Thai Journal of Mathematics Volume 10 (2012) Number 2 : 453–462

http://thaijmath.in.cmu.ac.th ISSN 1686-0209

Local Higher Derivations

Tayebeh Lal Shateri

Faculty of Mathematics and Computer Sciences Hakim Sabzevari University, Sabzevar, Iran e-mail:t.shateri@gmail.com

Abstract: In this paper, we study local higher derivations on some algebras generated by their idempotents. We prove that the space of all bounded higher derivations from these algebras into a unital algebra is reflexive.

Keywords : Subspace lattice; Topological algebra; Derivation; Higher derivation; Local higher derivation.

2010 Mathematics Subject Classification : 47Bxx.

1 Introduction

Let \mathcal{A} and \mathcal{B} be algebras. By as higher derivation of rank j (j might be ∞) we mean a family of linear mappings $\{D_n\}_{n=0}^{j}$ from \mathcal{A} into \mathcal{B} such that

$$D_n(ab) = \sum_{k=0}^n D_k(a) D_{n-k}(b), \ (a, b \in \mathcal{A}, \ n = 0, 1, 2, ..., j).$$

It is obvious that for a higher derivation $\{D_n\}_{n=0}^j$, D_0 is a homomorphism from \mathcal{A} to \mathcal{B} and D_1 is a D_0 -derivation, that is $D_1(ab) = D_0(a)D_1(b) + D_1(a)D_0(b)$ $(a, b \in \mathcal{A})$. Note that \mathcal{B} is a \mathcal{A} -bimodule with module operations $ax = D_0(a)x, xa = xD_0(a)$ $(a \in \mathcal{A}, x \in \mathcal{B})$. A higher derivation $\{D_n\}$ is said to be continuous if every D_n is continuous. If $\mathcal{B} = \mathcal{A}$ and $D_0 = id_{\mathcal{A}}$, where $id_{\mathcal{A}}$ is the identity map on \mathcal{A} , then D_1 is a derivation and $\{D_n\}_{n=0}^j$ is called a *strongly* higher derivation. A standard example of a higher derivation of rank j is $\{\frac{D^n}{n!}\}_{n=0}^j$ where $D : \mathcal{A} \to \mathcal{A}$ is a derivation. Higher derivations were introduced by Hasse and Schmidt [1]

Copyright \bigcirc 2012 by the Mathematical Association of Thailand. All rights reserved.

and algebraists sometimes call them Hasse-Schmidt derivations. The reader may find more about higher derivations in [2–6]. Let $\{d_n\}_{n=0}^j$ be a family of linear mappings from \mathcal{A} into \mathcal{B} for which d_0 is a homomorphism, then $\{d_n\}_{n=0}^j$ is called a *local higher derivation* if for every $a \in \mathcal{A}$ there exists a higher derivation $\{D_n^a\}_{n=0}^j$ from \mathcal{A} into \mathcal{B} such that $D_0^a = d_0$ and $d_n(a) = D_n^a(a)$ $(n \ge 1)$. In the context of derivations, the relation between local derivations and derivations is widely studied by Several authors [7–12]. Hadwin and Li [13] prove that every local derivation from an algebra \mathcal{A} that is generated by it's idempotents, into any \mathcal{A} -bimodule is a derivation.

Now, let \mathcal{A} and \mathcal{B} be topological algebras, denote by $hder(\mathcal{A}, \mathcal{B})$ the set of all continuous higher derivations from \mathcal{A} into \mathcal{B} . If \mathcal{A} is a topological algebra we say that \mathcal{A} is topologically generated by its idempotents, if the subalgebra of \mathcal{A} generated by its idempotents is dense in \mathcal{A} .

