, d). Also H denotes the Hausdoraff distance between two sets.

Lemma 1.4 ([10]). Let $A, B \in C B(X)$. Then for all $\epsilon>0$ and $a \in A$ there exists $b \in B$ such that $d(a, b) \leq H(A, B)+\epsilon$. If $A, B \in C(X)$, then one can choose $b \in B$ such that $d(a, b) \leq H(A, B)$.

2 Main Results

We prove the following.

Theorem 2.1. Let (X, d) be a complete metrically convex metric space and K a nonempty closed subset of X. Let $T: K \rightarrow C(X)$ be a set-valued map which satisfies (i) and for a given $\epsilon>0$ there exists $\delta(\epsilon)>0, \delta(\epsilon)$ being a nondecreasing function of ϵ with $q \geq 1+2 h$ where $0<h<1$ such that

$$
\begin{equation*}
\epsilon \leq M(x, y)<\epsilon+\delta \text { implies } H(T x, T y)<\epsilon \tag{2.1}
\end{equation*}
$$

Then T has a fixed point in K.
Proof. Firstly, we proceed to construct two sequences $\left\{x_{n}\right\}$ and $\left\{x_{n}^{\prime}\right\}$ in the following way. Let $x_{0} \in K$. Define $x_{1}^{\prime} \in T x_{0}$. If $x_{1}^{\prime} \in K$ then set $x_{1}^{\prime}=x_{1}$. If $x_{1}^{\prime} \notin K$ choose $x_{1} \in \delta K$ so that

$$
d\left(x_{0}, x_{1}\right)+d\left(x_{1}, x_{1}^{\prime}\right)=d\left(x_{0}, x_{1}^{\prime}\right) .
$$

Then $x_{1} \in K$. By using Lemma 1.4, select $x_{2}^{\prime} \in T x_{1}$ such that $d\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \leq$ $H\left(T x_{0}, T x_{1}\right)$. If $x_{2}^{\prime} \in K$ then $x_{2}^{\prime}=x_{2}$. Otherwise choose $x_{2} \in \delta K$ such that

$$
d\left(x_{1}, x_{2}\right)+d\left(x_{2}, x_{2}^{\prime}\right)=d\left(x_{1}, x_{2}^{\prime}\right)
$$

Thus by induction, one obtains two sequences $\left\{x_{n}\right\}$ and $\left\{x_{n}^{\prime}\right\}$ such that
(ii) $x_{n+1}^{\prime} \in T x_{n}$
(iii) $d\left(x_{n+1}^{\prime}, x_{n}^{\prime}\right) \leq H\left(T x_{n}, T x_{n-1}\right)$.
(iv) $x_{n+1}^{\prime} \in K \Rightarrow x_{n+1}^{\prime}=x_{n+1}$,
(v) $x_{n+1}^{\prime} \notin K \Rightarrow x_{n+1} \in \delta K$ and

$$
d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{n+1}^{\prime}\right)=d\left(x_{n}, x_{n+1}^{\prime}\right)
$$

Now define

$$
\begin{aligned}
P & =\left\{x_{i} \in\left\{x_{n}\right\}: x_{i}^{\prime}=x_{i}, i=1,2,3, \ldots\right\} \\
Q & =\left\{x_{i} \in\left\{x_{n}\right\}: x_{i}^{\prime} \neq x_{i}, i=1,2,3, \ldots\right\}
\end{aligned}
$$

Obviously, the two consecutive terms cannot lie in Q.
Now we distinguish the following three cases.
Case 1. If $x_{n}, x_{n+1} \in P$, then

$$
\begin{aligned}
d\left(x_{n}, x_{n+1}\right)= & H\left(T x_{n-1}, T x_{n}\right) \leq M\left(x_{n-1}, x_{n}\right) \\
\leq & h \max \left\{\frac{1}{2} d\left(x_{n-1}, x_{n}\right), d\left(x_{n-1}, T x_{n-1}\right), d\left(x_{n}, T x_{n}\right),\right. \\
& \left.\frac{d\left(x_{n-1}, T x_{n}\right)+d\left(x_{n}, T x_{n-1}\right)}{q}\right\}, \\
\leq & h \max \left\{\frac{1}{2} d\left(x_{n-1}, x_{n}\right), d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, x_{n+1}\right),\right. \\
& \left.\frac{d\left(x_{n-1}, x_{n+1}\right)+d\left(x_{n}, x_{n}\right)}{q}\right\}, \\
\leq & h \max \left\{d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, x_{n+1}\right)\right\} .
\end{aligned}
$$

If $d\left(x_{n-1}, x_{n}\right) \leq d\left(x_{n}, x_{n+1}\right)$ then we get $d\left(x_{n}, x_{n+1}\right) \leq d\left(x_{n}, x_{n+1}\right)$, which is a contradiction. Otherwise, if $d\left(x_{n}, x_{n+1}\right) \leq h d\left(x_{n-1}, x_{n}\right)$ then one obtains $d\left(x_{n}, x_{n+1}\right) \leq M\left(x_{n-1}, x_{n}\right) \leq h d\left(x_{n-1}, x_{n}\right)$.

