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1 Introduction

Let A and B be algebras. By as higher derivation of rank j (j might be ∞)
we mean a family of linear mappings {Dn}

j
n=0 from A into B such that

Dn(ab) =

n
∑

k=0

Dk(a)Dn−k(b), (a, b ∈ A, n = 0, 1, 2, ..., j).

It is obvious that for a higher derivation {Dn}
j
n=0, D0 is a homomorphism from A

to B and D1 is a D0-derivation, that is D1(ab) = D0(a)D1(b)+D1(a)D0(b) (a, b ∈
A). Note that B is a A-bimodule with module operations ax = D0(a)x, xa =
xD0(a) (a ∈ A, x ∈ B). A higher derivation {Dn} is said to be continuous if every
Dn is continuous. If B = A and D0 = idA, where idA is the identity map on
A, then D1 is a derivation and {Dn}

j
n=0 is called a strongly higher derivation. A

standard example of a higher derivation of rank j is {Dn

n! }
j
n=0 where D : A → A

is a derivation. Higher derivations were introduced by Hasse and Schmidt [1]
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and algebraists sometimes call them Hasse-Schmidt derivations. The reader may
find more about higher derivations in [2–6]. Let {dn}

j
n=0 be a family of linear

mappings from A into B for which d0 is a homomorphism, then {dn}
j
n=0 is called

a local higher derivation if for every a ∈ A there exists a higher derivation {Da
n}

j
n=0

from A into B such that Da
0 = d0 and dn(a) = Da

n(a) (n ≥ 1). In the context of
derivations, the relation between local derivations and derivations is widely studied
by Several authors [7–12]. Hadwin and Li [13] prove that every local derivation
from an algebra A that is generated by it’s idempotents, into any A-bimodule is
a derivation.

Now, let A and B be topological algebras, denote by hder(A,B) the set of
all continuous higher derivations from A into B. If A is a topological algebra we
say that A is topologically generated by its idempotents, if the subalgebra of A
generated by its idempotents is dense in A.

Let X and Y be complex Hausdorff topological linear spaces and let B(X ,Y)
be the space of continuous linear mappings from X into Y. We said that a subset
S of B(X ,Y) is reflexive if T ∈ S whenever T ∈ B(X ,Y) and Tx ∈ [Sx] for
any x ∈ X , where [·] is the topological closure. By a subspace lattice on X we
mean a collection L of closed subspaces of X containing (0) and X such that for
each family {Lα} of elements of L both

⋂

Lα and
∨

Lα belong to L, where
∨

denotes the closed linear span of {Lα}. If L is a subspace lattice, the algebra
of all operators on X that leave invariant each element of L is denoted by algL.
A totally ordered subspace lattice N is called a nest and the associated reflexive
algebra algN is called a nest algebra.

In Section 2 we prove some algebraic results for a family of linear mappings
which is needed in Section 3. In Section 3, we show that if a unital topological
algebra A is generated by its idempotents, then a local higher derivation {dn}
from A into a unital algebra B provided that d0 is a homomorphism from A to B,
is a higher derivation and hder(A,B) is reflexive. In particular for a unital algebra
A and any n ≥ 2, we have that every local higher derivation from Mn(A) into
itself is a higher derivation.

The results in Sections 2 and 3 are the same in [13, Section2], which are proved
for local derivations and here we prove them for local higher derivations.

2 Algebraic Results

In this section we assume that all algebras are unital. Recall that if A and B
are two algebras and d0 is a homomorphism from A into B, then B is a A-bimodule
with module operations a.x = d0(a)x, x.a = xd0(a) (a ∈ A, x ∈ B). To show our
main results, we need two lemmas.

Lemma 2.1. Let {dn}
j
n=0 be a family of linear mappings from an algebra A into

an algebra B such that for all n ∈ N, dn(1) = 0 and d0 is a homomorphism. Then
for each a ∈ A and any idempotents p, q ∈ A the following are equivalent.

(i) (1 − p)
(

dn(paq) −
∑n−1

k=1 dn−k(pa)dk(q)
)

(1 − q) = 0
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(ii) dn(paq) =
∑n−1

k=0

[

dn−k(pa) − pdn−k(a)
]

dk(q) + pdn(aq).

