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1 Introduction

Let A and B be algebras. By as higher derivation of rank j (j might be oo)
we mean a family of linear mappings {D,,}},_, from A into B such that

Dn(ab) = > Di(a)Dp1(b), (a,b€ A, n=0,1,2,...5).
k=0

It is obvious that for a higher derivation {D,}’,_,, Dy is a homomorphism from .4

to B and D; is a Dy-derivation, that is D1 (ab) = Do(a)D1(b) 4+ D1(a)Do(b) (a,b €
A). Note that B is a A-bimodule with module operations az = Dy(a)z,za =
xDoy(a) (a € A,z € B). A higher derivation {D,,} is said to be continuous if every
D,, is continuous. If B = A and Dy = id4, where id 4 is the identity map on
A, then Dj is a derivation and {D,}},_, is called a strongly higher derivation. A
standard example of a higher derivation of rank j is {2—?}{120 where D : A — A
is a derivation. Higher derivations were introduced by Hasse and Schmidt [1]
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and algebraists sometimes call them Hasse-Schmidt derivations. The reader may
find more about higher derivations in [2-6]. Let {d,},_, be a family of linear
mappings from 4 into B for which dy is a homomorphism, then {d, }51:0 is called
a local higher derivation if for every a € A there exists a higher derivation { D¢ i:o
from A into B such that D§ = dy and dy,(a) = D%(a) (n > 1). In the context of
derivations, the relation between local derivations and derivations is widely studied
by Several authors [7—12]. Hadwin and Li [13] prove that every local derivation
from an algebra A that is generated by it’s idempotents, into any .4-bimodule is
a derivation.

Now, let A and B be topological algebras, denote by hder(A, B) the set of
all continuous higher derivations from A into B. If A is a topological algebra we
say that A is topologically generated by its idempotents, if the subalgebra of A
generated by its idempotents is dense in A.

Let X and Y be complex Hausdorff topological linear spaces and let B(X,Y)
be the space of continuous linear mappings from X into ). We said that a subset
S of B(X,Y) is reflexive if T € S whenever T € B(X,)) and Tz € [Sx] for
any x € X, where [] is the topological closure. By a subspace lattice on X we
mean a collection £ of closed subspaces of X containing (0) and &X' such that for
each family {L,} of elements of £ both (L, and \/ L, belong to L, where \/
denotes the closed linear span of {L,}. If £ is a subspace lattice, the algebra
of all operators on X that leave invariant each element of £ is denoted by algL.
A totally ordered subspace lattice A is called a nest and the associated reflexive
algebra alg\ is called a nest algebra.

In Section 2 we prove some algebraic results for a family of linear mappings
which is needed in Section 3. In Section 3, we show that if a unital topological
algebra A is generated by its idempotents, then a local higher derivation {d,}
from A into a unital algebra B provided that dy is a homomorphism from A to B,
is a higher derivation and hder (A, B) is reflexive. In particular for a unital algebra
A and any n > 2, we have that every local higher derivation from M, (A) into
itself is a higher derivation.

The results in Sections 2 and 3 are the same in [13, Section2], which are proved
for local derivations and here we prove them for local higher derivations.

2 Algebraic Results

In this section we assume that all algebras are unital. Recall that if 4 and B
are two algebras and dy is a homomorphism from A into 5, then B is a A-bimodule
with module operations a.z = dy(a)z,z.a = zdy(a) (a € A,z € B). To show our
main results, we need two lemmas.

Lemma 2.1. Let {dn}flzo be a family of linear mappings from an algebra A into
an algebra B such that for alln € N, d,(1) =0 and dy is a homomorphism. Then
for each a € A and any idempotents p,q € A the following are equivalent.

(i) (1= p)(dn(pag) — 3321 dnk(pa)dr(q))(1 = q) =0
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(ii) dn(pag) = Y320 [dn—i(pa) — pdn—i(a)]di(q) + pdn(ag).

