Local Higher Derivations

Tayebeh Lal Shateri

Faculty of Mathematics and Computer Sciences
Hakim Sabzevari University, Sabzevar, Iran
e-mail: t.shateri@gmail.com

Abstract

In this paper, we study local higher derivations on some algebras generated by their idempotents. We prove that the space of all bounded higher derivations from these algebras into a unital algebra is reflexive.

Keywords : Subspace lattice; Topological algebra; Derivation; Higher derivation; Local higher derivation.
2010 Mathematics Subject Classification : 47Bxx.

1 Introduction

Let \mathcal{A} and \mathcal{B} be algebras. By as higher derivation of rank $j(j$ might be $\infty)$ we mean a family of linear mappings $\left\{D_{n}\right\}_{n=0}^{j}$ from \mathcal{A} into \mathcal{B} such that

$$
D_{n}(a b)=\sum_{k=0}^{n} D_{k}(a) D_{n-k}(b), \quad(a, b \in \mathcal{A}, n=0,1,2, \ldots, j)
$$

It is obvious that for a higher derivation $\left\{D_{n}\right\}_{n=0}^{j}, D_{0}$ is a homomorphism from \mathcal{A} to \mathcal{B} and D_{1} is a D_{0}-derivation, that is $D_{1}(a b)=D_{0}(a) D_{1}(b)+D_{1}(a) D_{0}(b)(a, b \in$ $\mathcal{A})$. Note that \mathcal{B} is a \mathcal{A}-bimodule with module operations $a x=D_{0}(a) x, x a=$ $x D_{0}(a)(a \in \mathcal{A}, x \in \mathcal{B})$. A higher derivation $\left\{D_{n}\right\}$ is said to be continuous if every D_{n} is continuous. If $\mathcal{B}=\mathcal{A}$ and $D_{0}=i d_{\mathcal{A}}$, where $i d_{\mathcal{A}}$ is the identity map on \mathcal{A}, then D_{1} is a derivation and $\left\{D_{n}\right\}_{n=0}^{j}$ is called a strongly higher derivation. A standard example of a higher derivation of rank j is $\left\{\frac{D^{n}}{n!}\right\}_{n=0}^{j}$ where $D: \mathcal{A} \rightarrow \mathcal{A}$ is a derivation. Higher derivations were introduced by Hasse and Schmidt [1]

[^0]and algebraists sometimes call them Hasse-Schmidt derivations. The reader may find more about higher derivations in [2-6]. Let $\left\{d_{n}\right\}_{n=0}^{j}$ be a family of linear mappings from \mathcal{A} into \mathcal{B} for which d_{0} is a homomorphism, then $\left\{d_{n}\right\}_{n=0}^{j}$ is called a local higher derivation if for every $a \in \mathcal{A}$ there exists a higher derivation $\left\{D_{n}^{a}\right\}_{n=0}^{j}$ from \mathcal{A} into \mathcal{B} such that $D_{0}^{a}=d_{0}$ and $d_{n}(a)=D_{n}^{a}(a)(n \geq 1)$. In the context of derivations, the relation between local derivations and derivations is widely studied by Several authors [7-12]. Hadwin and Li [13] prove that every local derivation from an algebra \mathcal{A} that is generated by it's idempotents, into any \mathcal{A}-bimodule is a derivation.

Now, let \mathcal{A} and \mathcal{B} be topological algebras, denote by $\operatorname{hder}(\mathcal{A}, \mathcal{B})$ the set of all continuous higher derivations from \mathcal{A} into \mathcal{B}. If \mathcal{A} is a topological algebra we say that \mathcal{A} is topologically generated by its idempotents, if the subalgebra of \mathcal{A} generated by its idempotents is dense in \mathcal{A}.