Proof. It is clear that (ii) implies (i). Now suppose that (i) is true. We denote
p⊥ = 1 − p, then we have

p

(

dn(paq) −
n−1
∑

k=1

dn−k(pa)dk(q)

)

q⊥ =

(

dn(paq) −
n−1
∑

k=1

dn−k(pa)dk(q)

)

q⊥. (2.1)

Also the left side equals to

p

(

dn((1 − p⊥)aq) −
n−1
∑

k=1

dn−k(1 − p⊥a)dk(q)

)

q⊥ (2.2)

= p

(

dn(aq) − dn(p⊥aq) +

n−1
∑

k=1

dn−k(p⊥adk(q) −
n−1
∑

k=1

dn−k(a)dk(q)

)

q⊥.

By (2.1) and (2.2), it follows that

p

(

dn(aq) −
n−1
∑

k=1

dn−k(a)dk(q)

)

q⊥ =

(

dn(paq) −
n−1
∑

k=1

dn−k(pa)dk(q)

)

q⊥. (2.3)

Hence by (2.3)

dn(paq) −
n−1
∑

k=1

[

dn−k(pa) − pdn−k(a)
]

dk(q) − pdn(aq)

=

(

dn(paq) −
n−1
∑

k=1

[

dn−k(pa) − pdn−k(a)
]

dk(q) − pdn(aq)

)

(q + q⊥)

=

(

dn(paq) −
n−1
∑

k=1

[

dn−k(pa) − pdn−k(a)
]

dk(q) − pdn(aq)

)

q

=

(

dn(pa(1 − q⊥)) −
n−1
∑

k=1

dn−k(pa)dk(1 − q⊥) + p

n−1
∑

k=1

dn−k(a)dk(q) − pdn(aq)

)

q

= dn(pa)q − dn(paq⊥)q +

n−1
∑

k=1

dn−k(pa)dk(q⊥)q

−
n−1
∑

k=1

dn−k(pa)dk(1)q + p
n−1
∑

k=1

dn−k(a)dk(q)q − pdn(aq)q

= dn(pa)q − pdn(aq⊥)q +
n−1
∑

k=1

dn−k(pa)dk(q⊥)q − pdn(aq)q

+ p

n−1
∑

k=1

dn−k(a)dk(q)q − pdn(aq)q

= dn(pa)q − pdn(a)q.
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This completes the proof.

Let A and B be algebras. Suppose {dn}
j
n=0 is a family of linear mappings

from an algebra A into an algebra B. We say that {dn}
j
n=0 satisfies the condition

(∗) if d0 is a homomorphism and

dn(paq) =

n−1
∑

k=0

[

dn−k(pa) − pdn−k(a)
]

dk(q) + pdn(aq) and dn(1) = 0 (n = 1, 2, ...)

for all idempotents p, q in A and a ∈ A.

Lemma 2.2. Suppose that {dn}
j
n=0 is a family of linear mappings from an alge-

bra A into an algebra B satisfying the condition (∗). Then for any idempotents
p1, ..., pl, q1, ..., qm in A and every a ∈ A

dn(p1 · · · plaq1 · · · qm) =

n−1
∑

k=0

[

dn−k(p1 · · · pla) − p1 · · · pldn−k(a)
]

dk(q1 · · · qm)

+ p1 · · · pldn(aq1 · · · qm). (2.4)

Proof. First we show that

dn(p1 · · · plaq) =

n−1
∑

k=0

[

dn−k(p1 · · · pla) − p1 · · · pldn−k(a)
]

dk(q) + p1 · · · pldn(aq).

(2.5)

If l = 1 the condition (∗) implies the result. Suppose (2.5) holds for l = j. If
l = j + 1, by the condition (∗) it follows that

dn(p1 · · · pj+1aq)

=
n−1
∑

k=0

[

dn−k(p1 · · · pj+1a) − p1dn−k(p2 · · · pj+1a)
]

dk(q) + p1dn(p2 · · · pj+1aq)

=

n−1
∑

k=0

[

dn−k(p1 · · · pj+1a) − p1dn−k(p2 · · · pj+1a)
]

dk(q)

+ p1

(

n−1
∑

k=0

[

dn−k(p2 · · · pj+1a) − p2 · · · pj+1dn−k(a)
]

dk(q) − p2 · · · pj+1dn(aq)

)

=

n−1
∑

k=0

[

dn−k(p1 · · · pj+1a) − p1 · · · pj+1dn−k(a)
]

dk(q) + p1 · · · pj+1dn(aq).