Case 2. If $x_{n} \in P$ and $x_{n+1} \in Q$ then

$$
d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{n+1}^{\prime}\right)=d\left(x_{n}, x_{n+1}^{\prime}\right)
$$

which in turn yields

$$
d\left(x_{n}, x_{n+1}\right) \leq d\left(x_{n}, x_{n+1}^{\prime}\right)
$$

Now, proceeding as in Case 1, we have

$$
d\left(x_{n}, x_{n+1}\right) \leq M\left(x_{n-1}, x_{n}\right) \leq h d\left(x_{n-1}, x_{n}\right)
$$

Case 3. If $x_{n} \in Q$ and $x_{n+1} \in P$ then $x_{n-1} \in P$. Since x_{n} is a convex linear combination of x_{n-1} and x_{n}^{\prime}, it follows that

$$
d\left(x_{n}, x_{n+1}\right) \leq \max \left\{d\left(x_{n-1}, x_{n+1}\right), d\left(x_{n+1}, x_{n}^{\prime}\right)\right\}
$$

Now, if $d\left(x_{n-1}, x_{n+1}\right) \leq d\left(x_{n}^{\prime}, x_{n+1}\right)$, then proceeding as in Case 1, one obtains

$$
d\left(x_{n}, x_{n+1}\right) \leq M\left(x_{n-1}, x_{n}\right) \leq h d\left(x_{n-1}, x_{n}\right)
$$

Otherwise if $d\left(x_{n}^{\prime}, x_{n+1}\right) \leq d\left(x_{n-1}, x_{n+1}\right)$, then we have

$$
\begin{aligned}
& d\left(x_{n}, x_{n+1}\right) \leq d\left(x_{n-1}, x_{n+1}\right)=H\left(T x_{n-2}, T x_{n}\right) \leq M\left(x_{n-2}, x_{n}\right) \\
& \leq h \max \left\{\frac{1}{2} d\left(x_{n-2}, x_{n}\right), d\left(x_{n-2}, T x_{n-2}\right), d\left(x_{n}, T x_{n}\right)\right. \\
&\left.\frac{d\left(x_{n-2}, T x_{n}\right)+d\left(x_{n}, T x_{n-2}\right)}{q}\right\} \\
& \leq h \max \left\{\frac{1}{2} d\left(x_{n-2}, x_{n}\right), d\left(x_{n-2}, x_{n-1}\right), d\left(x_{n}, x_{n+1}\right)\right. \\
&\left.\frac{d\left(x_{n-2}, x_{n+1}\right)+d\left(x_{n}, x_{n-1}\right)}{q}\right\} .
\end{aligned}
$$

Since

$$
\frac{1}{2} d\left(x_{n-2}, x_{n}\right)=\max \left\{d\left(x_{n-2}, x_{n-1}\right), d\left(x_{n-1}, x_{n}\right)\right\}
$$

Therefore, one obtains

$$
\begin{gathered}
d\left(x_{n}, x_{n+1}\right) \leq h \max \left\{d\left(x_{n-2}, x_{n-1}\right), d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, x_{n+1}\right)\right. \\
\left.\frac{d\left(x_{n-2}, x_{n+1}\right)+d\left(x_{n}, x_{n-1}\right)}{q}\right\}
\end{gathered}
$$

which in turn yields

$$
d\left(x_{n}, x_{n+1}\right) \leq\left\{\begin{array}{l}
h d\left(x_{n-1}, x_{n}\right), \text { if } d\left(x_{n-1}, x_{n}\right) \geq d\left(x_{n-2}, x_{n-1}\right) \\
h d\left(x_{n-2}, x_{n-1}\right), \text { if } d\left(x_{n-1}, x_{n}\right) \leq d\left(x_{n-2}, x_{n-1}\right) .
\end{array}\right.
$$

Thus in all the cases, we have

$$
d\left(x_{n}, x_{n+1}\right) \leq h \max \left\{d\left(x_{n-1}, x_{n}\right), d\left(x_{n-2}, x_{n-1}\right)\right\} .
$$

It can be easily shown by induction that for $n \geq 1$, we have

$$
d\left(x_{n}, x_{n+1}\right) \leq h \max \left\{d\left(x_{0}, x_{1}\right), d\left(x_{1}, x_{2}\right)\right\} .
$$

