L_{p}-Approximation by Bézier Variant of Certain Summation-Integral Type Operators

Asha Ram Gairola ${ }^{1}$ and Girish Dobhal
Department of Computer Application Graphic Era University, Dehradun 248001, India
e-mail : ashagairola@gmail.com (A.R. Gairola)
girish.dobhal@gmail.com (G. Dobhal)

Abstract

The problem of L_{p}-aproximation has been received consideration of many authors. In this paper we establish the direct and inverse theorems for the Bézier variant $M_{n, \alpha}$ of certain summation-integral type operators M_{n} in L_{p}-norm using Ditzian-Totik modulus of smoothness. These operators include the well known Baskakov-Durrmeyer and Szász-Durrmeyer type operators as special cases.

Keywords : L_{p}-approximation; modulus of continuity; direct and inverse theorem.
2010 Mathematics Subject Classification : 41A25; 41A27; 26 A15.

1 Introduction

For obvious reasons, summation type operators as such are not L_{p} - approximation methods. Nevertheless, several linear positive operators of summation type have been appropriately modified to become L_{p}-approximation method. The underlying idea behind such a modification is to replace, in the expression for the operator, the function value at a nodal point by an average value (in the sense of integration) of the function in an appropriate neighborhood of the point. The first such modification was made by Kantorovich [1] for the case of Bernstein polynomials. Another modification of Bernstein polynomials was introduced by Durrmeyer [2] and later studied extensively by Derrienic [3]. In 2000, Zeng and Chen [4]

[^0]introduced the Durrmeyer-Bézier operators $D_{n, \alpha}$ as follows:
$$
D_{n, \alpha}=(n+1) \sum_{k=0}^{1} Q_{n, k}^{(\alpha)}(x) \int_{0}^{\infty} p_{n, k}(t) f(t) d t,
$$
for f defined on $[0,1]$. where $p_{n, k}(x)$ are well known Bernstein basis functions and $Q_{n, k}^{(\alpha)}(x)$ are the Bézier basis functions introduced by Bézier [5]. The authors of [4] studied the rate of convergence of the operators $D_{n, \alpha}$ for functions of bounded variation. In the sequel Bézier variant of some well known operators were introduced (cf. $[4,6,7]$) and their rates of convergence for bounded variation functions have been investigated (cf. [8, 9]). In order to approximate Lebesgue integrable functions on the interval $[0, \infty)$, Gupta and Mohapatra [10] considered the operators
$$
M_{n}(f, x)=\sum_{k=0}^{\infty} p_{n, k}(x, c) \int_{0}^{\infty} b_{n, k}(t, c) f(t) d t
$$
where $p_{n, k}(x, c)=(-1)^{k} \frac{x^{k}}{k!} \varphi_{n, c}^{(k)}(x), b_{n, k}(x, c)=(-1)^{k+1} \frac{x^{k}}{k!} \varphi_{n, c}^{(k+1)}(x), x \in[0, \infty)$ and
\[

\varphi_{n, c}(x)=\left\{$$
\begin{array}{l}
(1+c x)^{-n / c} ; c>0 \\
e^{-n x} ; c=0 .
\end{array}
$$\right.
\]

For $c>0$, the operators M_{n} reduce to Baskakov-Durrmeyer operators and when $c=0$ these become Szász-Durrmeyer type operators. Some approximation properties of these operators were studied in [11]. The rate of convergence by the operators M_{n} for the particular value $c=1$ was studied in [12].

Let $L_{p}[0, \infty)$ be the class of all p-Lebesgue integrable functions on the positive real line. For $f \in L_{p}[0, \infty)$, introducing the Bézier basis functions $Q_{n, k}^{\alpha}(x, c)$ $=J_{n, k}^{\alpha}(x, c)-J_{n, k+1}^{\alpha}(x, c) \alpha \geq 1$, the Bézier variant $M_{n, \alpha}$ of the operators M_{n} is defined by

$$
M_{n, \alpha}(f, x)=\sum_{k=0}^{\infty} Q_{n, k}^{\alpha}(x, c) \int_{0}^{\infty} b_{n, k}(t, c) f(t) d t
$$

where $J_{n, k}(x, c)=\sum_{\nu=k}^{\infty} p_{n, \nu}(x, c)$. For $\alpha=1$, the operators $M_{n, \alpha}$ reduce to the operators M_{n}.

In order to make the paper self contained we give definitions of the unified K-functional and the Ditzian-Totik modulus of smoothness used in this paper.