Proof. Tt is clear that (i) implies (7). Now suppose that (i) is true. We denote
pt =1 —p, then we have

< (paq) Zdnkpadk ) < (paq) Zdnkpadk ) .(2.1)

Also the left side equals to

n—1
p (dn((l —phag) = > dni(1 —pLa)dk(Q)> q* (2.2)
k=1
—p<dn(aq) dy,(p*aq) +nZdn K(phadi(g Zdn k( ) .
k=1

By (2.1) and (2.2), it follows that

p <dn(GQ) - z_: dn—k(a)dk(Q)> < (paq) Z dn—k(pa)dy(q ) - (23)
k=1

Hence by ( 3)

[u

dn (paq) — 2 [dn—1(pa) — pdn—1(a)]di(q) — pdn(aq)
— <dn (pag) — :: [dn—k(pa) — pd,—1(a)]di(q) — pdn(aq)> (¢+q")
— <dn (paq) — :i [dn—r(pa) — pdp—r(a)]di(q) — pdn(GQ)> q
:<d (pa(l —q*) Zdnkpadkl—q —i—pZdnk — pdn(a ))q
= dn(pa)q — dn(paq™)q + :z:i dn—r(pa)dy(q™)q
—Zdnkpadk q—l—pzdnk q)q — pdn(agq)q
= dy(pa)q — pdn(ag™)q + :Z_:i dn—1(pa)di(q™)g — pdn(aq)q

+pzdnk a)q — pdn(aq)q

=d, (pa)q pdn(a)q.
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This completes the proof. O

Let A and B be algebras. Suppose {dn}f@:o is a family of linear mappings
from an algebra A into an algebra B. We say that {d,,}} _, satisfies the condition
(*) if dp is a homomorphism and

n—1

dn(paq) =Y [dn—r(pa) — pdn_k(a)]di(q) + pdn(aq) and dn(1) =0 (n=1,2,...)

for all idempotents p,q in A and a € A.
Lemma 2.2. Suppose that {dn}izo is a family of linear mappings from an alge-

bra A into an algebra B satisfying the condition (x). Then for any idempotents
D1y DLy q1y s G 0 A and every a € A

Ju

n

dn(pr-- p1ag - qm) = Y [dn-r(pr-- pra) = p1---prdn-r(a)] di(qr - - gm)
0

>
Il

+ 1 pidn(agy - gm)- (2.4)

Proof. First we show that

|
—

n

dn(p1---pag) = Y [dn—k(p1---pa) —p1- - prdn—k(a)|di(q) + p1 - - - pidn(ag).
0

b
i

(2.5)

If [ = 1 the condition (%) implies the result. Suppose (2.5) holds for [ = j. If
[ =j+ 1, by the condition (x) it follows that

dn(p1 -+ Pjr109)

1
L

[dn—k(p1 -+ pj+10) — prdn—k(p2 - - pj+10)|de(q) + prdn(p2 - - pj+10q)

1T
= O

[dn—r(p1-- pjr1a) — prdn—r(p2 - pj1a)|dr(q)

~
Il
o

n—1
+p (Z [dn—k(p2---pjr10) = p2---piy1dn—r(a)]dr(q) —pa-- 'pj+1dn(aq)>
k=0

1
L

= [dn—r(p1--pjr1a) — 1 pjr1dn—i(a)]di(q) + p1- - pjs1dn(aq).

~
Il
o

Now we prove (2.4) is true. For m = 1, (2.5) implies (2.4). Now assume (2.4) for
m = j. If m = j+ 1, by the induction assumption, the condition (*) and (2.5), we
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have

dn(p1---pragy---qj1)

I
gl
L

P11 pidn(aqr - gjg1)

n—1 n—i—1

= { Z (dn—i—k(p1---ma)dr(qr---q;) —p1--

=0 k=0

dn—i(p1---pragqi---q;) —p1---prdn—i(ag --

-q;)]di(gj41)

prdn—i—k(a)di(q

“qj5))

