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Abstract : The problem of L,—aproximation has been received consideration of
many authors. In this paper we establish the direct and inverse theorems for the
Bézier variant M,, o of certain summation-integral type operators M,, in L,—norm
using Ditzian-Totik modulus of smoothness. These operators include the well
known Baskakov-Durrmeyer and Szasz-Durrmeyer type operators as special cases.
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1 Introduction

For obvious reasons, summation type operators as such are not L,— approx-
imation methods. Nevertheless, several linear positive operators of summation
type have been appropriately modified to become L,-approximation method. The
underlying idea behind such a modification is to replace, in the expression for the
operator, the function value at a nodal point by an average value (in the sense of
integration) of the function in an appropriate neighborhood of the point. The first
such modification was made by Kantorovich [1] for the case of Bernstein polynomi-
als. Another modification of Bernstein polynomials was introduced by Durrmeyer
[2] and later studied extensively by Derrienic [3]. In 2000, Zeng and Chen [4]
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introduced the Durrmeyer-Bézier operators D,, o as follows:
1 o0
Do = (041 Y- Q) [ pusrre)
k=0 s

for f defined on [0, 1]. where p,, x(x) are well known Bernstein basis functions and

lea,)g(:z) are the Bézier basis functions introduced by Bézier [5]. The authors of
[4] studied the rate of convergence of the operators D,, o for functions of bounded
variation. In the sequel Bézier variant of some well known operators were intro-
duced (cf. [4, 6, 7]) and their rates of convergence for bounded variation functions
have been investigated (cf. [8, 9]). In order to approximate Lebesgue integrable
functions on the interval [0, c0), Gupta and Mohapatra [10] considered the opera-
tors

M, (f,z)= an,k(x,c)/bmk(t,c)f(t) dt,
k=0 o

xk xk
where pn,k(xac) = (_1)kﬁ</)§zk,¢)2(x)a bn,k(xvc) = (_1)k+lﬁ</)g€,jl) (I)v UAS [0,00)

and
(1+ecx) ™ e>0
Sﬁn,C(fE) =

e " c=0.

For ¢ > 0, the operators M,, reduce to Baskakov-Durrmeyer operators and when
¢ = 0 these become Szdsz-Durrmeyer type operators. Some approximation prop-
erties of these operators were studied in [11]. The rate of convergence by the
operators M, for the particular value ¢ = 1 was studied in [12].

Let L,[0, 00) be the class of all p—Lebesgue integrable functions on the positive
real line. For f € L,[0,00), introducing the Bézier basis functions Q5 ,(z,c)
= Jo (@ c) = I3y (x,¢) a > 1, the Bézier variant M, o of the operators M,, is
defined by

Moa(foo) = 3 Q% uw,0) / b k() (1) dt,
k=0 0

where J,, (2, ¢) = > 07 pnw(z,¢). For o = 1, the operators M, , reduce to the
operators M,.

In order to make the paper self contained we give definitions of the unified
K —functional and the Ditzian-Totik modulus of smoothness used in this paper.

Let f € L,[0,0), p(x) = v/z(1+cx),0 < X <1, then

wr (f,t)p = sup ||A~,W,A(m)f(:v)||p
0<h<t
o—h (2)/220

b

0<h<t 2 2
z—heX(2)/220

)
p
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where () is an admissible weight function of Ditzian-Totik modulus of smooth-
ness. The corresponding K — functional is defined as

Kor(f,0)p = inf {1F = gllp + ™'l }

where Wy = {g: g € ACloc, |[|¢*¢' || < 00, ||g'|l, < 0o} and by ACioc we mean the
class of functions absolutely continuous on every finite subset of [0, c0). Moreover,
the following equivalence is well known (cf.[13])

Wer (fu t)p ~ K«p’\ (fu t)P

i.e. there exists constants Cy,Cy > 0 such that Ciwpr (f, 1), < C2K o (f, 1),

In Section 2, we give some lemmas which will be used in our main theorems.
Subsequently, in Section 3 we establish our main theorem. The constant M is not
the same at each occurrence.