Let $f \in L_{p}[0, \infty), \varphi(x)=\sqrt{x(1+c x)}, 0<\lambda<1$, then

$$
\begin{aligned}
\omega_{\varphi^{\lambda}}(f, t)_{p} & =\sup _{\substack{0<x t t \\
x-h \varphi^{\lambda}(x) / 2 \geq 0}}\left\|\tilde{\Delta}_{h \varphi^{\lambda}(x)} f(x)\right\|_{p} \\
& =\sup _{\substack{0<h \leq t \\
x-h \varphi^{\lambda}(x) / 2 \geq 0}}\left\|f\left(x+\frac{h \varphi^{\lambda}(x)}{2}\right)-f\left(x-\frac{h \varphi^{\lambda}(x)}{2}\right)\right\|_{p},
\end{aligned}
$$

where $\varphi(x)$ is an admissible weight function of Ditzian-Totik modulus of smoothness. The corresponding K - functional is defined as

$$
K_{\varphi^{\lambda}}(f, t)_{p}=\inf _{g \in W_{\lambda}}\left\{\|f-g\|_{p}+t\left\|\varphi^{\lambda} g^{\prime}\right\|_{p}\right\}
$$

where $W_{\lambda}=\left\{g: g \in A C_{\text {loc }},\left\|\varphi^{\lambda} g^{\prime}\right\|_{p}<\infty,\left\|g^{\prime}\right\|_{p}<\infty\right\}$ and by $A C_{\text {loc }}$ we mean the class of functions absolutely continuous on every finite subset of $[0, \infty)$. Moreover, the following equivalence is well known (cf.[13])

$$
\omega_{\varphi^{\lambda}}(f, t)_{p} \sim K_{\varphi^{\lambda}}(f, t)_{p}
$$

i.e. there exists constants $C_{1}, C_{2}>0$ such that $C_{1} \omega_{\varphi^{\lambda}}(f, t)_{p} \leq C_{2} K_{\varphi^{\lambda}}(f, t)_{p}$.

In Section 2, we give some lemmas which will be used in our main theorems. Subsequently, in Section 3 we establish our main theorem. The constant M is not the same at each occurrence.

2 Preliminaries

Lemma 2.1 ([14]). For the functions $J_{n, k}(x, c)$ and $Q_{n, k}^{\alpha}(x, c)$, we have

1. $1=J_{n, 0}(x, c)>J_{n, 1}(x, c)>\cdots>J_{n, k}(x, c)>J_{n, k+1}(x)>\cdots$
2. $0<Q_{n, k}^{\alpha}(x, c)<\alpha p_{n, k}(x, c), \alpha \geq 1$,
3. $M_{n, \alpha}^{\prime}(1, x)=0$
4. $\left|M_{n, \alpha}^{\prime}(f, x)\right| \leq \alpha \mid \sum_{k=0}^{\infty}\left(J_{n, k}^{\alpha-1}(x, c)-J_{n, k+1}^{\alpha-1}(x)\right) J_{n, k+1}^{\prime}(x) \times$ $\times \int_{0}^{\infty} f(t) b_{n, k}(t, c) d t+M_{n}^{\prime}(f, x) \mid$.

The following Lemma is due to Berens and Lorentz:
Lemma 2.2 ([15]). Let Ω be monotone increasing on $[0, c]$. Then $\Omega(t)=O\left(t^{\alpha}\right)$, $t \rightarrow 0+$, if for some $0<\alpha<r$ and all $h, t \in[0, c]$

$$
\Omega(h)<M\left[t^{\alpha}+(h / t)^{r} \Omega(t)\right] .
$$

We prove a Bernstein type lemma for the operators $M_{n, \alpha}$ which is useful while establishing the inverse theorem.

Lemma 2.3. If $f \in L_{p}[0, \infty), 1 \leq p \leq \infty \varphi(x)=\sqrt{x(1+c x)}$, and $0<\lambda<1$, then there holds

1. $\left\|\varphi^{\lambda} M_{n, \alpha}^{\prime}(f, .)\right\|_{p} \leq M \alpha\left\|\varphi^{\lambda} f^{\prime}\right\|_{p}$ and
2. $\left\|\varphi^{\lambda} M_{n, \alpha}^{\prime}(f, .)\right\|_{p} \leq M \alpha n^{1-\lambda / 2}\|f\|_{p}$,
where $M=M(c, \lambda)$ is independent of f and n.

