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Abstract : A fixed point theorem for generalized set-valued contraction in metri-
cally convex spaces has been proved which generalizes a fixed point theorem due to
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1 Introduction

Meir and Keeler [1] established that classical Banach contraction principle
remains true for weakly uniformly strict contractions:
Given € > 0 there exists a § > 0 such that

e <d(z,y) < e+ implies d(Tx,Ty) < e. (1.1)

In recent years this result due to Meir and Keeler [1] has been generalized,
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extended and improved in various ways and by now there exists a considerable
literature in this direction for self mappings. To mention a few we cite [2-8].

In this note, we establish a Meir and Keeler [1] type fixed point theorem for set-
valued generalized contraction in metrically convex spaces. In proving our result
we follow the definition and convention of Assad and Kirk [9] and Nadler [10].
Before formulating our result, for the sake of completeness we state the following
result due to Rhoades [11].

Theorem 1.1. Let (X, d) be a complete metrically convex metric space and K a
nonempty closed convexr subset of X. Let T : K — X be a map satisfying:

d(Tx, Ty) < M(z,y)

where

M (z,y) = h max {%d(x, y),d(z, Tx),d(y, Ty), d(z, Ty) +d(y, Tz) } (1.2)

q

for all x,y € K, with x # vy, where 0 < h <1, ¢ > 14 2h, and
(i) Tx € K for each x € K.

Then T has a fived point in K.

We now state relevant definition and lemmas which are used in the sequel.

Definition 1.2 ([9]). A metric space (X, d) is said to be metrically convex if for
any x,y € X with x # y there exists a point z € X, x # z # y such that

d(xv Z) + d(za y) = d(I, y)

Lemma 1.3 ([9]). Let K be a nonempty closed subset of a metrically convex metric
space X. If x € K and y ¢ K then there exists a point z € 0K (the boundary of
K ) such that

d(xv Z) + d(za y) = d(I, y)

In what follows, C B(X) denotes the set of all closed and bounded subsets of
(X,d), while C(X) for collection of all compact subsets of (X, d). Also H denotes
the Hausdoraff distance between two sets.

Lemma 1.4 ([10]). Let A, B € CB(X). Then for all e > 0 and a € A there exists
b € B such that d(a,b) < H(A,B)+e€. If A, B € C(X), then one can choose b € B
such that d(a,b) < H(A, B).

2 Main Results

We prove the following.
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Theorem 2.1. Let (X,d) be a complete metrically convex metric space and K
a nonempty closed subset of X. Let T : K — C(X) be a set-valued map which
satisfies (i) and for a given € > 0 there exists 6(e) > 0,0(€) being a nondecreasing
function of € with ¢ > 14 2h where 0 < h <1 such that

e < M(z,y) < e+ 0 implies H(Tz,Ty) < e. (2.1)
Then T has a fized point in K.

Proof. Firstly, we proceed to construct two sequences {z,} and {z/,} in the fol-
lowing way. Let xo € K. Define z} € Txg. If 2} € K then set 2} = x;. If 2} ¢ K
choose z1 € 6K so that

d(zo,m1) + d(z1, 7)) = d(z0, 7).

Then x1 € K. By using Lemma 1.4, select x, € Tz such that d(z],z}) <
H(Txzo,Tx1). If 25 € K then x) = x5. Otherwise choose z2 € JK such that

d(z1,m2) + d(z2, 25) = d(z1,5).
Thus by induction, one obtains two sequences {z,,} and {z],} such that
(i1) x4y € Ty
(ii1) d(xy, 1, 2,) < H(Txp, TTn_1).
(iv)
(v)

/ / —
Ty € K =21 =Tpy,

zy & K= x,41 € 0K and

d(xm xn-‘rl) + d(xn-‘rlvxiﬂrl) = d(xnv ‘T;Hrl)'
Now define
P={z; €{z,} 2} =u;,i=1,2,3,..}

Q={z; €{an} 2, #x;,i=1,2,3,...}.
Obviously, the two consecutive terms cannot lie in Q.
Now we distinguish the following three cases.

Case 1. If z,,x,41 € P, then
d({En, :En-i-l) = H(Til'n_l, Txn) < M(:En—la xn)

1
< h max {Ed(:zrnl, ZTn)y A Xp1, Txp—1), d(p, Ty,

d((En_l, Txn) + d(xna Txn—l) }
q )

1
S h max {id(‘rn—].? xn)7 d(‘r’n—l7 xn)7 d(‘r’nu xn-‘rl)u

d((En_l, xn—i—l) + d(xna xn) }
q )
< h max{d(zn-1,%n), d(Tn, Tni1)}
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If d(xp-1,2n) < d(xn,zn+1) then we get d(zp, zpy1) < d(Xp,Tpni1), which is
a contradiction. Otherwise, if d(zn,Tnt1) < h d(xn-1,2,) then one obtains
d(xn;anrl) S M(Inflazn) S h d(xnflaxn)-

Case 2. If x,, € P and x,, 1 € Q then

d(fEm InJrl) + d(anrl ) I;H-l) = d(xm I;z-i-l)’

which in turn yields
d(xnu xn-i-l) < d(‘rmx;ﬁ-l)'

