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Abstract : The problem of Lp−aproximation has been received consideration of
many authors. In this paper we establish the direct and inverse theorems for the
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1 Introduction

For obvious reasons, summation type operators as such are not Lp− approx-
imation methods. Nevertheless, several linear positive operators of summation
type have been appropriately modified to become Lp-approximation method. The
underlying idea behind such a modification is to replace, in the expression for the
operator, the function value at a nodal point by an average value (in the sense of
integration) of the function in an appropriate neighborhood of the point. The first
such modification was made by Kantorovich [1] for the case of Bernstein polynomi-
als. Another modification of Bernstein polynomials was introduced by Durrmeyer
[2] and later studied extensively by Derrienic [3]. In 2000, Zeng and Chen [4]
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introduced the Durrmeyer-Bézier operators Dn,α as follows:

Dn,α = (n + 1)

1
∑

k=0

Q
(α)
n,k(x)

∞
∫

0

pn,k(t)f(t) dt,

for f defined on [0, 1]. where pn,k(x) are well known Bernstein basis functions and

Q
(α)
n,k(x) are the Bézier basis functions introduced by Bézier [5]. The authors of

[4] studied the rate of convergence of the operators Dn,α for functions of bounded
variation. In the sequel Bézier variant of some well known operators were intro-
duced (cf. [4, 6, 7]) and their rates of convergence for bounded variation functions
have been investigated (cf. [8, 9]). In order to approximate Lebesgue integrable
functions on the interval [0,∞), Gupta and Mohapatra [10] considered the opera-
tors

Mn(f, x) =

∞
∑

k=0

pn,k(x, c)

∞
∫

0

bn,k(t, c)f(t) dt,

where pn,k(x, c) = (−1)k xk

k!
ϕ(k)

n,c(x), bn,k(x, c) = (−1)k+1 xk

k!
ϕ(k+1)

n,c (x), x ∈ [0,∞)

and

ϕn,c(x) =

{

(1 + cx)−n/c; c > 0

e−nx; c = 0.

For c > 0, the operators Mn reduce to Baskakov-Durrmeyer operators and when
c = 0 these become Szász-Durrmeyer type operators. Some approximation prop-
erties of these operators were studied in [11]. The rate of convergence by the
operators Mn for the particular value c = 1 was studied in [12].

Let Lp[0,∞) be the class of all p−Lebesgue integrable functions on the positive
real line. For f ∈ Lp[0,∞), introducing the Bézier basis functions Qα

n,k(x, c)
= Jα

n,k(x, c) − Jα
n,k+1(x, c) α ≥ 1, the Bézier variant Mn,α of the operators Mn is

defined by

Mn,α(f, x) =

∞
∑

k=0

Qα
n,k(x, c)

∞
∫

0

bn,k(t, c)f(t) dt,

where Jn,k(x, c) =
∑

∞

ν=k pn,ν(x, c). For α = 1, the operators Mn,α reduce to the
operators Mn.

In order to make the paper self contained we give definitions of the unified
K−functional and the Ditzian-Totik modulus of smoothness used in this paper.

Let f ∈ Lp[0,∞), ϕ(x) =
√

x(1 + cx), 0 < λ < 1, then

ωϕλ(f, t)p = sup
0<h6t

x−hϕλ(x)/2>0

∥

∥∆̃hϕλ(x)f(x)
∥

∥

p

= sup
0<h6t

x−hϕλ(x)/2>0

∥

∥

∥

∥

f

(

x +
hϕλ(x)

2

)

− f

(

x − hϕλ(x)

2

)∥

∥

∥

∥

p

,
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where ϕ(x) is an admissible weight function of Ditzian-Totik modulus of smooth-
ness. The corresponding K− functional is defined as

Kϕλ(f, t)p = inf
g∈Wλ

{

‖f − g‖p + t‖ϕλg′‖p

}

where Wλ =
{

g : g ∈ ACloc, ‖ϕλg′‖p < ∞, ‖g′‖p < ∞
}

and by ACloc we mean the
class of functions absolutely continuous on every finite subset of [0,∞). Moreover,
the following equivalence is well known (cf.[13])

ωϕλ(f, t)p ∼ Kϕλ(f, t)p

i.e. there exists constants C1, C2 > 0 such that C1ωϕλ(f, t)p ≤ C2Kϕλ(f, t)p.
In Section 2, we give some lemmas which will be used in our main theorems.