Let \mathcal{X} and \mathcal{Y} be complex Hausdorff topological linear spaces and let $\mathfrak{B}(\mathcal{X}, \mathcal{Y})$ be the space of continuous linear mappings from \mathcal{X} into \mathcal{Y}. We said that a subset \mathcal{S} of $\mathfrak{B}(\mathcal{X}, \mathcal{Y})$ is reflexive if $T \in \mathcal{S}$ whenever $T \in \mathfrak{B}(\mathcal{X}, \mathcal{Y})$ and $T x \in[\mathcal{S} x]$ for any $x \in \mathcal{X}$, where [•] is the topological closure. By a subspace lattice on \mathcal{X} we mean a collection \mathcal{L} of closed subspaces of \mathcal{X} containing (0) and \mathcal{X} such that for each family $\left\{L_{\alpha}\right\}$ of elements of \mathcal{L} both $\bigcap L_{\alpha}$ and $\bigvee L_{\alpha}$ belong to \mathcal{L}, where \bigvee denotes the closed linear span of $\left\{L_{\alpha}\right\}$. If \mathcal{L} is a subspace lattice, the algebra of all operators on \mathcal{X} that leave invariant each element of \mathcal{L} is denoted by alg \mathcal{L}. A totally ordered subspace lattice \mathcal{N} is called a nest and the associated reflexive algebra $\operatorname{alg} \mathcal{N}$ is called a nest algebra.

In Section 2 we prove some algebraic results for a family of linear mappings which is needed in Section 3. In Section 3, we show that if a unital topological algebra \mathcal{A} is generated by its idempotents, then a local higher derivation $\left\{d_{n}\right\}$ from \mathcal{A} into a unital algebra \mathcal{B} provided that d_{0} is a homomorphism from \mathcal{A} to \mathcal{B}, is a higher derivation and $\operatorname{hder}(\mathcal{A}, \mathcal{B})$ is reflexive. In particular for a unital algebra \mathcal{A} and any $n \geq 2$, we have that every local higher derivation from $M_{n}(\mathcal{A})$ into itself is a higher derivation.

The results in Sections 2 and 3 are the same in [13, Section2], which are proved for local derivations and here we prove them for local higher derivations.

2 Algebraic Results

In this section we assume that all algebras are unital. Recall that if \mathcal{A} and \mathcal{B} are two algebras and d_{0} is a homomorphism from \mathcal{A} into \mathcal{B}, then \mathcal{B} is a \mathcal{A}-bimodule with module operations $a . x=d_{0}(a) x, x . a=x d_{0}(a)(a \in \mathcal{A}, x \in \mathcal{B})$. To show our main results, we need two lemmas.

Lemma 2.1. Let $\left\{d_{n}\right\}_{n=0}^{j}$ be a family of linear mappings from an algebra \mathcal{A} into an algebra \mathcal{B} such that for all $n \in \mathbb{N}, d_{n}(1)=0$ and d_{0} is a homomorphism. Then for each $a \in \mathcal{A}$ and any idempotents $p, q \in \mathcal{A}$ the following are equivalent.
(i) $(1-p)\left(d_{n}(p a q)-\sum_{k=1}^{n-1} d_{n-k}(p a) d_{k}(q)\right)(1-q)=0$
(ii) $d_{n}(p a q)=\sum_{k=0}^{n-1}\left[d_{n-k}(p a)-p d_{n-k}(a)\right] d_{k}(q)+p d_{n}(a q)$.

Proof. It is clear that (ii) implies (i). Now suppose that (i) is true. We denote $p^{\perp}=1-p$, then we have

$$
\begin{equation*}
p\left(d_{n}(p a q)-\sum_{k=1}^{n-1} d_{n-k}(p a) d_{k}(q)\right) q^{\perp}=\left(d_{n}(p a q)-\sum_{k=1}^{n-1} d_{n-k}(p a) d_{k}(q)\right) q^{\perp} \tag{2.1}
\end{equation*}
$$

Also the left side equals to

$$
\begin{align*}
& p\left(d_{n}\left(\left(1-p^{\perp}\right) a q\right)-\sum_{k=1}^{n-1} d_{n-k}\left(1-p^{\perp} a\right) d_{k}(q)\right) q^{\perp} \tag{2.2}\\
& \quad=p\left(d_{n}(a q)-d_{n}\left(p^{\perp} a q\right)+\sum_{k=1}^{n-1} d_{n-k}\left(p^{\perp} a d_{k}(q)-\sum_{k=1}^{n-1} d_{n-k}(a) d_{k}(q)\right) q^{\perp}\right.
\end{align*}
$$

By (2.1) and (2.2), it follows that

$$
\begin{equation*}
p\left(d_{n}(a q)-\sum_{k=1}^{n-1} d_{n-k}(a) d_{k}(q)\right) q^{\perp}=\left(d_{n}(p a q)-\sum_{k=1}^{n-1} d_{n-k}(p a) d_{k}(q)\right) q^{\perp} \tag{2.3}
\end{equation*}
$$