Now, proceeding as in Case 1, we have

d(.’Iin, :En-i-l) < M(xn—luxn) < h d(ZCn_l,fL'n)-

Case 3. If z,, € Q and x4 € P then x,,_1 € P. Since z,, is a convex linear
combination of x, 1 and z/, it follows that

d(n, Tny1) < max{d(zn_1, Tny1), d(Tni1,2,)}
Now, if d(xn—1,Zn41) < d(a),nt1), then proceeding as in Case 1, one obtains
d(xn, Tpi1) < M(zp—1,2n) < h d(@p_1,zp).
Otherwise if d(,, £p4+1) < d(@p—1,Tn+1), then we have
d(@n, Tpt1) < d(@p—1,2p41) = H(TTp—2,T2y) < M(2p_2,2y)
< h max {%d(xng, T )y A(Xp—2, Txp—2), d(xy, Txy),

d($n72; T-In) + d({En, Txn72) }
q

1
S h max {§d(xn—27 :En)u d(xn—Qu xn—l)u d(.’Iin, :En-i-l)a

d(xn—Qu :En-i-l) + d(xna xn—l) }
q

Since )
Ed(fbn—% xyn) = max{d(Tn—2,Tn-1), d(Tn_1,Tn)}

Therefore, one obtains

d(.’Iin, xn—i—l) < h max {d(xn—% xn—l)u d(xn—l ) .’Iin), d(.’Iin, xn—i—l)a

d($n72; anrl) + d({En, $n,1) }
q
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which in turn yields

h d(xnflv {En), if d(xnflv xn) Z d($n72; Infl)
d(xny xn+1) S
h d(xn—% xn—l)u if d(.’L’n_l,{En) < d(xn—% xn—l)-

Thus in all the cases, we have
d(Xn, Tnt+1) < h max{d(zp—1,2n),d(Tn—2,Tn-1)}.
It can be easily shown by induction that for n > 1, we have
d(xp, Tpt1) < h max{d(xg,z1),d(x1,22)}.

Thus d(zy, xn+1) is a decreasing sequence and tending to ¢ € [0,00) as n — 0.
Let on contrary

d(Xp, Tpe1) > tfor n=0,1,2.... (2.2)

Suppose ¢t > 0. Then there exists a 6 = d(e) and a positive integer k such that
t <d(xp,xp+1) <+ t. Hence by (2.1), one obtains

d(@ps1, Try2) = d(Tag, Tepg) < t,

which contradicts (2.2) therefore d(zy,xn+1) — 0 as n — oo.

Now we wish to show that the sequence {z,} is Cauchy. If it is not Cauchy
then there exists 2¢ > 0 such that d(x,,z,) > 2¢. Choose § > 0 with § < e for
which (2.1) is satisfied. Since d(zp,Zn+1) — 0 there exists a positive integer
N = N(6) such that d(x;, x;41) < % for all 4 > N. With this choice of N, let us
choose m,n with m > n > N such that

d(Tpm, Ty) > 26 > €+ 6. (2.3)
By (2.3), m —n > 6, otherwise

56§
d(xmaxn) S d(xnaxn—i-l) + -+ d(xn+47xn+5) S g < 67

a contradiction. Now suppose that d(z,, z,m-1) <€+ g. Then
0 0
d(fEn,iEm) Sd(znaxmfl)‘kd(xmflv:pm) S€+§+6 <€+5a

a contradiction. Similarly, suppose d(2y, Tm—2) < € + %. Then
d(xnu xm) S d({En, :Em—2) + d(.’L’m_Q, :Em—l) + d(CEm_l, xm)

cer 21010ty
= '3°6 6 '
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Let for the smallest integer j € (m, n) with d(z,,z;) > e+ %, whereas

) 20
d(xn,xj) < d(l‘n,l'j_l) + d(xj_l,xj) <e+ g + 6 < e+ ?

Thus there exists a j € (n,m) such that
2
6+§ <d(zp,zj) <e+ ?6
Then

which is indeed a contradiction, therefore one may conclude that the sequence
{zy} is Cauchy and it converges to a point z in X.

Now, we assume that there exists a subsequence {z,, } of {z,} which is con-
tained in P. Using (2.1), one can write

1
H(Txy, _,,Tz) < h max {gd(xnkl,z),d(:vnkI,T:anl),d(z,Tz),

d(z,Txp,_,) + d(@n,_,,T?) }
q

which on letting k& — oo we get H(T'z,z) < hd(T'z, z), yielding thereby z € T'z.
This completes the proof. O

Remark 2.2. By setting d(e) = @,O < h <1 in the Theorem 2.1 then 0(¢)

is nondecreasing function of € > 0, one obtains
’ ’ 1 ’ ’ ’
€ <e=¢ +§5(e)<e +d(e)

by choosing € = he. The condition (2.1) of Theorem 2.1 reduces to (1.2) due to
Rhoades [11].

Finally, we furnish an example to discuss the validity of the hypotheses of
Theorem 2.1 proved in this note which also establish the genuineness of our result.

Example 2.3. Let X = R with Fuclidean metric and K = [0,16] U {—4}. Define
T:K— X as

-4, if0<2 <16
Tx =

1, if x = —4.
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Since K (boundary of K) = {—4,0,16}. Also —4 € K = T(-4) =1 € K,
0edK=T0=0€ K,16 € 0K = T16 = —4 € K. Moreover, if 0 < x,y < 16,
then

1 1/1
AT2,7y) = Jlo =3l = 5 (3aen)

<h max{%d(x, y), d(z, Tz),d(y, Ty), d(xz,Ty) + d(y, Tx) } '

q
Nezxt, if x € [0,16] and y = —4 then

d(Tz,Ty) = Yo +y) = - (Ld(a,y)
4 2\ 2

<h max{%d(a:, v),d(z, Tz), (y, Ty), d(z, Ty) + d(y, Tx) }

q
which shows that the contraction condition (2.1) is satisfied for every x,y € K.

Thus all the conditions of the Theorem 2.1 are satisfied and 0 is the fixed point of
T.
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