Subsequently, in Section 3 we establish our main theorem. The constant M is not
the same at each occurrence.

2 Preliminaries

Lemma 2.1 ([14]). For the functions Jn,k(x, c) and Qα
n,k(x, c), we have

1. 1 = Jn,0(x, c) > Jn,1(x, c) > · · · > Jn,k(x, c) > Jn,k+1(x) > · · ·
2. 0 < Qα

n,k(x, c) < α pn,k(x, c), α ≥ 1,

3. M ′

n,α(1, x) = 0

4.
∣

∣M ′

n,α(f, x)
∣

∣ ≤ α
∣

∣

∣

∑

∞

k=0

(

Jα−1
n,k (x, c) − Jα−1

n,k+1(x)
)

J ′

n,k+1(x) ×

×
∫

∞

0
f(t)bn,k(t, c) dt + M ′

n(f, x)
∣

∣

∣
.

The following Lemma is due to Berens and Lorentz:

Lemma 2.2 ([15]). Let Ω be monotone increasing on [0, c]. Then Ω(t) = O(tα),
t → 0+, if for some 0 < α < r and all h, t ∈ [0, c]

Ω(h) < M [tα + (h/t)rΩ(t)] .

We prove a Bernstein type lemma for the operators Mn,α which is useful while
establishing the inverse theorem.

Lemma 2.3. If f ∈ Lp[0,∞), 1 ≤ p ≤ ∞ ϕ(x) =
√

x(1 + cx), and 0 < λ < 1,
then there holds

1. ‖ϕλM ′

n,α(f, .)‖p ≤ M α ‖ϕλf ′‖p and

2. ‖ϕλM ′

n,α(f, .)‖p ≤ M α n1−λ/2‖f‖p,

where M = M(c, λ) is independent of f and n.
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Proof. The result for p = ∞ has been established in [14]. Since, the operators
Mn,α are bounded, therefore in view of Riesz-Thorin interpolation theorem (see
[16, p.231–233]) the lemma is proved for all 1 ≤ p ≤ ∞ if it is also proved for
p = 1. In view of Lemma 2.1, we get

M ′

n,α(f, x) := [E1 + E2], say,

where

E1 = α

∣

∣

∣

∣

∣

∣

∞
∑

k=0

(

Jα−1
n,k (x, c) − Jα−1

n,k+1(x)
)

J ′

n,k+1(x)

∞
∫

0





t
∫

x

f ′(u) du



 bn,k(t, c) dt

∣

∣

∣

∣

∣

∣

and

E2 = M ′

n





t
∫

x

f ′(u) du, x



 .

Now, we estimate E1 as follows

E1 = α

∣

∣

∣

∣

∣

∣

∞
∑

k=0

(

Jα−1
n,k (x, c) − Jα−1

n,k+1(x)
)

J ′

n,k+1(x)

∞
∫

0





t
∫

x

f ′(u) du



 bn,k(t, c) dt

∣

∣

∣

∣

∣

∣

≤ α

∣

∣

∣

∣

∣

∣

∞
∑

k=0

pn,k(x, c)J ′

n,k+1(x)

∞
∫

0





t
∫

x

f ′(u) du



 bn,k(t, c) dt

∣

∣

∣

∣

∣

∣

≤ α‖ϕλf ′‖1

∣

∣

∣

∣

∣

∣

∞
∑

k=0

pn,k(x, c)J ′

n,k+1(x)

∞
∫

0

(

ϕ−λ(x) +
tλ/2

xλ/2
ϕ−λ(t)

)

bn,k(t, c) dt

∣

∣

∣

∣

∣

∣

.