Let \mathcal{X} and \mathcal{Y} be complex Hausdorff topological linear spaces and let $\mathfrak{B}(\mathcal{X}, \mathcal{Y})$ be the space of continuous linear mappings from \mathcal{X} into \mathcal{Y} . We said that a subset \mathcal{S} of $\mathfrak{B}(\mathcal{X}, \mathcal{Y})$ is reflexive if $T \in \mathcal{S}$ whenever $T \in \mathfrak{B}(\mathcal{X}, \mathcal{Y})$ and $Tx \in [\mathcal{S}x]$ for any $x \in \mathcal{X}$, where $[\cdot]$ is the topological closure. By a subspace lattice on \mathcal{X} we mean a collection \mathcal{L} of closed subspaces of \mathcal{X} containing (0) and \mathcal{X} such that for each family $\{L_{\alpha}\}$ of elements of \mathcal{L} both $\bigcap L_{\alpha}$ and $\bigvee L_{\alpha}$ belong to \mathcal{L} , where \bigvee denotes the closed linear span of $\{L_{\alpha}\}$. If \mathcal{L} is a subspace lattice, the algebra of all operators on \mathcal{X} that leave invariant each element of \mathcal{L} is denoted by $alg\mathcal{L}$. A totally ordered subspace lattice \mathcal{N} is called a *nest* and the associated reflexive algebra $alg\mathcal{N}$ is called a *nest algebra*.

In Section 2 we prove some algebraic results for a family of linear mappings which is needed in Section 3. In Section 3, we show that if a unital topological algebra \mathcal{A} is generated by its idempotents, then a local higher derivation $\{d_n\}$ from \mathcal{A} into a unital algebra \mathcal{B} provided that d_0 is a homomorphism from \mathcal{A} to \mathcal{B} , is a higher derivation and $hder(\mathcal{A}, \mathcal{B})$ is reflexive. In particular for a unital algebra \mathcal{A} and any $n \geq 2$, we have that every local higher derivation from $M_n(\mathcal{A})$ into itself is a higher derivation.

The results in Sections 2 and 3 are the same in [13, Section2], which are proved for local derivations and here we prove them for local higher derivations.

2 Algebraic Results

In this section we assume that all algebras are unital. Recall that if \mathcal{A} and \mathcal{B} are two algebras and d_0 is a homomorphism from \mathcal{A} into \mathcal{B} , then \mathcal{B} is a \mathcal{A} -bimodule with module operations $a.x = d_0(a)x, x.a = xd_0(a) \ (a \in \mathcal{A}, x \in \mathcal{B})$. To show our main results, we need two lemmas.

Lemma 2.1. Let $\{d_n\}_{n=0}^j$ be a family of linear mappings from an algebra \mathcal{A} into an algebra \mathcal{B} such that for all $n \in \mathbb{N}$, $d_n(1) = 0$ and d_0 is a homomorphism. Then for each $a \in \mathcal{A}$ and any idempotents $p, q \in \mathcal{A}$ the following are equivalent.

(i)
$$(1-p)(d_n(paq) - \sum_{k=1}^{n-1} d_{n-k}(pa)d_k(q))(1-q) = 0$$

(*ii*)
$$d_n(paq) = \sum_{k=0}^{n-1} [d_{n-k}(pa) - pd_{n-k}(a)] d_k(q) + pd_n(aq).$$

Proof. It is clear that (ii) implies (i). Now suppose that (i) is true. We denote $p^{\perp} = 1 - p$, then we have

$$p\left(d_n(paq) - \sum_{k=1}^{n-1} d_{n-k}(pa)d_k(q)\right)q^{\perp} = \left(d_n(paq) - \sum_{k=1}^{n-1} d_{n-k}(pa)d_k(q)\right)q^{\perp}.$$
 (2.1)

Also the left side equals to

$$p\left(d_n((1-p^{\perp})aq) - \sum_{k=1}^{n-1} d_{n-k}(1-p^{\perp}a)d_k(q)\right)q^{\perp}$$

$$= p\left(d_n(aq) - d_n(p^{\perp}aq) + \sum_{k=1}^{n-1} d_{n-k}(p^{\perp}ad_k(q) - \sum_{k=1}^{n-1} d_{n-k}(a)d_k(q)\right)q^{\perp}.$$
(2.2)

By (2.1) and (2.2), it follows that

$$p\left(d_n(aq) - \sum_{k=1}^{n-1} d_{n-k}(a)d_k(q)\right)q^{\perp} = \left(d_n(paq) - \sum_{k=1}^{n-1} d_{n-k}(pa)d_k(q)\right)q^{\perp}.$$
 (2.3)