Now we prove (2.4) is true. For m = 1, (2.5) implies (2.4). Now assume (2.4) for
m = j. If m = j +1, by the induction assumption, the condition (∗) and (2.5), we
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have

dn(p1 · · · plaq1 · · · qj+1)

=
n−1
∑

i=0

[

dn−i(p1 · · · plaq1 · · · qj) − p1 · · · pldn−i(aq1 · · · qj)
]

di(qj+1)

+ p1 · · · pldn(aq1 · · · qj+1)

=

n−1
∑

i=0

[

n−i−1
∑

k=0

(dn−i−k(p1 · · · pla)dk(q1 · · · qj) − p1 · · · pldn−i−k(a)dk(q1 · · · qj))

− p1 · · · pldn−i(aq1 · · · qj) + p1 · · · + pldn−i(aq1 · · · qj)
]

di(qj+1)

+ p1 · · · pldn(aq1 · · · qj+1)

=
[

n−1
∑

k=0

(

dn−k(p1 · · · pla) − p1 · · · pldn−k(a)
)

dk(q1 · · · qj)
]

qj+1

+
[

n−2
∑

k=0

(

dn−2−k(p1 · · · pla) − p1 · · · pldn−2−k(a)
)

dk(q1 · · · qj)
]

d1(qj+1)

+ · · · +
[

1
∑

k=0

(

d1(p1 · · · pla) − p1 · · · pldn−2(a)
)

d1(q1 · · · qj)
]

dn−2(qj+1)

+
[

d1(p1 · · · pla) − p1 · · · pld1(a)
]

(q1 · · · qj)dn−1(qj+1) + p1 · · · pldn(aq1 · · · qj+1)

=
(

dn(p1 · · · pla) − p1 · · · pldn(a)
)

d0(q1 · · · qj+1)

+
(

dn−2−k(p1 · · · pla) − p1 · · · pldn−2−k(a)
)

1
∑

k=0

d1−k(q1 · · · qj)dk(qj+1)

+ · · · +
(

d2(p1 · · · pla) − p1 · · · pld2(a)
)

n−2
∑

k=0

dn−2−k(q1 · · · qj)dk(qj+1)

+
(

d1(p1 · · · pla) − p1 · · · pld1(a)
)

n−1
∑

k=0

dn−1−k(q1 · · · qj)dk(qj+1)

+ p1 · · · pldn(aq1 · · · qj+1)

=

n−1
∑

k=0

[

dn−k(p1 · · · pla) − p1 · · · pldn−k(a)
]

d(q1 · · · qj+1) + p1 · · · pldn(aq1 · · · qj+1)

note that the last equality follows from the identity

dn−i(q1 · · · qj+1) =
n−i
∑

k=0

dn−i−k(q1 · · · qj)dk(qj+1) (0 ≤ i ≤ n)

and the result proves.
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3 Local Higher Derivations on Topological

Algebras

In this section we assume that all algebras are unital topological algebras.
Recall that an algebra A is called a topological algebra if A satisfies

(i) A is a topological vector space, and

(ii) with the product topology of A×A, the map f : (x, y) → xy is continuous.

Let M be an A-module and let τ be an ideal of A. We say that τ is a separating
set of M , if for every m, n ∈ M , mτ = {0} implies m = 0 and τn = {0} implies
n = 0.

The following theorem generalizes [13, Theorem 2.7] for higher derivations.

Theorem 3.1. Let τ be a separating set of the algebra B. Suppose that τ is
contained in the algebra generated by all idempotents in A. If {dn}

j
n=0 is a family

of linear mappings from A into B satisfying the condition (∗), then {dn}
j
n=0 is a

higher derivation.

Proof. Since τ is contained in the algebra generated by all idempotents in A, the
condition (∗) follows that for each x, y ∈ τ ,

dn(xy) =
n
∑

k=0

dn−k(x)dk(y) (n = 1, 2, ...). (3.1)

Since τ is an ideal of A, by (∗) for any a ∈ A we have

dn(xay) = dn

(

(xa)y
)

=

n
∑

k=0

dn−k(xa)dk(y) (3.2)

=

n−1
∑

k=0

[

dn−k(xa)dk(y) − xdn−k(a)
]

dk(y) + xdn(ay).