Hence by (2.3)

$$
\begin{aligned}
& d_{n}(p a q)-\sum_{k=1}^{n-1}\left[d_{n-k}(p a)-p d_{n-k}(a)\right] d_{k}(q)-p d_{n}(a q) \\
& =\left(d_{n}(p a q)-\sum_{k=1}^{n-1}\left[d_{n-k}(p a)-p d_{n-k}(a)\right] d_{k}(q)-p d_{n}(a q)\right)\left(q+q^{\perp}\right) \\
& =\left(d_{n}(p a q)-\sum_{k=1}^{n-1}\left[d_{n-k}(p a)-p d_{n-k}(a)\right] d_{k}(q)-p d_{n}(a q)\right) q \\
& =\left(d_{n}\left(p a\left(1-q^{\perp}\right)\right)-\sum_{k=1}^{n-1} d_{n-k}(p a) d_{k}\left(1-q^{\perp}\right)+p \sum_{k=1}^{n-1} d_{n-k}(a) d_{k}(q)-p d_{n}(a q)\right) q \\
& =d_{n}(p a) q-d_{n}\left(p a q^{\perp}\right) q+\sum_{k=1}^{n-1} d_{n-k}(p a) d_{k}\left(q^{\perp}\right) q \\
& \quad-\sum_{k=1}^{n-1} d_{n-k}(p a) d_{k}(1) q+p \sum_{k=1}^{n-1} d_{n-k}(a) d_{k}(q) q-p d_{n}(a q) q \\
& = \\
& d_{n}(p a) q-p d_{n}\left(a q^{\perp}\right) q+\sum_{k=1}^{n-1} d_{n-k}(p a) d_{k}\left(q^{\perp}\right) q-p d_{n}(a q) q \\
& \\
& \quad+p \sum_{k=1}^{n-1} d_{n-k}(a) d_{k}(q) q-p d_{n}(a q) q \\
& = \\
& d_{n}(p a) q-p d_{n}(a) q .
\end{aligned}
$$

This completes the proof.
Let \mathcal{A} and \mathcal{B} be algebras. Suppose $\left\{d_{n}\right\}_{n=0}^{j}$ is a family of linear mappings from an algebra \mathcal{A} into an algebra \mathcal{B}. We say that $\left\{d_{n}\right\}_{n=0}^{j}$ satisfies the condition $(*)$ if d_{0} is a homomorphism and
$d_{n}(p a q)=\sum_{k=0}^{n-1}\left[d_{n-k}(p a)-p d_{n-k}(a)\right] d_{k}(q)+p d_{n}(a q)$ and $d_{n}(1)=0(n=1,2, \ldots)$
for all idempotents p, q in \mathcal{A} and $a \in \mathcal{A}$.
Lemma 2.2. Suppose that $\left\{d_{n}\right\}_{n=0}^{j}$ is a family of linear mappings from an algebra \mathcal{A} into an algebra \mathcal{B} satisfying the condition (*). Then for any idempotents $p_{1}, \ldots, p_{l}, q_{1}, \ldots, q_{m}$ in \mathcal{A} and every $a \in \mathcal{A}$

$$
\begin{gather*}
d_{n}\left(p_{1} \cdots p_{l} a q_{1} \cdots q_{m}\right)=\sum_{k=0}^{n-1}\left[d_{n-k}\left(p_{1} \cdots p_{l} a\right)-p_{1} \cdots p_{l} d_{n-k}(a)\right] d_{k}\left(q_{1} \cdots q_{m}\right) \\
+p_{1} \cdots p_{l} d_{n}\left(a q_{1} \cdots q_{m}\right) . \tag{2.4}
\end{gather*}
$$

Proof. First we show that

$$
\begin{equation*}
d_{n}\left(p_{1} \cdots p_{l} a q\right)=\sum_{k=0}^{n-1}\left[d_{n-k}\left(p_{1} \cdots p_{l} a\right)-p_{1} \cdots p_{l} d_{n-k}(a)\right] d_{k}(q)+p_{1} \cdots p_{l} d_{n}(a q) . \tag{2.5}
\end{equation*}
$$