Hence by (2.3)

$$\begin{split} d_{n}(paq) &- \sum_{k=1}^{n-1} \left[d_{n-k}(pa) - pd_{n-k}(a) \right] d_{k}(q) - pd_{n}(aq) \\ &= \left(d_{n}(paq) - \sum_{k=1}^{n-1} \left[d_{n-k}(pa) - pd_{n-k}(a) \right] d_{k}(q) - pd_{n}(aq) \right) (q+q^{\perp}) \\ &= \left(d_{n}(paq) - \sum_{k=1}^{n-1} \left[d_{n-k}(pa) - pd_{n-k}(a) \right] d_{k}(q) - pd_{n}(aq) \right) q \\ &= \left(d_{n}(pa(1-q^{\perp})) - \sum_{k=1}^{n-1} d_{n-k}(pa) d_{k}(1-q^{\perp}) + p \sum_{k=1}^{n-1} d_{n-k}(a) d_{k}(q) - pd_{n}(aq) \right) q \\ &= d_{n}(pa)q - d_{n}(paq^{\perp})q + \sum_{k=1}^{n-1} d_{n-k}(pa) d_{k}(q^{\perp})q \\ &- \sum_{k=1}^{n-1} d_{n-k}(pa) d_{k}(1)q + p \sum_{k=1}^{n-1} d_{n-k}(a) d_{k}(q)q - pd_{n}(aq)q \\ &= d_{n}(pa)q - pd_{n}(aq^{\perp})q + \sum_{k=1}^{n-1} d_{n-k}(pa) d_{k}(q^{\perp})q - pd_{n}(aq)q \\ &+ p \sum_{k=1}^{n-1} d_{n-k}(a) d_{k}(q)q - pd_{n}(aq)q \\ &= d_{n}(pa)q - pd_{n}(a)q. \end{split}$$

This completes the proof.

Let \mathcal{A} and \mathcal{B} be algebras. Suppose $\{d_n\}_{n=0}^j$ is a family of linear mappings from an algebra \mathcal{A} into an algebra \mathcal{B} . We say that $\{d_n\}_{n=0}^j$ satisfies the condition (*) if d_0 is a homomorphism and

$$d_n(paq) = \sum_{k=0}^{n-1} \left[d_{n-k}(pa) - pd_{n-k}(a) \right] d_k(q) + pd_n(aq) \text{ and } d_n(1) = 0 \ (n = 1, 2, \dots)$$

for all idempotents p, q in \mathcal{A} and $a \in \mathcal{A}$.

Lemma 2.2. Suppose that $\{d_n\}_{n=0}^j$ is a family of linear mappings from an algebra \mathcal{A} into an algebra \mathcal{B} satisfying the condition (*). Then for any idempotents $p_1, ..., p_l, q_1, ..., q_m$ in \mathcal{A} and every $a \in \mathcal{A}$

$$d_n(p_1 \cdots p_l a q_1 \cdots q_m) = \sum_{k=0}^{n-1} \left[d_{n-k}(p_1 \cdots p_l a) - p_1 \cdots p_l d_{n-k}(a) \right] d_k(q_1 \cdots q_m) + p_1 \cdots p_l d_n(a q_1 \cdots q_m).$$
(2.4)

Proof. First we show that

$$d_n(p_1 \cdots p_l aq) = \sum_{k=0}^{n-1} \left[d_{n-k}(p_1 \cdots p_l a) - p_1 \cdots p_l d_{n-k}(a) \right] d_k(q) + p_1 \cdots p_l d_n(aq).$$
(2.5)

If l = 1 the condition (*) implies the result. Suppose (2.5) holds for l = j. If l = j + 1, by the condition (*) it follows that

$$\begin{aligned} &d_n(p_1 \cdots p_{j+1}aq) \\ &= \sum_{k=0}^{n-1} \left[d_{n-k}(p_1 \cdots p_{j+1}a) - p_1 d_{n-k}(p_2 \cdots p_{j+1}a) \right] d_k(q) + p_1 d_n(p_2 \cdots p_{j+1}aq) \\ &= \sum_{k=0}^{n-1} \left[d_{n-k}(p_1 \cdots p_{j+1}a) - p_1 d_{n-k}(p_2 \cdots p_{j+1}a) \right] d_k(q) \\ &+ p_1 \left(\sum_{k=0}^{n-1} \left[d_{n-k}(p_2 \cdots p_{j+1}a) - p_2 \cdots p_{j+1} d_{n-k}(a) \right] d_k(q) - p_2 \cdots p_{j+1} d_n(aq) \right) \\ &= \sum_{k=0}^{n-1} \left[d_{n-k}(p_1 \cdots p_{j+1}a) - p_1 \cdots p_{j+1} d_{n-k}(a) \right] d_k(q) + p_1 \cdots p_{j+1} d_n(aq). \end{aligned}$$