Thus $d\left(x_{n}, x_{n+1}\right)$ is a decreasing sequence and tending to $t \in[0, \infty)$ as $n \rightarrow \infty$.
Let on contrary

$$
\begin{equation*}
d\left(x_{n}, x_{n+1}\right)>t \text { for } n=0,1,2 \ldots . \tag{2.2}
\end{equation*}
$$

Suppose $t>0$. Then there exists a $\delta=\delta(\epsilon)$ and a positive integer k such that $t \leq d\left(x_{k}, x_{k+1}\right)<\delta+t$. Hence by (2.1), one obtains

$$
d\left(x_{k+1}, x_{k+2}\right)=d\left(T x_{k}, T x_{k+1}\right)<t,
$$

which contradicts (2.2) therefore $d\left(x_{n}, x_{n+1}\right) \rightarrow 0$ as $n \rightarrow \infty$.
Now we wish to show that the sequence $\left\{x_{n}\right\}$ is Cauchy. If it is not Cauchy then there exists $2 \epsilon>0$ such that $d\left(x_{m}, x_{n}\right)>2 \epsilon$. Choose $\delta>0$ with $\delta<\epsilon$ for which (2.1) is satisfied. Since $d\left(x_{n}, x_{n+1}\right) \rightarrow 0$ there exists a positive integer $N=N(\delta)$ such that $d\left(x_{i}, x_{i+1}\right) \leq \frac{\delta}{6}$ for all $i \geq N$. With this choice of N, let us choose m, n with $m>n>N$ such that

$$
\begin{equation*}
d\left(x_{m}, x_{n}\right) \geq 2 \epsilon>\epsilon+\delta . \tag{2.3}
\end{equation*}
$$

By (2.3), $m-n>6$, otherwise

$$
d\left(x_{m}, x_{n}\right) \leq d\left(x_{n}, x_{n+1}\right)+\cdots+d\left(x_{n+4}, x_{n+5}\right) \leq \frac{5 \delta}{6}<\delta,
$$

a contradiction. Now suppose that $d\left(x_{n}, x_{m-1}\right) \leq \epsilon+\frac{\delta}{3}$. Then

$$
d\left(x_{n}, x_{m}\right) \leq d\left(x_{n}, x_{m-1}\right)+d\left(x_{m-1}, x_{m}\right) \leq \epsilon+\frac{\delta}{3}+\frac{\delta}{6}<\epsilon+\delta,
$$

a contradiction. Similarly, suppose $d\left(x_{n}, x_{m-2}\right) \leq \epsilon+\frac{\delta}{3}$. Then

$$
\begin{aligned}
d\left(x_{n}, x_{m}\right) & \leq d\left(x_{n}, x_{m-2}\right)+d\left(x_{m-2}, x_{m-1}\right)+d\left(x_{m-1}, x_{m}\right) \\
& \leq \epsilon+\frac{\delta}{3}+\frac{\delta}{6}+\frac{\delta}{6}<\epsilon+\delta .
\end{aligned}
$$

Let for the smallest integer $j \in(m, n)$ with $d\left(x_{n}, x_{j}\right)>\epsilon+\frac{\delta}{3}$, whereas

$$
d\left(x_{n}, x_{j}\right) \leq d\left(x_{n}, x_{j-1}\right)+d\left(x_{j-1}, x_{j}\right) \leq \epsilon+\frac{\delta}{3}+\frac{\delta}{6}<\epsilon+\frac{2 \delta}{3}
$$

Thus there exists a $j \in(n, m)$ such that

$$
\epsilon+\frac{\delta}{3}<d\left(x_{n}, x_{j}\right)<\epsilon+\frac{2 \delta}{3} .
$$

Then

$$
\begin{aligned}
d\left(x_{n}, x_{j}\right) & \leq d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{j+1}\right)+d\left(x_{j+1}, x_{j}\right) \\
& \leq \frac{\delta}{6}+\epsilon+\frac{\delta}{6}=\epsilon+\frac{\delta}{3}
\end{aligned}
$$

which is indeed a contradiction, therefore one may conclude that the sequence $\left\{x_{n}\right\}$ is Cauchy and it converges to a point z in X.

Now, we assume that there exists a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ which is contained in P. Using (2.1), one can write

$$
\begin{gathered}
H\left(T x_{n_{k-1}}, T z\right) \leq h \max \left\{\frac{1}{2} d\left(x_{n_{k-1}}, z\right), d\left(x_{n_{k-1}}, T x_{n_{k-1}}\right), d(z, T z)\right. \\
\left.\frac{d\left(z, T x_{n_{k-1}}\right)+d\left(x_{n_{k-1}}, T z\right)}{q}\right\}
\end{gathered}
$$

which on letting $k \rightarrow \infty$ we get $H(T z, z) \leq h d(T z, z)$, yielding thereby $z \in T z$. This completes the proof.