If $l=1$ the condition (*) implies the result. Suppose (2.5) holds for $l=j$. If $l=j+1$, by the condition ($*$) it follows that

$$
\begin{aligned}
& d_{n}\left(p_{1} \cdots p_{j+1} a q\right) \\
& =\sum_{k=0}^{n-1}\left[d_{n-k}\left(p_{1} \cdots p_{j+1} a\right)-p_{1} d_{n-k}\left(p_{2} \cdots p_{j+1} a\right)\right] d_{k}(q)+p_{1} d_{n}\left(p_{2} \cdots p_{j+1} a q\right) \\
& =\sum_{k=0}^{n-1}\left[d_{n-k}\left(p_{1} \cdots p_{j+1} a\right)-p_{1} d_{n-k}\left(p_{2} \cdots p_{j+1} a\right)\right] d_{k}(q) \\
& \quad+p_{1}\left(\sum_{k=0}^{n-1}\left[d_{n-k}\left(p_{2} \cdots p_{j+1} a\right)-p_{2} \cdots p_{j+1} d_{n-k}(a)\right] d_{k}(q)-p_{2} \cdots p_{j+1} d_{n}(a q)\right) \\
& =\sum_{k=0}^{n-1}\left[d_{n-k}\left(p_{1} \cdots p_{j+1} a\right)-p_{1} \cdots p_{j+1} d_{n-k}(a)\right] d_{k}(q)+p_{1} \cdots p_{j+1} d_{n}(a q) .
\end{aligned}
$$

Now we prove (2.4) is true. For $m=1,(2.5)$ implies (2.4). Now assume (2.4) for $m=j$. If $m=j+1$, by the induction assumption, the condition (*) and (2.5), we
have

$$
\begin{aligned}
& d_{n}\left(p_{1} \cdots p_{l} a q_{1} \cdots q_{j+1}\right) \\
& =\sum_{i=0}^{n-1}\left[d_{n-i}\left(p_{1} \cdots p_{l} a q_{1} \cdots q_{j}\right)-p_{1} \cdots p_{l} d_{n-i}\left(a q_{1} \cdots q_{j}\right)\right] d_{i}\left(q_{j+1}\right) \\
& +p_{1} \cdots p_{l} d_{n}\left(a q_{1} \cdots q_{j+1}\right) \\
& =\sum_{i=0}^{n-1}\left[\sum_{k=0}^{n-i-1}\left(d_{n-i-k}\left(p_{1} \cdots p_{l} a\right) d_{k}\left(q_{1} \cdots q_{j}\right)-p_{1} \cdots p_{l} d_{n-i-k}(a) d_{k}\left(q_{1} \cdots q_{j}\right)\right)\right. \\
& \left.-p_{1} \cdots p_{l} d_{n-i}\left(a q_{1} \cdots q_{j}\right)+p_{1} \cdots+p_{l} d_{n-i}\left(a q_{1} \cdots q_{j}\right)\right] d_{i}\left(q_{j+1}\right) \\
& +p_{1} \cdots p_{l} d_{n}\left(a q_{1} \cdots q_{j+1}\right) \\
& =\left[\sum_{k=0}^{n-1}\left(d_{n-k}\left(p_{1} \cdots p_{l} a\right)-p_{1} \cdots p_{l} d_{n-k}(a)\right) d_{k}\left(q_{1} \cdots q_{j}\right)\right] q_{j+1} \\
& +\left[\sum_{k=0}^{n-2}\left(d_{n-2-k}\left(p_{1} \cdots p_{l} a\right)-p_{1} \cdots p_{l} d_{n-2-k}(a)\right) d_{k}\left(q_{1} \cdots q_{j}\right)\right] d_{1}\left(q_{j+1}\right) \\
& +\cdots+\left[\sum_{k=0}^{1}\left(d_{1}\left(p_{1} \cdots p_{l} a\right)-p_{1} \cdots p_{l} d_{n-2}(a)\right) d_{1}\left(q_{1} \cdots q_{j}\right)\right] d_{n-2}\left(q_{j+1}\right) \\
& +\left[d_{1}\left(p_{1} \cdots p_{l} a\right)-p_{1} \cdots p_{l} d_{1}(a)\right]\left(q_{1} \cdots q_{j}\right) d_{n-1}\left(q_{j+1}\right)+p_{1} \cdots p_{l} d_{n}\left(a q_{1} \cdots q_{j+1}\right) \\
& =\left(d_{n}\left(p_{1} \cdots p_{l} a\right)-p_{1} \cdots p_{l} d_{n}(a)\right) d_{0}\left(q_{1} \cdots q_{j+1}\right) \\
& +\left(d_{n-2-k}\left(p_{1} \cdots p_{l} a\right)-p_{1} \cdots p_{l} d_{n-2-k}(a)\right) \sum_{k=0}^{1} d_{1-k}\left(q_{1} \cdots q_{j}\right) d_{k}\left(q_{j+1}\right) \\
& +\cdots+\left(d_{2}\left(p_{1} \cdots p_{l} a\right)-p_{1} \cdots p_{l} d_{2}(a)\right) \sum_{k=0}^{n-2} d_{n-2-k}\left(q_{1} \cdots q_{j}\right) d_{k}\left(q_{j+1}\right) \\
& +\left(d_{1}\left(p_{1} \cdots p_{l} a\right)-p_{1} \cdots p_{l} d_{1}(a)\right) \sum_{k=0}^{n-1} d_{n-1-k}\left(q_{1} \cdots q_{j}\right) d_{k}\left(q_{j+1}\right) \\
& +p_{1} \cdots p_{l} d_{n}\left(a q_{1} \cdots q_{j+1}\right) \\
& \left.=\sum_{k=0}^{n-1}\left[d_{n-k}\left(p_{1} \cdots p_{l} a\right)-p_{1} \cdots p_{l} d_{n-k}(a)\right] d_{\left(q_{1} \cdots q_{j+1}\right)+p_{1} \cdots p_{l} d_{n}\left(a q_{1} \cdots q_{j+1}\right)}^{(}\right)
\end{aligned}
$$