Therefore,

ϕλ(x)E1 ≤ α‖ϕλf ′‖1

∣

∣

∣

∣

∣

∣

∞
∑

k=0

pn,k(x, c)J ′

n,k+1(x)

∞
∫

0

(

1 +
(1 + cx)λ/2

(1 + ct)λ/2

)

bn,k(t, c) dt

∣

∣

∣

∣

∣

∣

= α‖ϕλf ′‖1 [F1 + F2] say,

where F1 and F2 are the corresponding to two terms under the integral sign. Now,

F1 =

∞
∑

k=0

pn,k(x, c)J ′

n,k+1(x)

∞
∫

0

bn,k(t, c) dt

=
1

x

∞
∑

k=0

(k + 1)pn,k(x, c)pn,k+1(x, c)

=
c3(1 + cx)−3− 2n

c

Γ2(n/c)

∞
∑

k=0

(

cx

1 + cx

)2k
Γ(k + n/c)Γ(k + n/c + 1)

(k!)2

= M
n

c
(1 + cx)−3− 2n

c
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which implies ‖F1‖1 = Mn
∫

∞

0
(1 + cx)−3− 2n

c dx = MO(1), M = M(c, λ). In view

of the convergence of the integral
∫

∞

0
(1 + ct)−λ/2bn,k(t, c) dt for 0 < λ < 1, we get

F2 =

∞
∑

k=0

pn,k(x, c)J ′

n,k+1(x)x−λ/2

∞
∫

0

(1 + ct)−λ/2bn,k(t, c) dt

=

∞
∑

k=0

pn,k(x, c)J ′

n,k+1(x)x−λ/2 ck+2Γ(1 + n/c + λ/2)Γ(k + 1 + n/c)

Γ(n/c)Γ(k + 2 + n/c + λ/2)

=
Γ(1 + n/c + λ/2)c5

Γ3(n/c)

∞
∑

k=0

(k + n/c)Γ3(k + n/c)xk+1−λ/2

(k!)2(1 + cx)2k+3+2n/cΓ(k + 2 + n/c + λ/2)
.

Above series is convergent as follows easily from Raabe’s test. Moreover, taking
n/c common does not affect the convergence of the series. Thus, for large values
of n we use Stirling’s asymptotic formula and obtain the estimate

‖F2‖1 ≤ M
Γ(1 + n/c + λ/2)

Γ3(n/c)

∞
∑

k=0

(

(k + n/c − 1)(k+n/c−1/2)e−k−n/c+1)
)3

(k + n/c + 1 + λ/2)k+n/c+3/2+λ/2

× (k + n/c)(k + 2n/c + λ/2)k+2n/c+1/2+λ/2e−k−2n/c−λ/2

e−k−n/c−1−λ/2(k!)2(2k + 2n/c + 2)2k+2n/c+5/2e−2k−2n/c−2

≤ M
Γ(1 + n/c + λ/2)

Γ3(n/c)

n2n/c−4

e2n/c+6

∞
∑

k=0

(n

e

)k 1

(k!)2

≤ M
(n/c + λ/2)n/c+λ/2+1/2e−n/c−λ/2n2n/c−4

(

(n/c − 1)n/c−1/2e−n/c+1
)3

e2n/c+6

≤ Mnλ/2−2 = MO
(

n−3/2
)

.

Similarly, it follows by direct calculations that ‖E2‖p ≤ C ‖ϕλf ′‖p. Collecting E1,
E2 the lemma follows for p = 1.