Remark 2.2. By setting $\delta(\epsilon)=\frac{2(1-h) \epsilon}{h}, 0<h<1$ in the Theorem 2.1 then $\delta(\epsilon)$ is nondecreasing function of $\epsilon>0$, one obtains

$$
\epsilon^{\prime}<\epsilon=\epsilon^{\prime}+\frac{1}{2} \delta\left(\epsilon^{\prime}\right)<\epsilon^{\prime}+\delta\left(\epsilon^{\prime}\right)
$$

by choosing $\epsilon^{\prime}=h \epsilon$. The condition (2.1) of Theorem 2.1 reduces to (1.2) due to Rhoades [11].

Finally, we furnish an example to discuss the validity of the hypotheses of Theorem 2.1 proved in this note which also establish the genuineness of our result.

Example 2.3. Let $X=R$ with Euclidean metric and $K=[0,16] \cup\{-4\}$. Define $T: K \rightarrow X$ as

$$
T x=\left\{\begin{array}{c}
-\frac{x}{4}, \\
\text { if } 0 \leq x \leq 16 \\
1, \\
\text { if } x=-4
\end{array}\right.
$$

Since $\delta K($ boundary of $K)=\{-4,0,16\}$. Also $-4 \in \delta K \Rightarrow T(-4)=1 \in K$, $0 \in \delta K \Rightarrow T 0=0 \in K, 16 \in \delta K \Rightarrow T 16=-4 \in K$. Moreover, if $0 \leq x, y \leq 16$, then

$$
\begin{aligned}
d(T x, T y) & =\frac{1}{4}|x-y|=\frac{1}{2}\left(\frac{1}{2} d(x, y)\right) \\
& \leq h \max \left\{\frac{1}{2} d(x, y), d(x, T x), d(y, T y), \frac{d(x, T y)+d(y, T x)}{q}\right\}
\end{aligned}
$$

Next, if $x \in[0,16]$ and $y=-4$ then

$$
\begin{aligned}
d(T x, T y) & =\frac{1}{4}|x+y|=\frac{1}{2}\left(\frac{1}{2} d(x, y)\right) \\
& \leq h \max \left\{\frac{1}{2} d(x, y), d(x, T x),(y, T y), \frac{d(x, T y)+d(y, T x)}{q}\right\}
\end{aligned}
$$

which shows that the contraction condition (2.1) is satisfied for every $x, y \in K$. Thus all the conditions of the Theorem 2.1 are satisfied and 0 is the fixed point of T.

Acknowledgement : Authors express their sincere thanks to the learned referee for their critical reading and his kind suggestions towards the improvement of entire manuscript.

References

[1] A. Meir, E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl. 28 (1969) 326-329.
[2] R.P. Pant, Common fixed points of two pairs of commuting mappings, Indian J. Pure Appl. Math. 17 (2) (1986) 187-192.
[3] R.P. Pant, A Meir-Keeler type fixed point theorem, Indian J. Pure Appl. Math. 32 (6) (2001) 779-787.
[4] R.P. Pant, A new common fixed point principle, Soochow J. Math. 27 (3) (2001) 287-297.
[5] R.P. Pant, A generalization of contraction principles, J. Indian Math. Soc. 68 (1-4) (2001) 25-32.
[6] I.H.N. Rao, K.P.R. Rao, On some fixed point theorems, Indian J. Pure Appl. Math. 15 (5) (1984) 459-462.
[7] N.A. Assad, A fixed point theorem for weakly uniformly strict contractions, Canad. Math. Bull. 16 (1) (1973) 15-18.
[8] Lj.B. Ćirić, A new fixed point theorem for contractive mappings, Publi. L'Institut Math. Nouvelle Serio tome. 30 (44) (1981) 25-27.
[9] N.A. Assad, W.A. Kirk, Fixed point theorems for set valued mappings of contractive type, Pacific J. Math. 43 (3) (1972) 553-562.
[10] S.B. Nadler, Multi-valued contraction mappings, Pacific J. Math. 30 (2) (1969) 475-488.
[11] B.E. Rhoades, A fixed point theorem for some non-self mappings, Math. Japonica. 23 (4) (1978) 457-459.
(Received 23 February 2011)
(Accepted 13 January 2012)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

[^0]: ${ }^{1}$ Corresponding author.
 Copyright © 2012 by the Mathematical Association of Thailand. All rights reserved.