Now we prove (2.4) is true. For m = 1, (2.5) implies (2.4). Now assume (2.4) for m = j. If m = j + 1, by the induction assumption, the condition (*) and (2.5), we

have

$$\begin{split} &d_n(p_1\cdots p_laq_1\cdots q_{j+1}) \\ &= \sum_{i=0}^{n-1} [d_{n-i}(p_1\cdots p_laq_1\cdots q_j) - p_1\cdots p_ld_{n-i}(aq_1\cdots q_j)]d_i(q_{j+1}) \\ &+ p_1\cdots p_ld_n(aq_1\cdots q_{j+1}) \\ &= \sum_{i=0}^{n-1} [\sum_{k=0}^{n-i-1} (d_{n-i-k}(p_1\cdots p_la)d_k(q_1\cdots q_j) - p_1\cdots p_ld_{n-i-k}(a)d_k(q_1\cdots q_j)) \\ &- p_1\cdots p_ld_{n-i}(aq_1\cdots q_j) + p_1\cdots + p_ld_{n-i}(aq_1\cdots q_j)]d_i(q_{j+1}) \\ &+ p_1\cdots p_ld_n(aq_1\cdots q_{j+1}) \\ &= \left[\sum_{k=0}^{n-1} (d_{n-2-k}(p_1\cdots p_la) - p_1\cdots p_ld_{n-k}(a))d_k(q_1\cdots q_j)\right]q_{j+1} \\ &+ \left[\sum_{k=0}^{n-2} (d_{n-2-k}(p_1\cdots p_la) - p_1\cdots p_ld_{n-2-k}(a))d_k(q_1\cdots q_j)\right]d_{1}(q_{j+1}) \\ &+ \cdots + \left[\sum_{k=0}^{1} (d_1(p_1\cdots p_la) - p_1\cdots p_ld_{n-2}(a))d_1(q_1\cdots q_j)\right]d_{n-2}(q_{j+1}) \\ &+ \left[d_1(p_1\cdots p_la) - p_1\cdots p_ld_1(a)\right](q_1\cdots q_{j+1}) + p_1\cdots p_ld_n(aq_1\cdots q_{j+1}) \\ &+ (d_{n-2-k}(p_1\cdots p_la) - p_1\cdots p_ld_{n-2-k}(a))\sum_{k=0}^{1} d_{n-2-k}(q_1\cdots q_j)d_k(q_{j+1}) \\ &+ \cdots + (d_2(p_1\cdots p_la) - p_1\cdots p_ld_2(a))\sum_{k=0}^{n-2} d_{n-2-k}(q_1\cdots q_j)d_k(q_{j+1}) \\ &+ (d_1(p_1\cdots p_la) - p_1\cdots p_ld_1(a))\sum_{k=0}^{n-1} d_{n-1-k}(q_1\cdots q_j)d_k(q_{j+1}) \\ &+ p_1\cdots p_ld_n(aq_1\cdots q_{j+1}) \\ &= \sum_{k=0}^{n-1} [d_{n-k}(p_1\cdots p_la) - p_1\cdots p_ld_{n-k}(a)]d_l(q_1\cdots q_{j+1}) + p_1\cdots p_ld_n(aq_1\cdots q_{j+1}) \end{split}$$

note that the last equality follows from the identity

$$d_{n-i}(q_1 \cdots q_{j+1}) = \sum_{k=0}^{n-i} d_{n-i-k}(q_1 \cdots q_j) d_k(q_{j+1}) \quad (0 \le i \le n)$$

and the result proves.

3 Local Higher Derivations on Topological Algebras

In this section we assume that all algebras are unital topological algebras. Recall that an algebra \mathcal{A} is called a *topological algebra* if \mathcal{A} satisfies

- (i) \mathcal{A} is a topological vector space, and
- (ii) with the product topology of $\mathcal{A} \times \mathcal{A}$, the map $f: (x, y) \to xy$ is continuous.

Let M be an \mathcal{A} -module and let τ be an ideal of \mathcal{A} . We say that τ is a separating set of M, if for every $m, n \in M$, $m\tau = \{0\}$ implies m = 0 and $\tau n = \{0\}$ implies n = 0.

The following theorem generalizes [13, Theorem 2.7] for higher derivations.