note that the last equality follows from the identity

$$
d_{n-i}\left(q_{1} \cdots q_{j+1}\right)=\sum_{k=0}^{n-i} d_{n-i-k}\left(q_{1} \cdots q_{j}\right) d_{k}\left(q_{j+1}\right) \quad(0 \leq i \leq n)
$$

and the result proves.

3 Local Higher Derivations on Topological
 Algebras

In this section we assume that all algebras are unital topological algebras. Recall that an algebra \mathcal{A} is called a topological algebra if \mathcal{A} satisfies
(i) \mathcal{A} is a topological vector space, and
(ii) with the product topology of $\mathcal{A} \times \mathcal{A}$, the map $f:(x, y) \rightarrow x y$ is continuous.

Let M be an \mathcal{A}-module and let τ be an ideal of \mathcal{A}. We say that τ is a separating set of M, if for every $m, n \in M, m \tau=\{0\}$ implies $m=0$ and $\tau n=\{0\}$ implies $n=0$.

The following theorem generalizes [13, Theorem 2.7] for higher derivations.
Theorem 3.1. Let τ be a separating set of the algebra \mathcal{B}. Suppose that τ is contained in the algebra generated by all idempotents in \mathcal{A}. If $\left\{d_{n}\right\}_{n=0}^{j}$ is a family of linear mappings from \mathcal{A} into \mathcal{B} satisfying the condition $(*)$, then $\left\{d_{n}\right\}_{n=0}^{j}$ is a higher derivation.

Proof. Since τ is contained in the algebra generated by all idempotents in \mathcal{A}, the condition $(*)$ follows that for each $x, y \in \tau$,

$$
\begin{equation*}
d_{n}(x y)=\sum_{k=0}^{n} d_{n-k}(x) d_{k}(y) \quad(n=1,2, \ldots) \tag{3.1}
\end{equation*}
$$

Since τ is an ideal of \mathcal{A}, by $(*)$ for any $a \in \mathcal{A}$ we have

$$
\begin{align*}
d_{n}(x a y) & =d_{n}((x a) y)=\sum_{k=0}^{n} d_{n-k}(x a) d_{k}(y) \tag{3.2}\\
& =\sum_{k=0}^{n-1}\left[d_{n-k}(x a) d_{k}(y)-x d_{n-k}(a)\right] d_{k}(y)+x d_{n}(a y)
\end{align*}
$$

By (3.1) and (3.2), it follows that

$$
\begin{equation*}
x d_{n}(a y)=x a d_{n}(y)+\sum_{k=0}^{n-1} x d_{n-k}(a) d_{k}(y) x\left(a d_{n}(y)+\sum_{k=0}^{n-1} d_{n-k}(a) d_{k}(y)\right) \tag{3.3}
\end{equation*}
$$