2 Preliminaries

Lemma 2.1 ([14]). For the functions Jy k(z,c) and Qy, ;. (7, c), we have
1. 1=Jyolz,c) > Jpa(z,e) > > Ty p(z,¢) > Ty ppr(z) > -
2. 0<Qy(z,c) <appi(z,c), a>1,
3. M, (1,z) =0

4- ‘Mrlz,a(fv 55)’ Sa ZEO:O (JS‘,?(%C) - Jg,;}rl(x))Jr/L,kJrl(‘r) X
X S5 FObn(t,c) db+ My(f,a)|

The following Lemma is due to Berens and Lorentz:

Lemma 2.2 ([15]). Let Q be monotone increasing on [0,c]. Then Q(t) = O(t%),
t — 0+, if for some 0 < a <r and all h,t € [0, ]

Q(h) < M [t* + (h/t)"Q(1)] .

We prove a Bernstein type lemma for the operators M, o, which is useful while
establishing the inverse theorem.

Lemma 2.3. If f € Ly[0,00),1 < p < 00 ¢(z) = Jx(l+cx), and 0 < XA < 1,
then there holds

LMy o(f, )lp < Mol [l and
2. M, o (f. )llp < Man' 2| f],,
where M = M (c, \) is independent of f and n.
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Proof. The result for p = oo has been established in [14]. Since, the operators
M, . are bounded, therefore in view of Riesz-Thorin interpolation theorem (see
[16, p.231-233]) the lemma is proved for all 1 < p < oo if it is also proved for
p = 1. In view of Lemma 2.1, we get

MrIL,a(fu ,’E) = [El + E2]7 say,

where

=« Z Jgkl JJ C Jgk}rl( )) nk—i—l / /f du bn k(t C)d
k=0 0
and

t
By = M, / £ (u) du,

Now, we estimate F as follows

oo

B =a Z(Js,gl(xac Jgk-li-l( )) nk+1 / /f Ydu | by k(t,c)dt

k=0

<a ankxc nk+1 / /f du bnk(tc)d
0

x

0 x t)\/2 _
< alle 'l | Pk, )T} o (@ /( VLS A(ﬂ) bk (t, c) dt|.
k=0 )
Therefore,
7 (1+ cx) A/2
P @B < ol [ s (@) [ (14 S b i
k=0 )

= ol f'||l1 [Fy + F] say,

where F} and F5 are the corresponding to two terms under the integral sign. Now,

oo

= anﬁk(a:,c)‘ffhk_‘_l(x)/bnyk(t,c) dt
k=0 )

1 o0
= D (ke + Dpnp(, O)pn st (2, 0)
k=0

A +ex) 3 S cx \** Tk+n/c)T(k+n/c+1)
I2(n/c) Z (1—!—03:) (k)2

2n

= Mz(l +ex) T3
c
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which implies | Fy 1 = Mn [7°(1+ cx) =3~ dz = MO(1), M = M(c, ). In view
of the convergence of the integral [ (1+ ct) ™ 2b, & (t,c) dt for 0 < A < 1, we get

ankxc nk+1 /2/1+Ct )‘/ank(tc)dlf
0
FRT(1+n/e+ A/2)0(k+1+n/c)
- ’ —x/2¢
Z:p"’k(x’ I ()T T(n/o)T(k+2+n/c+ \/2)

L(1+n/c+N/2)c i (k+n/c)T3(k + n/c)xkt1=2/2
I'(n/c) (kN2(1 + cx)2kt3+2n/cD(k + 24+ n/c+ \/2)

O

Above series is convergent as follows easily from Raabe’s test. Moreover, taking
n/c common does not affect the convergence of the series. Thus, for large values
of n we use Stirling’s asymptotic formula and obtain the estimate

3
L1t nje tA/2) g~ (04 nfe = ptn/emt/n g kon/ern)
I3(n/c) S (k+nfc+ 14 N/2)kHn/cr3/240]2

(k+n/c)(k+2n/c+)\/2)k+2n/c+1/2+>\/2€7k72n/c7>\/2
X e,k,n/cflpr(k!)z(Qk+2n/c_|_2)2k+2n/c+5/2672k72n/c72

T(1+n/c+ N/2) n?n/c4 & (ﬁ)k 1
I‘B(n/c) e2n/c+6 poars (kl)2

(n/c—|— )\/Q)n/c+>\/2+1/2 —n/e=X/2,2n/c—4

((n/c_l)n/c 1/2¢0— n/c—i—l) e2n/c+6

< Mn*?272 = MO (n_3/2) .