Theorem 3.1. Let τ be a separating set of the algebra \mathcal{B} . Suppose that τ is contained in the algebra generated by all idempotents in \mathcal{A} . If $\{d_n\}_{n=0}^j$ is a family of linear mappings from \mathcal{A} into \mathcal{B} satisfying the condition (*), then $\{d_n\}_{n=0}^j$ is a higher derivation.

Proof. Since τ is contained in the algebra generated by all idempotents in \mathcal{A} , the condition (*) follows that for each $x, y \in \tau$,

$$d_n(xy) = \sum_{k=0}^n d_{n-k}(x)d_k(y) \quad (n = 1, 2, ...).$$
(3.1)

Since τ is an ideal of \mathcal{A} , by (*) for any $a \in \mathcal{A}$ we have

$$d_n(xay) = d_n((xa)y) = \sum_{k=0}^n d_{n-k}(xa)d_k(y)$$
(3.2)
=
$$\sum_{k=0}^{n-1} [d_{n-k}(xa)d_k(y) - xd_{n-k}(a)]d_k(y) + xd_n(ay).$$

By (3.1) and (3.2), it follows that

$$xd_n(ay) = xad_n(y) + \sum_{k=0}^{n-1} xd_{n-k}(a)d_k(y)x(ad_n(y) + \sum_{k=0}^{n-1} d_{n-k}(a)d_k(y)).$$
(3.3)

Since τ is a separating set of the algebra \mathcal{B} , (3.3) implies that

$$d_n(ay) = ad_n(y) + \sum_{k=0}^{n-1} d_{n-k}(a)d_k(y) = \sum_{k=0}^n d_{n-k}(a)d_k(y).$$
(3.4)

If $a, b \in \mathcal{A}$ and $y \in \tau$, by (3.4) we have that

$$d_n(bay) = \sum_{k=0}^n d_{n-k}(b)d_k(ay) = \sum_{k=0}^n d_{n-k}(b)\sum_{i=0}^k d_{k-i}(a)d_i(y)$$
(3.5)
= $\left(\sum_{k=0}^n d_{n-k}(b)d_k(a)\right)y + \sum_{k=1}^n \sum_{i=0}^{n-k} d_{n-k-i}(b)d_i(a)d_k(y)$

on the other hand

$$d_n(bay) = \sum_{k=0}^n d_{n-k}(ba)d_k(y) = d_n(ba)y + \sum_{k=1}^n d_{n-k}(b)\sum_{i=0}^k d_{k-i}(a)d_i(y).$$
(3.6)

Since τ is a separating set, by (3.5) and (3.6) it follows that

$$d_n(ba) = \sum_{k=0}^n d_{n-k}(b)d_k(a).$$

Therefore $\{d_n\}_{n=0}^j$ is a higher derivation.

Corollary 3.2. Let $\{I_{\gamma} : \gamma \in \Gamma\}$ is a collection of two-sided ideals in \mathcal{A} such that

- (i) \mathcal{A}/I_{γ} is generated by its idempotents,
- (*ii*) $\cap_{\gamma \in \Gamma} = 0.$

If $\{d_n\}_{n=0}^j$ is family of linear mappings from \mathcal{A} into an algebra \mathcal{B} satisfying the condition (*) and $d_n(I_\gamma) \subseteq I_\gamma$, for each n. Then $\{d_n\}_{n=0}^j$ is a higher derivation.

Proof. For any n and each γ in Γ and, d_n induces a linear mapping d_n^{γ} on \mathcal{A}/I_{γ} satisfying the condition (*). By Theorem 3.1 and assumptions it follows that $\{d_n^{\gamma}\}$ is a higher derivation. Therefore for any $a, b \in \mathcal{A}$ we have that $d_n(ab) - \sum_{k=0}^n d_{n-k}(a)d_k(b) \in I_{\gamma}$, for each $\gamma \in \Gamma$. By (ii), it follows that $d_n(ab) = \sum_{k=0}^n d_{n-k}(a)d_k(b)$.