Since τ is a separating set of the algebra \mathcal{B}, (3.3) implies that

$$
\begin{equation*}
d_{n}(a y)=a d_{n}(y)+\sum_{k=0}^{n-1} d_{n-k}(a) d_{k}(y)=\sum_{k=0}^{n} d_{n-k}(a) d_{k}(y) \tag{3.4}
\end{equation*}
$$

If $a, b \in \mathcal{A}$ and $y \in \tau$, by (3.4) we have that

$$
\begin{align*}
d_{n}(b a y) & =\sum_{k=0}^{n} d_{n-k}(b) d_{k}(a y)=\sum_{k=0}^{n} d_{n-k}(b) \sum_{i=0}^{k} d_{k-i}(a) d_{i}(y) \tag{3.5}\\
& =\left(\sum_{k=0}^{n} d_{n-k}(b) d_{k}(a)\right) y+\sum_{k=1}^{n} \sum_{i=0}^{n-k} d_{n-k-i}(b) d_{i}(a) d_{k}(y)
\end{align*}
$$

on the other hand

$$
\begin{equation*}
d_{n}(b a y)=\sum_{k=0}^{n} d_{n-k}(b a) d_{k}(y)=d_{n}(b a) y+\sum_{k=1}^{n} d_{n-k}(b) \sum_{i=0}^{k} d_{k-i}(a) d_{i}(y) \tag{3.6}
\end{equation*}
$$

Since τ is a separating set, by (3.5) and (3.6) it follows that

$$
d_{n}(b a)=\sum_{k=0}^{n} d_{n-k}(b) d_{k}(a)
$$

Therefore $\left\{d_{n}\right\}_{n=0}^{j}$ is a higher derivation.
Corollary 3.2. Let $\left\{I_{\gamma}: \gamma \in \Gamma\right\}$ is a collection of two-sided ideals in \mathcal{A} such that
(i) \mathcal{A} / I_{γ} is generated by its idempotents,
(ii) $\cap_{\gamma \in \Gamma}=0$.

If $\left\{d_{n}\right\}_{n=0}^{j}$ is family of linear mappings from \mathcal{A} into an algebra \mathcal{B} satisfying the condition $(*)$ and $d_{n}\left(I_{\gamma}\right) \subseteq I_{\gamma}$, for each n. Then $\left\{d_{n}\right\}_{n=0}^{j}$ is a higher derivation.

Proof. For any n and each γ in Γ and, d_{n} induces a linear mapping d_{n}^{γ} on \mathcal{A} / I_{γ} satisfying the condition $(*)$. By Theorem 3.1 and assumptions it follows that $\left\{d_{n}^{\gamma}\right\}$ is a higher derivation. Therefore for any $a, b \in \mathcal{A}$ we have that $d_{n}(a b)-$ $\sum_{k=0}^{n} d_{n-k}(a) d_{k}(b) \in I_{\gamma}$, for each $\gamma \in \Gamma$. By $(i i)$, it follows that $d_{n}(a b)=$
$\sum_{k=0}^{n} d_{n-k}(a) d_{k}(b)$.

Remark 3.3. Let \mathcal{A}, \mathcal{B} and τ be as in Theorem 3.1 and let $\left\{d_{n}\right\}_{n=0}^{j}$ be a local higher derivation from \mathcal{A} into \mathcal{B}. Then $\left\{d_{n}\right\}_{n=0}^{j}$ satisfies in condition (*), in fact [13, Theorem 2.7] implies that d_{1} is a derivation. Suppose $j=2$ and p, q are idempotents in \mathcal{A} and $a \in \mathcal{A}$. Then there exists a higher derivation $\left\{D_{n}^{p a q}\right\}_{n=0}^{2}$ from \mathcal{A} into \mathcal{B} such that $D_{0}^{\text {paq }}=d_{0}$ and $d_{n}($ paq $)=D_{n}^{\text {paq }}($ paq $)(1 \leq n \leq 2)$. In fact $D_{1}^{\text {paq }}=d_{1}$, because d_{1} is a derivation. Hence we have

$$
\begin{aligned}
(1-p)\left(d_{2}(p a q)-d_{1}(p a) d_{1}(q)\right)(1-q) & =(1-p)\left(D_{2}^{p a q}(p a q)-D_{1}(p a) D_{1}(q)\right)(1-q) \\
& =(1-p)\left(p a D_{2}^{p a q}(q)+D_{2}^{p a q}(p a) q\right)(1-q) \\
& =0
\end{aligned}
$$

by Lemma 2.1 the assertion proves.