[Faolr < M

<M

e

<M

Similarly, it follows by direct calculations that || Eal|, < C'||¢*f||,. Collecting E,
E5 the lemma follows for p = 1.

Now, in order to establish second inequality we again use Lemma 2.1. Thus,
we get

o™ (@) M, o (f )]
<>

k=0

bn t) dt| ™ (@) ), gy (2) da{ T3 (2, 0) = T35y (@)}

/bn)ktc ()dt
0

= Ay + Ao, say.

+

()Jo‘lxc|pnkxc|dac

[
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Since J}, ;.. () = Etly k+1(z, ¢), we have

|\A1||1<MZ]

< Mnfnlz]

AT (24 2n/c — A (k+n/c)T%(k+n/e)T(2k + 1+ \/2)
I'2(n/c) Z (2T (2k+342n/c— \/2)

P (@, 0) T o (& H ’/ ity ) (t)dt’

k+1
P (@, ) Do (2,6 @)

1

< MHle
k=0

The series on the right is convergent. We apply Stirling’s asymptotic formula
I'(s+ 1) ~ 271 5%t1/2¢75, to obtain
[Ax][1

2
o 2k (k+n/e)l(2k + 1+ \/2) ((k +nje— 1)k+n/cfl/2e*k*"/c+l)

SMHlez

k=0 (k!)Q((n/c— 1)n/c—1/2e—n/c+1)2
(1+2n/c— /\)3/2+2n/cf)\67172n/c+)\
(2k + 2 + 2n/c — \/2)2kH5/2 2] N2 —2k—2=2n]cFA/2
< M| fllin 2, M = M(c, \).

We have @2 (2)p!, ,(, ¢) = (n+¢) (7 —2)pa r (@, ¢) and 332 o (2 —2)pn i(2, ¢) =
M, Therefore,

(n+c)(1+cx)
| Azlly < MY £l (Y201 + @) 2p(e, o) Zc 262 2P r(a,0))
k=0
= Az + Ay, say.

We obtain estimate for A3 as
nllfll <~ Lk +n/c) k+17 AN
Azl < M E d
H 3”1 = F(n/c) — k! ¢ (1 + cx)k+1+n/c—>\/2 L

< anHl i (n/c+ bk — 1)n/chkf1/2672n/cfk+>\+1/2ck+1r(k + )\/2)
/o) & K1k + n/c — AJ2)Rn/e=A[2H1/2g—k—n/ctA/2

n/c—\/2—1/2

nlflln
— (n/c_l)n/cfl/Q

< M| fllin' =2,

Similarly, ||As|l; < M||f|lin'~*/2. Combining these estimates the second inequal-
ity (ii) is established. O
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3 Main Results

The main result of the present paper is the following:

Theorem 3.1. Let f € L,[0,00), 1 <p < o0, p(z) = /x(l+cz), 0 <A <1lec>
0 and 0 < v < 1. Then, there holds the zmplzcatwn (i) < (ii) in the following
statements:

1 ||Mna(f) = f]|, =0 (n/2-1)”
wr (f,x)p = O(27).