Proof. The result for $p=\infty$ has been established in [14]. Since, the operators $M_{n, \alpha}$ are bounded, therefore in view of Riesz-Thorin interpolation theorem (see [16, p.231-233]) the lemma is proved for all $1 \leq p \leq \infty$ if it is also proved for $p=1$. In view of Lemma 2.1, we get

$$
M_{n, \alpha}^{\prime}(f, x):=\left[E_{1}+E_{2}\right], \text { say }
$$

where

$$
E_{1}=\alpha\left|\sum_{k=0}^{\infty}\left(J_{n, k}^{\alpha-1}(x, c)-J_{n, k+1}^{\alpha-1}(x)\right) J_{n, k+1}^{\prime}(x) \int_{0}^{\infty}\left(\int_{x}^{t} f^{\prime}(u) d u\right) b_{n, k}(t, c) d t\right|
$$

and

$$
E_{2}=M_{n}^{\prime}\left(\int_{x}^{t} f^{\prime}(u) d u, x\right)
$$

Now, we estimate E_{1} as follows

$$
\begin{aligned}
E_{1} & =\alpha\left|\sum_{k=0}^{\infty}\left(J_{n, k}^{\alpha-1}(x, c)-J_{n, k+1}^{\alpha-1}(x)\right) J_{n, k+1}^{\prime}(x) \int_{0}^{\infty}\left(\int_{x}^{t} f^{\prime}(u) d u\right) b_{n, k}(t, c) d t\right| \\
& \leq \alpha\left|\sum_{k=0}^{\infty} p_{n, k}(x, c) J_{n, k+1}^{\prime}(x) \int_{0}^{\infty}\left(\int_{x}^{t} f^{\prime}(u) d u\right) b_{n, k}(t, c) d t\right| \\
& \leq \alpha\left\|\varphi^{\lambda} f^{\prime}\right\|_{1}\left|\sum_{k=0}^{\infty} p_{n, k}(x, c) J_{n, k+1}^{\prime}(x) \int_{0}^{\infty}\left(\varphi^{-\lambda}(x)+\frac{t^{\lambda / 2}}{x^{\lambda / 2}} \varphi^{-\lambda}(t)\right) b_{n, k}(t, c) d t\right|
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\varphi^{\lambda}(x) E_{1} & \leq \alpha\left\|\varphi^{\lambda} f^{\prime}\right\|_{1}\left|\sum_{k=0}^{\infty} p_{n, k}(x, c) J_{n, k+1}^{\prime}(x) \int_{0}^{\infty}\left(1+\frac{(1+c x)^{\lambda / 2}}{(1+c t)^{\lambda / 2}}\right) b_{n, k}(t, c) d t\right| \\
& =\alpha\left\|\varphi^{\lambda} f^{\prime}\right\|_{1}\left[F_{1}+F_{2}\right] \text { say }
\end{aligned}
$$

where F_{1} and F_{2} are the corresponding to two terms under the integral sign. Now,

$$
\begin{aligned}
F_{1} & =\sum_{k=0}^{\infty} p_{n, k}(x, c) J_{n, k+1}^{\prime}(x) \int_{0}^{\infty} b_{n, k}(t, c) d t \\
& =\frac{1}{x} \sum_{k=0}^{\infty}(k+1) p_{n, k}(x, c) p_{n, k+1}(x, c) \\
& =\frac{c^{3}(1+c x)^{-3-\frac{2 n}{c}}}{\Gamma^{2}(n / c)} \sum_{k=0}^{\infty}\left(\frac{c x}{1+c x}\right)^{2 k} \frac{\Gamma(k+n / c) \Gamma(k+n / c+1)}{(k!)^{2}} \\
& =M \frac{n}{c}(1+c x)^{-3-\frac{2 n}{c}}
\end{aligned}
$$

which implies $\left\|F_{1}\right\|_{1}=M n \int_{0}^{\infty}(1+c x)^{-3-\frac{2 n}{c}} d x=M O(1), M=M(c, \lambda)$. In view of the convergence of the integral $\int_{0}^{\infty}(1+c t)^{-\lambda / 2} b_{n, k}(t, c) d t$ for $0<\lambda<1$, we get

$$
\begin{aligned}
F_{2} & =\sum_{k=0}^{\infty} p_{n, k}(x, c) J_{n, k+1}^{\prime}(x) x^{-\lambda / 2} \int_{0}^{\infty}(1+c t)^{-\lambda / 2} b_{n, k}(t, c) d t \\
& =\sum_{k=0}^{\infty} p_{n, k}(x, c) J_{n, k+1}^{\prime}(x) x^{-\lambda / 2} \frac{c^{k+2} \Gamma(1+n / c+\lambda / 2) \Gamma(k+1+n / c)}{\Gamma(n / c) \Gamma(k+2+n / c+\lambda / 2)} \\
& =\frac{\Gamma(1+n / c+\lambda / 2) c^{5}}{\Gamma^{3}(n / c)} \sum_{k=0}^{\infty} \frac{(k+n / c) \Gamma^{3}(k+n / c) x^{k+1-\lambda / 2}}{(k!)^{2}(1+c x)^{2 k+3+2 n / c} \Gamma(k+2+n / c+\lambda / 2)}
\end{aligned}
$$