With the help of Remark 3.3, the following theorem can be derived along the same argument in the proof of Theorem 3.1.

Theorem 3.4. Let τ be a separating set of the algebra \mathcal{B}. Suppose that τ is contained in the algebra generated by all idempotents in \mathcal{A}. If $\left\{d_{n}\right\}$ is a local higher derivation from \mathcal{A} into \mathcal{B}, then $\left\{d_{n}\right\}$ is a higher derivation.

In the following, we give some applications of Theorem 3.4.
Corollary 3.5. Let \mathcal{A} be an algebra and let \mathcal{B} be a unital algebra such that for every unital algebra $\mathcal{C}, \mathcal{C} \otimes \mathcal{B}$ is generated by it's idempotents. Then every local higher derivation from $\mathcal{A} \otimes \mathcal{B}$ into itself is a higher derivation. In particular for $2 \leq n$, every local higher derivation from the matrix algebra $M_{n}(\mathcal{A})$ into itself is a higher derivation.

Note that by [13, Proposition 2.2], $M_{n}(\mathcal{A})$ is generated by it's idempotents.
Corollary 3.6. If for any $a, b \in \mathcal{A}$, there exists a unital subalgebra \mathcal{B} of \mathcal{A} containing a and b such that \mathcal{B} is isomorphic to a matrix algebra, then every local higher derivation from \mathcal{A} into itself is a higher derivation.

Now we consider the local higher derivations on a reflexive subalgebra in a factor von Neumann algebra. The proof of the following corollaries uses Theorem 3.1 and arguments similar to those in the proof of [13, Theorem 2.17, Theorem 2.18].

Corollary 3.7. Suppose that \mathcal{L} is a subspace lattice in a factor von Neumann algebra \mathcal{M} on H with $\bigcap\{L \in \mathcal{L}: 0 \subset L\} \neq 0$ and $\bigvee\{L \in \mathcal{L}: L \subset H\} \neq H$. If $\left\{d_{n}\right\}_{n=0}^{J}$ is a family of linear mappings from $\mathcal{M} \cap$ alg \mathcal{L} into \mathcal{M} satisfying the condition $(*)$ (in particular, if $\left\{d_{n}\right\}_{n=0}^{J}$ is a local higher derivation), then $\left\{d_{n}\right\}_{n=0}^{J}$ is a higher derivation.

Corollary 3.8. Let \mathcal{N} be a nest in a factor von Neumann algebra \mathcal{M} on H. If $\left\{d_{n}\right\}_{n=0}^{J}$ is a family of linear mappings from $\mathcal{M} \cap \operatorname{alg} \mathcal{N}$ into \mathcal{M} satisfying the condition (*) (in particular, if $\left\{d_{n}\right\}_{n=0}^{j}$ is a local higher derivation), then $\left\{d_{n}\right\}_{n=0}^{j}$ is a higher derivation.

Theorem 3.9. Suppose that \mathcal{A} is topologically generated by its idempotents. If $\left\{d_{n}\right\}_{n=0}^{j}$ is a family of continuous linear mappins from \mathcal{A} into a topological algebra \mathcal{B} satisfying the condition (*) (in particular, if $\left\{d_{n}\right\}_{n=0}^{j}$ is a local higher derivation), then $\left\{d_{n}\right\}_{n=0}^{j}$ is a higher derivation.

Proof. If $a=\sum_{i=1}^{m} \alpha_{i} \prod_{j=1}^{t_{i}} p_{j}^{(i)}, b=\sum_{s=0}^{l} \beta_{s} \prod_{k=1}^{u_{s}} q_{k}^{(s)}$, where $p_{j}^{(i)}, q_{k}^{(s)}$ are idempotents of \mathcal{A} and $\alpha_{i}, \beta_{s} \in \mathbb{C}$, Lemma 2.2 implies that $d_{n}(a b)=\sum_{k=0}^{n} d_{n-k}(a) d_{k}(b)$. Since $\left\{d_{n}\right\}_{n=0}^{j}$ is continuous and \mathcal{A} is topologically generated by its idempotents, the result follows.