—p1- o pudn—i(aqi -+ qj) +p1-- -+ pidn—i(ags - - 'qj)} di(qj+1)
+p1- midn(aqr - gjt1)
n—1
= [Z(dn—k(pl pa) — p1ec e pidn—k(a))di(gr - 'Qj)} qj+1
k=0
n—2
+ {Z(dn—2—k(pl cpa) — p1 - prdn—a—g(a)) de(q qj)} d1(gj+1)
k=0
1
+ {Z -p1a) = p1 -+ prdn—2(a))di(q "Qj)}dn*Q(qurl)
k=0
+ [di(py---pia) —p1---midi(a)] (g1 -+ @5)dn—1(qj41) + 1 - prdn(agy - -
= (dn(p1---pa) —p1- - prdn(a))do(qr - - "Jj+1)
+ (dn—2-k(p1---pra) = p1 - prdn—2-x( Zd1 K ( a;)di(qj+1)
+ -+ (d2(pr- - pa) — p1---prda(a Zdn 2 k(q1 - qj)dr(gj+1)
+ (di(p1---pia) — pr-- - pudi(a Zdn 1-k(q1 -+ q;)dr(gj+1)
p1---pidn(ag - '(Jj+1)
n—1
= [dnr(pr---pa) —p1-- prdn_r(a)|diqr - qjr1) +pr---prdn(ag -
k=0

note that the last equality follows from the identity

dp— z( QJJrl Zd" i— k

and the result proves.

< q;)dk(gj+1) (0<i<mn)

457

qj+1)

qj+1)
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3 Local Higher Derivations on Topological
Algebras

In this section we assume that all algebras are unital topological algebras.
Recall that an algebra A is called a topological algebra if A satisfies

(i) A is a topological vector space, and
(ii) with the product topology of A x A, the map f : (x,y) — xy is continuous.

Let M be an A-module and let 7 be an ideal of A. We say that 7 is a separating
set of M, if for every m,n € M, mr = {0} implies m = 0 and 7n = {0} implies
n =0.

The following theorem generalizes [13, Theorem 2.7] for higher derivations.

Theorem 3.1. Let 7 be a separating set of the algebra B. Suppose that T is
contained in the algebra generated by all idempotents in A. If {d,}} _ is a family
of linear mappings from A into B satisfying the condition (%), then {dn}flzo s a
higher derivation.

Proof. Since 7 is contained in the algebra generated by all idempotents in A, the
condition (x) follows that for each z,y € T,

= dpr(@)di(y) (n=1,2,..). (3.1)
k=0
Since 7 is an ideal of A, by (x) for any a € A we have
dn(zay) = dp ((va)y) =Y dn_r(va)ds(y) (3.2)
n—1

= [dn—k(xa)dk (y) — xdn—k(a)]dk (y) + zdn (ay).
0

b
Il

y (3.1) and (3.2), it follows that

n—1
xdy(ay) = xad,(y) + Z dp i ( (y)z(ad,(y) + Z dp—r(a)di(y)). (3.3)
k=0

Since T is a separating set of the algebra B, (3.3) implies that

dn(ay) = ady(y) + Z dn—r(a)di(y) = dn_r(a)di(y). (3.4)
k=0
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Ifa,b € Aand y € 7, by (3.4) we have that

n

k

o (bay) = Zd” k(b)dk(ay) Zdn K(0) D di—i(a)di(y) (3-5)
i=0

<Zdn k(D) dk (a >y+

k=

n n—

k
dn k— 1 z )dk(y)
1:=0

on the other hand

n k
L (bay) = Zdn k(ba)di(y) = dn(ba)y + Y dnk() Y di—i(a)di(y).  (3.6)
1=0

k=1

Since 7 is a separating set, by (3.5) and (3.6) it follows that

= i dnfk (b)dk (a)
k=0

Therefore {d,,}’_, is a higher derivation. O

Corollary 3.2. Let {I ,: v € '} is a collection of two-sided ideals in A such
that

(i) A/L, is generated by its idempotents,
(ii) Nyer = 0.

If {dn}izo is family of linear mappings from A into an algebra B satisfying the
condition (%) and d,(I,) C I,, for each n. Then {d,}),_, is a higher derivation.

Proof. For any n and each v in I" and, d,, induces a linear mapping d;, on A/IL,
satisfying the condition (x). By Theorem 3.1 and assumptions it follows that
{d} is a higher derivation. Therefore for any a,b € A we have that d,(ab) —
Yoneodn—k(a)di(b) € I, for each v € T. By (i), it follows that d,(ab) =
S dn—t(a)di (b). O

Remark 3.3. Let A, B and 7 be as in Theorem 3.1 and let {d,}.,_, be a local
higher derivation from A into B. Then {d,} _, satisfies in condition (x), in fact
[18, Theorem 2.7] implies that di is a derivation. Suppose j = 2 and p,q are
idempotents in A and a € A. Then there ezists a higher derivation {DP%}2_,
from A into B such that D5*? = dy and d,,(paq) = D¥*(paq) (1 < n < 2). In fact
Dfaq = dy, because dy is a derivation. Hence we have

(1 = p)(da(paq) — di(pa)di(q)) (1 — q) = (1 — p)(D5**(paq) — D1(pa)D1(q))(1 — q)
= (1= p)(paD5™(q) + D5* (pa)q) (1 — q)

by Lemma 2.1 the assertion proves.