Above series is convergent as follows easily from Raabe's test. Moreover, taking n / c common does not affect the convergence of the series. Thus, for large values of n we use Stirling's asymptotic formula and obtain the estimate

$$
\begin{aligned}
\left\|F_{2}\right\|_{1} \leq & M \frac{\Gamma(1+n / c+\lambda / 2)}{\Gamma^{3}(n / c)} \sum_{k=0}^{\infty} \frac{\left((k+n / c-1)^{(k+n / c-1 / 2)} e^{-k-n / c+1)}\right)^{3}}{(k+n / c+1+\lambda / 2)^{k+n / c+3 / 2+\lambda / 2}} \\
& \times \frac{(k+n / c)(k+2 n / c+\lambda / 2)^{k+2 n / c+1 / 2+\lambda / 2} e^{-k-2 n / c-\lambda / 2}}{e^{-k-n / c-1-\lambda / 2}(k!)^{2}(2 k+2 n / c+2)^{2 k+2 n / c+5 / 2} e^{-2 k-2 n / c-2}} \\
\leq & M \frac{\Gamma(1+n / c+\lambda / 2)}{\Gamma^{3}(n / c)} \frac{n^{2 n / c-4}}{e^{2 n / c+6}} \sum_{k=0}^{\infty}\left(\frac{n}{e}\right)^{k} \frac{1}{(k!)^{2}} \\
\leq & M \frac{(n / c+\lambda / 2)^{n / c+\lambda / 2+1 / 2} e^{-n / c-\lambda / 2} n^{2 n / c-4}}{\left((n / c-1)^{n / c-1 / 2} e^{-n / c+1}\right)^{3} e^{2 n / c+6}} \\
\leq & M n^{\lambda / 2-2}=M O\left(n^{-3 / 2}\right) .
\end{aligned}
$$

Similarly, it follows by direct calculations that $\left\|E_{2}\right\|_{p} \leq C\left\|\varphi^{\lambda} f^{\prime}\right\|_{p}$. Collecting E_{1}, E_{2} the lemma follows for $p=1$.

Now, in order to establish second inequality we again use Lemma 2.1. Thus, we get

$$
\begin{aligned}
& \left|\varphi^{\lambda}(x) M_{n, \alpha}^{\prime}(f, x)\right| \\
& \qquad \begin{array}{l}
\leq \sum_{k=0}^{\infty}\left|\int_{0}^{\infty} b_{n, k}(t, c) f(t) d t\right| \varphi^{\lambda}(x) J_{n, k+1}^{\prime}(x) d x\left\{J_{n, k}^{\alpha-1}(x, c)-J_{n, k+1}^{\alpha-1}(x)\right\} \\
\\
\quad+\sum_{k=0}^{\infty}\left|\int_{0}^{\infty} b_{n, k}(t, c) f(t) d t\right| \varphi^{\lambda}(x) J_{n, k}^{\alpha-1}(x, c)\left|p_{n, k}^{\prime}(x, c)\right| d x \\
\quad=
\end{array} A_{1}+A_{2}, \text { say. }
\end{aligned}
$$

Since $J_{n, k+1}^{\prime}(x)=\frac{k+1}{x} p_{n, k+1}(x, c)$, we have

$$
\begin{aligned}
\left\|A_{1}\right\|_{1} & \leq M \sum_{k=0}^{\infty}\left\|p_{n, k}(x, c) J_{n, k+1}^{\prime}(x) \varphi^{\lambda}(x)\right\|_{1}\left|\int_{0}^{\infty} b_{n, k}(t, c) f(t) d t\right| \\
& \leq M\|f\|_{1} \sum_{k=0}^{\infty}\left\|p_{n, k}(x, c) \frac{k+1}{x} p_{n, k+1}(x, c) \varphi^{\lambda}(x)\right\|_{1} \\
& \leq M\|f\|_{1} \frac{c^{3} \Gamma(2+2 n / c-\lambda)}{\Gamma^{2}(n / c)} \sum_{k=0}^{\infty} \frac{c^{2 k}(k+n / c) \Gamma^{2}(k+n / c) \Gamma(2 k+1+\lambda / 2)}{(k!)^{2} \Gamma(2 k+3+2 n / c-\lambda / 2)} .
\end{aligned}
$$