By [13, Proposition 2.3] and Theorem 3.9, it follows that

Corollary 3.10. Suppose that \mathcal{N} is a nest in a von Neumann algebra \mathcal{M} and $\mathcal{A}=\mathcal{M} \cap \operatorname{alg} \mathcal{N}$. If $\left\{d_{n}\right\}_{n=0}^{j}$ is a w^{*}-continuous local higher derivation from \mathcal{A} into \mathcal{M}, then $\left\{d_{n}\right\}_{n=0}^{j}$ is a higher derivation.

Corollary 3.11. Let \mathcal{A} and \mathcal{B} be as in Theorem 3.1. Then $h \operatorname{der}(\mathcal{A}, \mathcal{B})$ is reflexive.
Proof. Suppose that $\left\{d_{n}\right\}_{n=0}^{j}$ is a family of continuous linear mappings from \mathcal{A} into \mathcal{B} such that for each $x \in \mathcal{A}$ and $n \in \mathbb{N}, d_{n}(x) \in[h \operatorname{der}(\mathcal{A}, \mathcal{B}) x]$. Then there exists a sequence $\left\{\Delta_{m}^{n}\right\}$ (depending on x) in $\operatorname{hder}(\mathcal{A})$ such that $\lim _{m \rightarrow \infty} \Delta_{m}^{n}(x)=d_{n}(x)$. Let p, q be idempotents of \mathcal{A}. For any $a \in \mathcal{A}$, take $x=p a q$. It follows that

$$
\begin{aligned}
(1-p)\left(d_{n}(p a q)\right. & \left.-\sum_{k=1}^{n-1} d_{n-k}(p a) d_{k}(q)\right)(1-q) \\
& =\lim _{m \rightarrow \infty}(1-p)\left(\Delta_{m}^{n}(p a q)-\sum_{k=1}^{n-1} \Delta_{m}^{n-k}(p a) \Delta_{m}^{k}(q)\right)(1-q)=0
\end{aligned}
$$

Lemma 2.1 and Theorem 3.1 imply that $\left\{d_{n}\right\}_{n=0}^{j}$ is a higher derivation, hence $h \operatorname{der}(\mathcal{A}, \mathcal{B})$ is reflexive.

References

[1] H. Hasse, F.K. Schmidt, Noch eine Begrüdung der theorie der höheren differential quotienten in einem algebraischen funtionenkörper einer unbestimmeten, J. Reine Angew. Math. 177 (1937) 215-237.
[2] S. Hejazian, T.L. Shatery, Automatic continuity of higher derivations on $J B^{*}$ algebras, Bull. Iranian Math. Soc. 33 (1) (2007) 11-23.
[3] S. Hejazian, T.L. Shatery, Higher derivations on Banach algebras, J. Anal. Appl. 6 (2008) 1-15.
[4] S. Hejazian, T.L. Shateri, A characterization of higher derivations, to appear in Italian Journal of pure and applied mathematics.
[5] N.P. Jewell, Continuity of module and higher derivations, Pacific J. Math. 68 (1977) 91-98.
[6] K.W. Jun, Y.W. Lee, The image of a continuous strong higher derivation is contained in the radical, Bull. Korean Math. Soc. 33 (2) (1996) 229-232.
[7] R. Crist, Local derivations on operator algebras, J. Func. Anal. 135 (1996) 72-92.
[8] R. Crist, Local automorphisms, Proc. Amer. Math. Soc. 128 (1999) 14091414.
[9] D. Hadwin, J. LI, Local derivations and local automorphisms, J. Math. Anal. Appl. 290 (2004) 702-714.
[10] B. Johnson, Local derivations on C^{*}-algebras are derivations, Trans. Amer. Math. Soc. 353 (2001) 313-325.
[11] R. Kadison, Local derivations, J. Algebra. 130 (1990) 494-509.
[12] D. Larson, A. Sourour, Local derivations and local automorphisms, Proc. Sympos. Pure Math. 51 (1990) 187-194.
[13] D. Hadwin, J. Li, Local derivations and local automorphisms on some algebras, J. Operator thoery, 60 (1) (2008) 29-44.
(Received 21 May 2011)
(Accepted 15 November 2011)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

[^0]: Copyright (c) 2012 by the Mathematical Association of Thailand. All rights reserved.