Proof. Direct Part:

It is sufficient to consider the case p = 1 only . The case p = oo was studied in [14].
The result for 1 < p < oo then follows from Riesz-Thorin interpolation theorem
[16]. By the definition of K x(f,t) for fixed n, z, A, we can choose g = gn o x € Wi
such that

« A
1 =l + =l l, < Koo (£ 757m)
Since, My, o is constant preserving, we can write

M .o(f2) = f(@)llp < OIS = gllp + | Mn.a(g, 2) — 9(2) |- (3.1)

For the case p = oo the result has been established in [14]. We take the two term
Taylor’s expansion g(t) = g(x) + R(g,t,x), where R(g,t, z) f g'(

|Mn,o¢(gv {E) - g(:v)|

Saanﬁk(:zrc// u) du| by, (t) dt
k=0 F

T
t

> 1 1 o
< a;pn,k(I,C)o/ <@A(x) + (x(1+ct))A/2> b,k (t) dt /w (u)g'(u) du

x

<l Y pusie) [ <w1<x> e +1ct>>” 2) )

k=0 0

= Jy + Ja, say

where, Jp, J2 are two terms corresponding to two terms in above integral. Now, in
view of fo n.k(t, ¢) dt = 1 and the convergence of the integral fo k(T €)p~ ( ) dx
for 0 < A <1, we get

11l < awg’nlz/m 2,0 (z) do

k=07

n/c—i—)\ ir (k+1—=X/2)T(k+n/c)
I(k+n/c+ A2+ 1)k!

< allprg
k=0
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D(n/c+ \) i D(k+1-)/2)
D(nfc) & K
(k+njc—1)ktn/c=1/2) g—k=n/ct1
(k +n/c+ \/2)(k+n/c+1/24X/2) g—k—n/c+)/2
(n/c+ X — 1)/ etA=1/2p=1=X/2p=n/c=A+1

A/
< MOLH(P g Hl (n/c— 1)n/c—1/267n/c+1
Ma|lprg' |1
e M= M(e,)).

In order to find estimate for .J, we proceed as in the estimate of F5 in Lemma 2.3.
Thus, we obtain
o0

[ Ta| < all /I pok (@, )z /(1 +ct) M 2by i (t, ¢) dt
k=0

Dk +14+n/c)cF2T (1 +n/c+ N/2
SO‘”‘#’AQ/Hlank:vc 221 /©) (L+n/c+A/2)

T(n/oL(k + 2+ njc+ A/2)
Therefore,
k414 n/c)cF2T(1 4+ n/e+ A/2) 7
< A ( - )‘/Qd
[/2]l1 < alle™g Hl; T /T 0k £ 2+ njet A/2) Prk( x
- 0
< a|d | (nfe+ N/2)I2%(n/c+ \/2) L(k+n/c)T(k+1—)/2)
=alv g T2(n/c) < T(k+ D)0k + 2+ njc+A/2)
+/\/2)F2(n/c+/\/2) —\/9_gLUt1-2/2)
<M A (n/c / INCESym
< Mal¢*g'llh 20/ k;n
< Mall*d'[lx

nl-r/2

Combining the estimates for J; and Jz, we get following

1
1Mn,a(g,7) = g(@)ll < Ma—=75l¢"g' |

which on substituting in (3.1) gives
a
|Mnalf2) = F@)l < Mo (£, 5575 )
Inverse Part:

We make use of the weighted Steklov type average function S5 defined as follows

@™ ()
/ flx+u)du, 0<A<1.

T‘Sw*(w)

[N

S(;(CL') =

5</>
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Then, it follows that
LS5 = flln £ wr(f, 0)15
2. 1851 < 6 s (f,0)1.
(see [17, p. 117]). We get

Hﬂhw(x)f(w)Hl < Hﬁhw(z) (f(x) = M, (f,x)) Hl + Hﬂhw(z)M{z,a(aw)Hl

w;m
<M(n%*1)7+ / M, o (f = Ss, 2 +u)du
ho (z)
1
he? ()
2
+ / M, (Ss, = +u)du
he (@)
B 1

Using Bernstein type inequalities, and properties of S5 functon, we get the estimate
~ Al
| Anpr oy Ml f5)| < M (0 1) + ho(@) (1M, o(f = S5, 2)] + [My, (S5, 2)])

Therefore,

~ A1\ h 1
[dnsaptnatr.ol] <31 (n3) 4 (i ) (16 = il + =l

o1 20 (112) 4 (557 ) o (7o)

Using Lemma 2.2, we finally get wx(f,z)1 = O (z7), 0 <~ < 1. This completes
the proof. O
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