The series on the right is convergent. We apply Stirling's asymptotic formula $\Gamma(s+1) \simeq \sqrt{2 \pi} s^{s+1 / 2} e^{-s}$, to obtain

$$
\begin{aligned}
& \left\|A_{1}\right\|_{1} \\
& \leq M\|f\|_{1} \sum_{k=0}^{\infty} \frac{c^{2 k}(k+n / c) \Gamma(2 k+1+\lambda / 2)\left((k+n / c-1)^{k+n / c-1 / 2} e^{-k-n / c+1}\right)^{2}}{(k!)^{2}\left((n / c-1)^{n / c-1 / 2} e^{-n / c+1}\right)^{2}} \\
& \quad \times \frac{(1+2 n / c-\lambda)^{3 / 2+2 n / c-\lambda} e^{-1-2 n / c+\lambda}}{(2 k+2+2 n / c-\lambda / 2)^{2 k+5 / 2+2 n / c-\lambda / 2} e^{-2 k-2-2 n / c+\lambda / 2}} \\
& \leq M\|f\|_{1} n^{-\lambda / 2}, M=M(c, \lambda) .
\end{aligned}
$$

We have $\varphi^{2}(x) p_{n, k}^{\prime}(x, c)=(n+c)\left(\frac{k}{n+c}-x\right) p_{n, k}(x, c)$ and $\sum_{k=0}^{\infty}\left(\frac{k}{n+c}-x\right) p_{n, k}(x, c)=$ $\frac{-\left[n(1+c x)+c^{2} x\right]}{(n+c)(1+c x)}$, Therefore,

$$
\begin{aligned}
\left\|A_{2}\right\|_{1} & \leq M\|f\|_{1}\left(\sum_{k=0}^{\infty} n(1+c x) \varphi^{\lambda-2} p_{n, k}(x, c)+\sum_{k=0}^{\infty} c^{2} x \varphi^{\lambda-2} p_{n, k}(x, c)\right) \\
& =A_{3}+A_{4}, \text { say } .
\end{aligned}
$$

We obtain estimate for A_{3} as

$$
\begin{aligned}
\left\|A_{3}\right\|_{1} & \leq M \frac{n\|f\|_{1}}{\Gamma(n / c)} \sum_{k=0}^{\infty} \frac{\Gamma(k+n / c)}{k!} c^{k+1} \int_{0}^{\infty} \frac{x^{k+\lambda / 2-1}}{(1+c x)^{k+1+n / c-\lambda / 2}} d x \\
& \leq M \frac{n\|f\|_{1}}{\Gamma(n / c)} \sum_{k=0}^{\infty} \frac{(n / c+k-1)^{n / c+k-1 / 2} e^{-2 n / c-k+\lambda+1 / 2} c^{k+1} \Gamma(k+\lambda / 2)}{k!(k+n / c-\lambda / 2)^{k+n / c-\lambda / 2+1 / 2} e^{-k-n / c+\lambda / 2}} \\
& \leq M \frac{n\|f\|_{1} n^{n / c-\lambda / 2-1 / 2}}{(n / c-1)^{n / c-1 / 2}} \\
& \leq M\|f\|_{1} n^{1-\lambda / 2} .
\end{aligned}
$$

Similarly, $\left\|A_{3}\right\|_{1} \leq M\|f\|_{1} n^{1-\lambda / 2}$. Combining these estimates the second inequality (ii) is established.

3 Main Results

The main result of the present paper is the following:
Theorem 3.1. Let $f \in L_{p}[0, \infty), 1 \leq p \leq \infty, \varphi(x)=\sqrt{x(1+c x)}, 0<\lambda<1, c \geq$ 0 and $0<\gamma<1$. Then, there holds the implication (i) \Leftrightarrow (ii) in the following statements:

1. $\left\|M_{n, \alpha}(f)-f\right\|_{p}=O\left(n^{\lambda / 2-1}\right)^{\gamma}$
2. $\omega_{\varphi^{\lambda}}(f, x)_{p}=O\left(x^{\gamma}\right)$.