Remark 3.3. Let \mathcal{A} , \mathcal{B} and τ be as in Theorem 3.1 and let $\{d_n\}_{n=0}^j$ be a local higher derivation from \mathcal{A} into \mathcal{B} . Then $\{d_n\}_{n=0}^j$ satisfies in condition (*), in fact [13, Theorem 2.7] implies that d_1 is a derivation. Suppose j = 2 and p, q are idempotents in \mathcal{A} and $a \in \mathcal{A}$. Then there exists a higher derivation $\{D_n^{paq}\}_{n=0}^2$ from \mathcal{A} into \mathcal{B} such that $D_0^{paq} = d_0$ and $d_n(paq) = D_n^{paq}(paq)$ $(1 \le n \le 2)$. In fact $D_1^{paq} = d_1$, because d_1 is a derivation. Hence we have

$$(1-p)(d_2(paq) - d_1(pa)d_1(q))(1-q) = (1-p)(D_2^{paq}(paq) - D_1(pa)D_1(q))(1-q)$$

= (1-p)(paD_2^{paq}(q) + D_2^{paq}(pa)q)(1-q)
= 0

by Lemma 2.1 the assertion proves.

With the help of Remark 3.3, the following theorem can be derived along the same argument in the proof of Theorem 3.1.

Theorem 3.4. Let τ be a separating set of the algebra \mathcal{B} . Suppose that τ is contained in the algebra generated by all idempotents in \mathcal{A} . If $\{d_n\}$ is a local higher derivation from \mathcal{A} into \mathcal{B} , then $\{d_n\}$ is a higher derivation.

In the following, we give some applications of Theorem 3.4.

Corollary 3.5. Let \mathcal{A} be an algebra and let \mathcal{B} be a unital algebra such that for every unital algebra \mathcal{C} , $\mathcal{C} \otimes \mathcal{B}$ is generated by it's idempotents. Then every local higher derivation from $\mathcal{A} \otimes \mathcal{B}$ into itself is a higher derivation. In particular for $2 \leq n$, every local higher derivation from the matrix algebra $M_n(\mathcal{A})$ into itself is a higher derivation.

Note that by [13, Proposition 2.2], $M_n(\mathcal{A})$ is generated by it's idempotents.

Corollary 3.6. If for any $a, b \in A$, there exists a unital subalgebra \mathcal{B} of \mathcal{A} containing a and b such that \mathcal{B} is isomorphic to a matrix algebra, then every local higher derivation from \mathcal{A} into itself is a higher derivation.

Now we consider the local higher derivations on a reflexive subalgebra in a factor von Neumann algebra. The proof of the following corollaries uses Theorem 3.1 and arguments similar to those in the proof of [13, Theorem 2.17, Theorem 2.18].

Corollary 3.7. Suppose that \mathcal{L} is a subspace lattice in a factor von Neumann algebra \mathcal{M} on H with $\bigcap \{L \in \mathcal{L} : 0 \subset L\} \neq 0$ and $\bigvee \{L \in \mathcal{L} : L \subset H\} \neq H$. If $\{d_n\}_{n=0}^j$ is a family of linear mappings from $\mathcal{M} \cap alg\mathcal{L}$ into \mathcal{M} satisfying the condition (*) (in particular, if $\{d_n\}_{n=0}^j$ is a local higher derivation), then $\{d_n\}_{n=0}^j$ is a higher derivation.

Corollary 3.8. Let \mathcal{N} be a nest in a factor von Neumann algebra \mathcal{M} on H. If $\{d_n\}_{n=0}^j$ is a family of linear mappings from $\mathcal{M} \cap alg\mathcal{N}$ into \mathcal{M} satisfying the condition (*) (in particular, if $\{d_n\}_{n=0}^j$ is a local higher derivation), then $\{d_n\}_{n=0}^j$ is a higher derivation.

Theorem 3.9. Suppose that \mathcal{A} is topologically generated by its idempotents. If $\{d_n\}_{n=0}^j$ is a family of continuous linear mappins from \mathcal{A} into a topological algebra \mathcal{B} satisfying the condition (*) (in particular, if $\{d_n\}_{n=0}^j$ is a local higher derivation), then $\{d_n\}_{n=0}^j$ is a higher derivation.

Proof. If $a = \sum_{i=1}^{m} \alpha_i \prod_{j=1}^{t_i} p_j^{(i)}$, $b = \sum_{s=0}^{l} \beta_s \prod_{k=1}^{u_s} q_k^{(s)}$, where $p_j^{(i)}$, $q_k^{(s)}$ are idempotents of \mathcal{A} and α_i , $\beta_s \in \mathbb{C}$, Lemma 2.2 implies that $d_n(ab) = \sum_{k=0}^{n} d_{n-k}(a)d_k(b)$. Since $\{d_n\}_{n=0}^{j}$ is continuous and \mathcal{A} is topologically generated by its idempotents, the result follows.