Now, in order to establish second inequality we again use Lemma 2.1. Thus,
we get

|ϕλ(x)M ′

n,α(f, x)|

≤
∞
∑

k=0

∣

∣

∣

∣

∣

∞
∫

0

bn,k(t, c)f(t) dt

∣

∣

∣

∣

∣

ϕλ(x)J ′

n,k+1(x) dx
{

Jα−1
n,k (x, c) − Jα−1

n,k+1(x)
}

+
∞
∑

k=0

∣

∣

∣

∣

∣

∞
∫

0

bn,k(t, c)f(t) dt

∣

∣

∣

∣

∣

ϕλ(x)Jα−1
n,k (x, c)

∣

∣p′n,k(x, c)
∣

∣ dx

= A1 + A2, say.
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Since J ′

n,k+1(x) = k+1
x pn,k+1(x, c), we have

‖A1‖1 ≤ M

∞
∑

k=0

∥

∥

∥pn,k(x, c)J ′

n,k+1(x)ϕλ(x)
∥

∥

∥

1

∣

∣

∣

∞
∫

0

bn,k(t, c)f(t) dt
∣

∣

∣

≤ M‖f‖1

∞
∑

k=0

∥

∥

∥
pn,k(x, c)

k + 1

x
pn,k+1(x, c)ϕλ(x)

∥

∥

∥

1

≤ M‖f‖1
c3Γ(2 + 2n/c− λ)

Γ2(n/c)

∞
∑

k=0

c2k(k + n/c)Γ2(k + n/c)Γ(2k + 1 + λ/2)

(k!)2Γ(2k + 3 + 2n/c− λ/2)
.

The series on the right is convergent. We apply Stirling’s asymptotic formula
Γ(s + 1) ≃

√
2π ss+1/2e−s, to obtain

‖A1‖1

≤ M‖f‖1

∞
∑

k=0

c2k(k + n/c)Γ(2k + 1 + λ/2)
(

(k + n/c − 1)k+n/c−1/2e−k−n/c+1
)2

(k!)2
(

(n/c − 1)n/c−1/2e−n/c+1
)2

× (1 + 2n/c − λ)3/2+2n/c−λe−1−2n/c+λ

(2k + 2 + 2n/c− λ/2)2k+5/2+2n/c−λ/2e−2k−2−2n/c+λ/2

≤ M‖f‖1n
−λ/2, M = M(c, λ).

We have ϕ2(x)p′n,k(x, c) = (n+c)( k
n+c−x)pn,k(x, c) and

∑

∞

k=0(
k

n+c−x)pn,k(x, c) =
−[n(1+cx)+c2x]

(n+c)(1+cx) , Therefore,

‖A2‖1 ≤ M‖f‖1

(

∞
∑

k=0

n(1 + cx)ϕλ−2pn,k(x, c) +
∞
∑

k=0

c2xϕλ−2pn,k(x, c)
)

= A3 + A4, say.

We obtain estimate for A3 as

‖A3‖1 ≤ M
n‖f‖1

Γ(n/c)

∞
∑

k=0

Γ(k + n/c)

k!
ck+1

∞
∫

0

xk+λ/2−1

(1 + cx)k+1+n/c−λ/2
dx

≤ M
n‖f‖1

Γ(n/c)

∞
∑

k=0

(n/c + k − 1)n/c+k−1/2e−2n/c−k+λ+1/2ck+1Γ(k + λ/2)

k!(k + n/c − λ/2)k+n/c−λ/2+1/2e−k−n/c+λ/2

≤ M
n‖f‖1n

n/c−λ/2−1/2

(n/c − 1)n/c−1/2

≤ M‖f‖1n
1−λ/2.

Similarly, ‖A3‖1 ≤ M‖f‖1n
1−λ/2. Combining these estimates the second inequal-

ity (ii) is established.
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3 Main Results

The main result of the present paper is the following:

Theorem 3.1. Let f ∈ Lp[0,∞), 1 ≤ p ≤ ∞, ϕ(x) =
√

x(1 + cx), 0 < λ < 1, c ≥
0 and 0 < γ < 1. Then, there holds the implication (i) ⇔ (ii) in the following
statements:

1.
∥

∥Mn,α(f) − f
∥

∥

p
= O

(

nλ/2−1
)γ

2. ωϕλ(f, x)p = O(xγ).