Proof. Direct Part:

It is sufficient to consider the case $p=1$ only. The case $p=\infty$ was studied in [14]. The result for $1 \leq p \leq \infty$ then follows from Riesz-Thorin interpolation theorem [16]. By the definition of $K_{\varphi^{\lambda}}(f, t)$ for fixed n, x, λ, we can choose $g=g_{n, x, \lambda} \in W_{\lambda}$ such that

$$
\|f-g\|_{p}+\frac{\alpha}{n^{1-\lambda / 2}}\left\|\varphi^{\lambda} g^{\prime}\right\|_{p} \leq K_{\varphi^{\lambda}}\left(f, \frac{\alpha}{n^{1-\lambda / 2}}\right)_{p} .
$$

Since, $M_{n, \alpha}$ is constant preserving, we can write

$$
\begin{equation*}
\left\|M_{n, \alpha}(f, x)-f(x)\right\|_{p} \leq C\|f-g\|_{p}+\left\|M_{n, \alpha}(g, x)-g(x)\right\|_{p} . \tag{3.1}
\end{equation*}
$$

For the case $p=\infty$ the result has been established in [14]. We take the two term Taylor's expansion $g(t)=g(x)+R(g, t, x)$, where $R(g, t, x)=\int_{x}^{t} g^{\prime}(\tau) d \tau$.

$$
\begin{aligned}
& \left|M_{n, \alpha}(g, x)-g(x)\right| \\
& \quad \leq \alpha \sum_{k=0}^{\infty} p_{n, k}(x, c) \int_{0}^{\infty}\left|\int_{x}^{t} g^{\prime}(u) d u\right| b_{n, k}(t) d t \\
& \quad \leq \alpha \sum_{k=0}^{\infty} p_{n, k}(x, c) \int_{0}^{\infty}\left(\frac{1}{\varphi^{\lambda}(x)}+\frac{1}{(x(1+c t))^{\lambda / 2}}\right) b_{n, k}(t) d t\left|\int_{x}^{t} \varphi^{\lambda}(u) g^{\prime}(u) d u\right| \\
& \quad \leq \alpha\left\|\varphi^{\lambda} g^{\prime}\right\|_{1} \sum_{k=0}^{\infty} p_{n, k}(x, c) \int_{0}^{\infty}\left(\frac{1}{\varphi^{\lambda}(x)}+\frac{1}{(x(1+c t))^{\lambda / 2}}\right) b_{n, k}(t) d t \\
& \quad=J_{1}+J_{2}, \text { say }
\end{aligned}
$$

where, J_{1}, J_{2} are two terms corresponding to two terms in above integral. Now, in view of $\int_{0}^{\infty} b_{n, k}(t, c) d t=1$ and the convergence of the integral $\int_{0}^{\infty} p_{n, k}(x, c) \varphi^{-\lambda}(x) d x$ for $0<\lambda<1$, we get

$$
\begin{aligned}
\left\|J_{1}\right\|_{1} & \leq \alpha\left\|\varphi^{\lambda} g^{\prime}\right\|_{1} \sum_{k=0}^{\infty} \int_{0}^{\infty} p_{n, k}(x, c) \varphi^{-\lambda}(x) d x \\
& \leq \alpha\left\|\varphi^{\lambda} g^{\prime}\right\|_{1} \frac{\Gamma(n / c+\lambda)}{\Gamma(n / c)} \sum_{k=0}^{\infty} \frac{\Gamma(k+1-\lambda / 2) \Gamma(k+n / c)}{\Gamma(k+n / c+\lambda / 2+1) k!}
\end{aligned}
$$

$$
\begin{aligned}
& \leq M \alpha\left\|\varphi^{\lambda} g^{\prime}\right\|_{1} \frac{\Gamma(n / c+\lambda)}{\Gamma(n / c)} \sum_{k=0}^{\infty} \frac{\Gamma(k+1-\lambda / 2)}{k!} \\
& \quad \times \frac{(k+n / c-1)^{(k+n / c-1 / 2)} e^{-k-n / c+1}}{(k+n / c+\lambda / 2)^{(k+n / c+1 / 2+\lambda / 2)} e^{-k-n / c+\lambda / 2}} \\
& \leq M \alpha\left\|\varphi^{\lambda} g^{\prime}\right\|_{1} \frac{(n / c+\lambda-1)^{n / c+\lambda-1 / 2} n^{-1-\lambda / 2} e^{-n / c-\lambda+1}}{(n / c-1)^{n / c-1 / 2} e^{-n / c+1}} \\
& \leq \frac{M \alpha\left\|\varphi^{\lambda} g^{\prime}\right\|_{1}}{n^{1-\lambda / 2}}, \quad M=M(c, \lambda)
\end{aligned}
$$