460 Thai J. Math. 10 (2012)/ T.L. Shateri

With the help of Remark 3.3, the following theorem can be derived along the
same argument in the proof of Theorem 3.1.

Theorem 3.4. Let 7 be a separating set of the algebra B. Suppose that T is
contained in the algebra generated by all idempotents in A. If {d,} is a local
higher derivation from A into B, then {d,} is a higher derivation.

In the following, we give some applications of Theorem 3.4.

Corollary 3.5. Let A be an algebra and let B be a unital algebra such that for
every unital algebra C, C ® B s generated by it’s idempotents. Then every local
higher derivation from A ® B into itself is a higher derivation. In particular for
2 < n, every local higher derivation from the matriz algebra M, (A) into itself is
a higher derivation.

Note that by [13, Proposition 2.2], M,,(A) is generated by it’s idempotents.

Corollary 3.6. If for any a,b € A, there exists a unital subalgebra B of A con-
taining a and b such that B is isomorphic to a matrix algebra, then every local
higher derivation from A into itself is a higher derivation.

Now we consider the local higher derivations on a reflexive subalgebra in a
factor von Neumann algebra. The proof of the following corollaries uses Theorem
3.1 and arguments similar to those in the proof of [13, Theorem 2.17, Theorem
2.18].

Corollary 3.7. Suppose that L is a subspace lattice in a factor von Neumann
algebra M on H with ({L € L: 0 C L} #0and \/{Le L: L C H} # H.
If {dn}),_o is a family of linear mappings from M N algLl into M satisfying the
condition () (in particular, if {d, Y _, is a local higher derivation), then {d,}._,
is a higher derivation.

Corollary 3.8. Let N be a nest in a factor von Neumann algebra M on H. If
{dn}! _ is a family of linear mappings from M N algN into M satisfying the
condition () (in particular, if {d, Y _, is a local higher derivation), then {d,}._,
is a higher derivation.

Theorem 3.9. Suppose that A is topologically generated by its idempotents. If
{dn}izo is a family of continuous linear mappins from A into a topological al-
gebra B satisfying the condition (x) (in particular, if {dn}flzo is a local higher
derivation), then {d,},_, is a higher derivation.

Proof. fa=3% " o H;;l pgi), b= ElS:O Bs [ 14 q,(gs), where pgi), q,(:) are idem-
potents of A and «;, s € C, Lemma 2.2 implies that d,,(ab) = Y__ o dn—k(a)di (D).
Since {dn}flzo is continuous and A is topologically generated by its idempotents,
the result follows. O

By [13, Proposition 2.3] and Theorem 3.9, it follows that
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Corollary 3.10. Suppose that N is a nest in a von Neumann algebra M and
A= MnalgN. If {d.},_o is a w*-continuous local higher derivation from A
into M, then {d,}),_, is a higher derivation.

Corollary 3.11. Let A and B be as in Theorem 3.1. Then hder(A, B) is reflexive.

Proof. Suppose that {d,, }‘31:0 is a family of continuous linear mappings from A into
B such that for each x € A and n € N, d,(x) € [hder(A, B)z]. Then there exists a
sequence {A”" } (depending on z) in hder(A) such that lim,, . A” () = dn(x).

Let p, ¢ be idempotents of A. For any a € A, take x = paq. It follows that
n—1
(1-p) <dn(paq) -3 dnk(pa)dk(Q)> (1-4q)
k=1

= lim (1—p) (A;;(paq) - Z_: AZ"“(IM)M&Q)) (1—¢q) =0.

k=1

Lemma 2.1 and Theorem 3.1 imply that {dn}‘zlzo is a higher derivation, hence
hder(A, B) is reflexive. O
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