Proof. Direct Part:
It is sufficient to consider the case p = 1 only . The case p = ∞ was studied in [14].
The result for 1 ≤ p ≤ ∞ then follows from Riesz-Thorin interpolation theorem
[16]. By the definition of Kϕλ(f, t) for fixed n, x, λ, we can choose g = gn,x,λ ∈ Wλ

such that
‖f − g‖p +

α

n1−λ/2

∥

∥ϕλg′
∥

∥

p
≤ Kϕλ

(

f,
α

n1−λ/2

)

p
.

Since, Mn,α is constant preserving, we can write

‖Mn,α(f, x) − f(x)‖p ≤ C‖f − g‖p + ‖Mn,α(g, x) − g(x)‖p. (3.1)

For the case p = ∞ the result has been established in [14]. We take the two term

Taylor’s expansion g(t) = g(x) + R(g, t, x), where R(g, t, x) =
∫ t

x
g′(τ) dτ.

|Mn,α(g, x) − g(x)|

≤ α

∞
∑

k=0

pn,k(x, c)

∞
∫

0

∣

∣

∣

∣

∣

∣

t
∫

x

g′(u) du

∣

∣

∣

∣

∣

∣

bn,k(t) dt

≤ α

∞
∑

k=0

pn,k(x, c)

∞
∫

0

(

1

ϕλ(x)
+

1

(x(1 + ct))
λ/2

)

bn,k(t) dt

∣

∣

∣

∣

∣

∣

t
∫

x

ϕλ(u)g′(u) du

∣

∣

∣

∣

∣

∣

≤ α‖ϕλg′‖1

∞
∑

k=0

pn,k(x, c)

∞
∫

0

(

1

ϕλ(x)
+

1

(x(1 + ct))
λ/2

)

bn,k(t) dt

= J1 + J2, say

where, J1, J2 are two terms corresponding to two terms in above integral. Now, in
view of

∫

∞

0 bn,k(t, c) dt = 1 and the convergence of the integral
∫

∞

0 pn,k(x, c)ϕ−λ(x) dx
for 0 < λ < 1, we get

‖J1‖1 ≤ α‖ϕλg′‖1

∞
∑

k=0

∞
∫

0

pn,k(x, c)ϕ−λ(x) dx

≤ α‖ϕλg′‖1
Γ(n/c + λ)

Γ(n/c)

∞
∑

k=0

Γ(k + 1 − λ/2)Γ(k + n/c)

Γ(k + n/c + λ/2 + 1)k!
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≤ Mα‖ϕλg′‖1
Γ(n/c + λ)

Γ(n/c)

∞
∑

k=0

Γ(k + 1 − λ/2)

k!

× (k + n/c− 1)(k+n/c−1/2)e−k−n/c+1

(k + n/c + λ/2)(k+n/c+1/2+λ/2)e−k−n/c+λ/2

≤ Mα‖ϕλg′‖1
(n/c + λ − 1)n/c+λ−1/2n−1−λ/2e−n/c−λ+1

(n/c − 1)n/c−1/2e−n/c+1

≤ Mα‖ϕλg′‖1

n1−λ/2
, M = M(c, λ).

In order to find estimate for J2 we proceed as in the estimate of F2 in Lemma 2.3.
Thus, we obtain

|J2| ≤ α‖ϕλg′‖1

∞
∑

k=0

pn,k(x, c)x−λ/2

∞
∫

0

(1 + ct)−λ/2bn,k(t, c) dt

≤ α‖ϕλg′‖1

∞
∑

k=0

pn,k(x, c)x−λ/2 Γ(k + 1 + n/c)ck+2Γ(1 + n/c + λ/2)

Γ(n/c)Γ(k + 2 + n/c + λ/2)

Therefore,

‖J2‖1 ≤ α‖ϕλg′‖1

∞
∑

k=0

Γ(k + 1 + n/c)ck+2Γ(1 + n/c + λ/2)

Γ(n/c)Γ(k + 2 + n/c + λ/2)

∞
∫

0

pn,k(x, c)x−λ/2 dx

≤ α‖ϕλg′‖1
(n/c + λ/2)Γ2(n/c + λ/2)

Γ2(n/c)

∞
∑

k=0

Γ(k + n/c)Γ(k + 1 − λ/2)

Γ(k + 1)Γ(k + 2 + n/c + λ/2)

≤ Mα‖ϕλg′‖1
(n/c + λ/2)Γ2(n/c + λ/2)

Γ2(n/c)

∞
∑

k=0

n−λ/2−2Γ(k+1−λ/2)
Γ(k+1)

≤ Mα‖ϕλg′‖1
1

n1−λ/2
.