In order to find estimate for J_{2} we proceed as in the estimate of F_{2} in Lemma 2.3. Thus, we obtain

$$
\begin{aligned}
\left|J_{2}\right| & \leq \alpha\left\|\varphi^{\lambda} g^{\prime}\right\|_{1} \sum_{k=0}^{\infty} p_{n, k}(x, c) x^{-\lambda / 2} \int_{0}^{\infty}(1+c t)^{-\lambda / 2} b_{n, k}(t, c) d t \\
& \leq \alpha\left\|\varphi^{\lambda} g^{\prime}\right\|_{1} \sum_{k=0}^{\infty} p_{n, k}(x, c) x^{-\lambda / 2} \frac{\Gamma(k+1+n / c) c^{k+2} \Gamma(1+n / c+\lambda / 2)}{\Gamma(n / c) \Gamma(k+2+n / c+\lambda / 2)}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\left\|J_{2}\right\|_{1} & \leq \alpha\left\|\varphi^{\lambda} g^{\prime}\right\|_{1} \sum_{k=0}^{\infty} \frac{\Gamma(k+1+n / c) c^{k+2} \Gamma(1+n / c+\lambda / 2)}{\Gamma(n / c) \Gamma(k+2+n / c+\lambda / 2)} \int_{0}^{\infty} p_{n, k}(x, c) x^{-\lambda / 2} d x \\
& \leq \alpha\left\|\varphi^{\lambda} g^{\prime}\right\|_{1} \frac{(n / c+\lambda / 2) \Gamma^{2}(n / c+\lambda / 2)}{\Gamma^{2}(n / c)} \sum_{k=0}^{\infty} \frac{\Gamma(k+n / c) \Gamma(k+1-\lambda / 2)}{\Gamma(k+1) \Gamma(k+2+n / c+\lambda / 2)} \\
& \leq M \alpha\left\|\varphi^{\lambda} g^{\prime}\right\|_{1} \frac{(n / c+\lambda / 2) \Gamma^{2}(n / c+\lambda / 2)}{\Gamma^{2}(n / c)} \sum_{k=0}^{\infty} n^{-\lambda / 2-2 \frac{\Gamma(k+1-\lambda / 2)}{\Gamma(k+1)}} \\
& \leq M \alpha\left\|\varphi^{\lambda} g^{\prime}\right\|_{1} \frac{1}{n^{1-\lambda / 2}}
\end{aligned}
$$

Combining the estimates for J_{1} and J_{2}, we get following

$$
\left\|M_{n, \alpha}(g, x)-g(x)\right\|_{1} \leq M \alpha \frac{1}{n^{1-\lambda / 2}}\left\|\varphi^{\lambda} g^{\prime}\right\|_{1}
$$

which on substituting in (3.1) gives

$$
\left\|M_{n, \alpha}(f, x)-f(x)\right\|_{1} \leq M \omega_{\varphi^{\lambda}}\left(f, \frac{\alpha}{n^{1-\lambda / 2}}\right)
$$

Inverse Part:

We make use of the weighted Steklov type average function S_{δ} defined as follows

$$
S_{\delta}(x):=\frac{1}{\delta \varphi^{\lambda}(x)} \int_{\frac{-\delta}{2} \varphi^{\lambda}(x)}^{\frac{\delta}{2} \varphi^{\lambda}(x)} f(x+u) d u, \quad 0<\lambda<1
$$

Then, it follows that

1. $\left\|S_{\delta}-f\right\|_{1} \leq \omega_{\varphi^{\lambda}}(f, \delta)_{1} ;$
2. $\left\|S_{\delta}^{\prime}\right\|_{1} \leq \delta^{-1} \omega_{\varphi^{\lambda}}(f, \delta)_{1}$.
(see [17, p. 117]). We get

$$
\begin{aligned}
&\left\|\tilde{\Delta}_{h \varphi^{\lambda}(x)} f(x)\right\|_{1} \leq\left\|\tilde{S}_{h \varphi^{\lambda}(x)}\left(f(x)-M_{n, \alpha}^{\prime}(f, x)\right)\right\|_{1}+\left\|\tilde{\Delta}_{h \varphi^{\lambda}(x)} M_{n, \alpha}^{\prime}(, x)\right\|_{1} \\
& \leq M\left(n^{\frac{\lambda}{2}-1}\right)^{\gamma}+\left\|\int_{-\frac{h \varphi^{\lambda}(x)}{2}}^{\frac{h \varphi^{\lambda}(x)}{2}} M_{n, \alpha}^{\prime}\left(f-S_{\delta}, x+u\right) d u\right\|_{1} \\
&+\left\|\int_{-\frac{h \varphi^{\lambda}(x)}{2}}^{\frac{h \varphi^{\lambda}(x)}{2}} M_{n, \alpha}^{\prime}\left(S_{\delta}, x+u\right) d u\right\|_{1}
\end{aligned}
$$