By [13, Proposition 2.3] and Theorem 3.9, it follows that

Corollary 3.10. Suppose that \mathcal{N} is a nest in a von Neumann algebra \mathcal{M} and $\mathcal{A} = \mathcal{M} \cap alg\mathcal{N}$. If $\{d_n\}_{n=0}^j$ is a w^* -continuous local higher derivation from \mathcal{A} into \mathcal{M} , then $\{d_n\}_{n=0}^j$ is a higher derivation.

Corollary 3.11. Let \mathcal{A} and \mathcal{B} be as in Theorem 3.1. Then $hder(\mathcal{A}, \mathcal{B})$ is reflexive.

Proof. Suppose that $\{d_n\}_{n=0}^{j}$ is a family of continuous linear mappings from \mathcal{A} into \mathcal{B} such that for each $x \in \mathcal{A}$ and $n \in \mathbb{N}$, $d_n(x) \in [hder(\mathcal{A}, \mathcal{B})x]$. Then there exists a sequence $\{\Delta_m^n\}$ (depending on x) in $hder(\mathcal{A})$ such that $\lim_{m\to\infty} \Delta_m^n(x) = d_n(x)$. Let p, q be idempotents of \mathcal{A} . For any $a \in \mathcal{A}$, take x = paq. It follows that

$$(1-p)\left(d_n(paq) - \sum_{k=1}^{n-1} d_{n-k}(pa)d_k(q)\right)(1-q) \\ = \lim_{m \to \infty} (1-p)\left(\Delta_m^n(paq) - \sum_{k=1}^{n-1} \Delta_m^{n-k}(pa)\Delta_m^k(q)\right)(1-q) = 0.$$

Lemma 2.1 and Theorem 3.1 imply that $\{d_n\}_{n=0}^j$ is a higher derivation, hence $hder(\mathcal{A}, \mathcal{B})$ is reflexive.

References

- H. Hasse, F.K. Schmidt, Noch eine Begrüdung der theorie der höheren differential quotienten in einem algebraischen funtionenkörper einer unbestimmeten, J. Reine Angew. Math. 177 (1937) 215–237.
- [2] S. Hejazian, T.L. Shatery, Automatic continuity of higher derivations on JB^{*}algebras, Bull. Iranian Math. Soc. 33 (1) (2007) 11–23.
- [3] S. Hejazian, T.L. Shatery, Higher derivations on Banach algebras, J. Anal. Appl. 6 (2008) 1–15.
- [4] S. Hejazian, T.L. Shateri, A characterization of higher derivations, to appear in Italian Journal of pure and applied mathematics.
- [5] N.P. Jewell, Continuity of module and higher derivations, Pacific J. Math. 68 (1977) 91–98.
- [6] K.W. Jun, Y.W. Lee, The image of a continuous strong higher derivation is contained in the radical, Bull. Korean Math. Soc. 33 (2) (1996) 229–232.
- [7] R. Crist, Local derivations on operator algebras, J. Func. Anal. 135 (1996) 72–92.
- [8] R. Crist, Local automorphisms, Proc. Amer. Math. Soc. 128 (1999) 1409– 1414.
- [9] D. Hadwin, J. LI, Local derivations and local automorphisms, J. Math. Anal. Appl. 290 (2004) 702–714.

- [10] B. Johnson, Local derivations on C*-algebras are derivations, Trans. Amer. Math. Soc. 353 (2001) 313–325.
- [11] R. Kadison, Local derivations, J. Algebra. 130 (1990) 494–509.
- [12] D. Larson, A. Sourour, Local derivations and local automorphisms, Proc. Sympos. Pure Math. 51 (1990) 187–194.
- [13] D. Hadwin, J. Li, Local derivations and local automorphisms on some algebras, J. Operator theory, 60 (1) (2008) 29–44.

(Received 21 May 2011) (Accepted 15 November 2011)

 $\mathbf{T}_{\mathrm{HAI}} \; \mathbf{J.} \; \mathbf{M}_{\mathrm{ATH.}} \; \mathrm{Online} \; @ \; \mathsf{http://thaijmath.in.cmu.ac.th}$