Combining the estimates for J1 and J2, we get following

‖Mn,α(g, x) − g(x)‖1 ≤ Mα
1

n1−λ/2
‖ϕλg′‖1

which on substituting in (3.1) gives

‖Mn,α(f, x) − f(x)‖1 ≤ Mωϕλ

(

f,
α

n1−λ/2

)

.

Inverse Part:
We make use of the weighted Steklov type average function Sδ defined as follows

Sδ(x) :=
1

δϕλ(x)

δ
2 ϕλ(x)
∫

−δ
2 ϕλ(x)

f(x + u) du, 0 < λ < 1.
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Then, it follows that

1. ‖Sδ − f‖1 ≤ ωϕλ(f, δ)1;

2. ‖S′

δ‖1 ≤ δ−1ωϕλ(f, δ)1.

(see [17, p. 117]). We get
∥

∥

∥∆̃hϕλ(x)f(x)
∥

∥

∥

1
≤
∥

∥

∥∆̃hϕλ(x)

(

f(x) − M ′

n,α(f, x)
)

∥

∥

∥

1
+
∥

∥

∥∆̃hϕλ(x)M
′

n,α(, x)
∥

∥

∥

1

≤ M
(

n
λ
2 −1
)γ

+

∥

∥

∥

∥

∥

∥

∥

∥

hϕλ(x)
2
∫

−
hϕλ(x)

2

M ′

n,α(f − Sδ, x + u) du

∥

∥

∥

∥

∥

∥

∥

∥

1

+

∥

∥

∥

∥

∥

∥

∥

∥

hϕλ(x)
2
∫

−
hϕλ(x)

2

M ′

n,α(Sδ, x + u) du

∥

∥

∥

∥

∥

∥

∥

∥

1

.

Using Bernstein type inequalities, and properties of Sδ functon, we get the estimate
∣

∣

∣∆̃hϕλ(x)Mn,α(f, x)
∣

∣

∣ ≤ M
(

n
λ
2 −1
)γ

+ hϕλ(x)
(

|M ′

n,α(f − Sδ, x)| + |M ′

n,α(Sδ, x)|
)

Therefore,

∥

∥

∥∆̃hϕλ(x)Mn,α(f, x)
∥

∥

∥

1
≤ M

(

n
λ
2 −1
)γ

+

(

h

nλ/2−1

)(

‖f − Sδ‖1 +
1

n1−λ/2
‖ϕλS′

δ‖1

)

ωϕλ(f, h) ≤ M
(

n
λ
2 −1
)γ

+

(

h

nλ/2−1

)

ωϕλ

(

f,
1

n1−λ/2

)

.

Using Lemma 2.2, we finally get ωϕλ(f, x)1 = O (xγ) , 0 < γ < 1. This completes
the proof.
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for locally bounded functions, Comput. Math. Appl. 44 (2002) 1445–1453.

[10] V. Gupta, R. Mohapatra, On the rate of convergence for certain summation-
integral type operators, Math. Ineq. Appl. 9 (3) (2006) 465–472.

[11] V. Gupta, G.S. Srivastava, Approximation by Durrmeyer type operators,
Ann. Polonici Math. LXIV (2) (1996) 153–159.

[12] V. Gupta, P. Gupta, Rate of convergence for the Baskakov-Durrmeyer type
operators, Ganita 52 (1) (2001) 69–77.

[13] Z. Ditzian, V. Totik, Moduli of Smoothness, Springer, New York, 1987.

[14] A.R. Gairola, P.N. Agrawal, Direct and inverse theorems for the Bézier variant
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