Using Bernstein type inequalities, and properties of S_{δ} functon, we get the estimate

$$
\left|\tilde{\Delta}_{h \varphi^{\lambda}(x)} M_{n, \alpha}(f, x)\right| \leq M\left(n^{\frac{\lambda}{2}-1}\right)^{\gamma}+h \varphi^{\lambda}(x)\left(\left|M_{n, \alpha}^{\prime}\left(f-S_{\delta}, x\right)\right|+\left|M_{n, \alpha}^{\prime}\left(S_{\delta}, x\right)\right|\right)
$$

Therefore,

$$
\begin{aligned}
\left\|\tilde{\Delta}_{h \varphi^{\lambda}(x)} M_{n, \alpha}(f, x)\right\|_{1} & \leq M\left(n^{\frac{\lambda}{2}-1}\right)^{\gamma}+\left(\frac{h}{n^{\lambda / 2-1}}\right)\left(\left\|f-S_{\delta}\right\|_{1}+\frac{1}{n^{1-\lambda / 2}}\left\|\varphi^{\lambda} S_{\delta}^{\prime}\right\|_{1}\right) \\
\omega_{\varphi^{\lambda}}(f, h) & \leq M\left(n^{\frac{\lambda}{2}-1}\right)^{\gamma}+\left(\frac{h}{n^{\lambda / 2-1}}\right) \omega_{\varphi^{\lambda}}\left(f, \frac{1}{n^{1-\lambda / 2}}\right) .
\end{aligned}
$$

Using Lemma 2.2, we finally get $\omega_{\varphi^{\lambda}}(f, x)_{1}=O\left(x^{\gamma}\right), 0<\gamma<1$. This completes the proof.

Acknowledgement : The authors are thankful to the referees for their valuable comments and suggestions on the manuscript.

References

[1] L.V. Kantorovich, Sur certain developments suivant les polynomes de la forms de s. Benstein, Dokl. Akad. Nauk. SSSR. 1, 2 (1930) 563-568, 595-600.
[2] J.L. Durrmeyer, Une Formule d'Inversion de la Transformee de Laplace Applications a la Theorie des Moments, These de 3e cycle, Faculte des Science de l'Universite de Paris, 1967.
[3] M.M. Derriennic, 'sur l'apprpximation de fonctions integrable sur [0,1] par des polynomes de Bernstein modifies, J. Approx. Theory 31 (1981) 325-343.
[4] X.M. Zeng, W. Chen, On the rate of convergence of the generalized Durrmeyer type operators for functions of bounded variation, J. Approx. Theory 102 (1) (2000) 1-12.
[5] P. Bézier, Numerical Control-Mathematics and Applications, Wiley, London, 1972.
[6] X.M. Zeng, On the rate of convergence of the generalized Szász type operators for bounded variation functions, J. Math. Anal. Appl. 226 (1998) 309-325.
[7] X.M. Zeng, A. Piriou, On the rate of convergence of two Bernstein-Bézier type operators for bounded variation functions, J. Approx. Theory 95 (1998) 369-387.
[8] G. Chang, Generalized Bernstein-Bézier polynomials, J. Comput. Math. 1 (4) (1983) 322-327.
[9] X.M. Zeng, V. Gupta, Rate of convergence of Baskakov-Bézier type operators for locally bounded functions, Comput. Math. Appl. 44 (2002) 1445-1453.
[10] V. Gupta, R. Mohapatra, On the rate of convergence for certain summationintegral type operators, Math. Ineq. Appl. 9 (3) (2006) 465-472.
[11] V. Gupta, G.S. Srivastava, Approximation by Durrmeyer type operators, Ann. Polonici Math. LXIV (2) (1996) 153-159.
[12] V. Gupta, P. Gupta, Rate of convergence for the Baskakov-Durrmeyer type operators, Ganita 52 (1) (2001) 69-77.
[13] Z. Ditzian, V. Totik, Moduli of Smoothness, Springer, New York, 1987.
[14] A.R. Gairola, P.N. Agrawal, Direct and inverse theorems for the Bézier variant of certain summation-integral type operators, Turk. J. Math. 33 (2009) 1-14.
[15] H. Berens, G.G. Lorentz, Inverse theorem for Bernstein polynomials, Indiana Univ. Math. J. 21 (1972) 693-708.
[16] G.O. Okikiolu, Aspects of the Theory of Bounded Integral Operators in $L_{p^{-}}$ Spaces, Acadaemic Press, London, 1971.
[17] A. Zygmund, Trigonometric Series, 2nd ed., vol.1, Cambridge Univ. Press, Cambridge, 1959.
(Received 23 June 2011)
(Accepted 16 January 2012)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

[^0]: ${ }^{1}$ Corresponding author.
 Copyright (c) 2012 by the Mathematical Association of Thailand. All rights reserved.