By (3.1) and (3.2), it follows that

xdn(ay) = xadn(y) +

n−1
∑

k=0

xdn−k(a)dk(y)x
(

adn(y) +

n−1
∑

k=0

dn−k(a)dk(y)
)

. (3.3)

Since τ is a separating set of the algebra B, (3.3) implies that

dn(ay) = adn(y) +

n−1
∑

k=0

dn−k(a)dk(y) =

n
∑

k=0

dn−k(a)dk(y). (3.4)
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If a, b ∈ A and y ∈ τ , by (3.4) we have that

dn(bay) =

n
∑

k=0

dn−k(b)dk(ay) =

n
∑

k=0

dn−k(b)

k
∑

i=0

dk−i(a)di(y) (3.5)

=

(

n
∑

k=0

dn−k(b)dk(a)

)

y +

n
∑

k=1

n−k
∑

i=0

dn−k−i(b)di(a)dk(y)

on the other hand

dn(bay) =

n
∑

k=0

dn−k(ba)dk(y) = dn(ba)y +

n
∑

k=1

dn−k(b)

k
∑

i=0

dk−i(a)di(y). (3.6)

Since τ is a separating set, by (3.5) and (3.6) it follows that

dn(ba) =
n
∑

k=0

dn−k(b)dk(a).

Therefore {dn}
j
n=0 is a higher derivation.

Corollary 3.2. Let {I γ : γ ∈ Γ} is a collection of two-sided ideals in A such
that

(i) A/Iγ is generated by its idempotents,

(ii) ∩γ∈Γ = 0.

If {dn}
j
n=0 is family of linear mappings from A into an algebra B satisfying the

condition (∗) and dn(Iγ) ⊆ Iγ , for each n. Then {dn}
j
n=0 is a higher derivation.

Proof. For any n and each γ in Γ and, dn induces a linear mapping dγ
n on A/Iγ

satisfying the condition (∗). By Theorem 3.1 and assumptions it follows that
{dγ

n} is a higher derivation. Therefore for any a, b ∈ A we have that dn(ab) −
∑n

k=0 dn−k(a)dk(b) ∈ Iγ , for each γ ∈ Γ. By (ii), it follows that dn(ab) =
∑n

k=0 dn−k(a)dk(b).

Remark 3.3. Let A, B and τ be as in Theorem 3.1 and let {dn}
j
n=0 be a local

higher derivation from A into B. Then {dn}
j
n=0 satisfies in condition (∗), in fact

[13, Theorem 2.7] implies that d1 is a derivation. Suppose j = 2 and p, q are
idempotents in A and a ∈ A. Then there exists a higher derivation {Dpaq

n }2
n=0

from A into B such that Dpaq
0 = d0 and dn(paq) = Dpaq

n (paq) (1 ≤ n ≤ 2). In fact
Dpaq

1 = d1, because d1 is a derivation. Hence we have

(1 − p)
(

d2(paq) − d1(pa)d1(q)
)

(1 − q) = (1 − p)
(

Dpaq
2 (paq) − D1(pa)D1(q)

)

(1 − q)

= (1 − p)
(

paDpaq
2 (q) + Dpaq

2 (pa)q
)

(1 − q)

= 0

by Lemma 2.1 the assertion proves.
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With the help of Remark 3.3, the following theorem can be derived along the
same argument in the proof of Theorem 3.1.

Theorem 3.4. Let τ be a separating set of the algebra B. Suppose that τ is
contained in the algebra generated by all idempotents in A. If {dn} is a local
higher derivation from A into B, then {dn} is a higher derivation.

In the following, we give some applications of Theorem 3.4.

Corollary 3.5. Let A be an algebra and let B be a unital algebra such that for
every unital algebra C, C ⊗ B is generated by it’s idempotents. Then every local
higher derivation from A ⊗ B into itself is a higher derivation. In particular for
2 ≤ n, every local higher derivation from the matrix algebra Mn(A) into itself is
a higher derivation.

Note that by [13, Proposition 2.2], Mn(A) is generated by it’s idempotents.

Corollary 3.6. If for any a, b ∈ A, there exists a unital subalgebra B of A con-
taining a and b such that B is isomorphic to a matrix algebra, then every local
higher derivation from A into itself is a higher derivation.

Now we consider the local higher derivations on a reflexive subalgebra in a
factor von Neumann algebra. The proof of the following corollaries uses Theorem
3.1 and arguments similar to those in the proof of [13, Theorem 2.17, Theorem
2.18].

Corollary 3.7. Suppose that L is a subspace lattice in a factor von Neumann
algebra M on H with

⋂

{L ∈ L : 0 ⊂ L} 6= 0 and
∨

{L ∈ L : L ⊂ H} 6= H.
If {dn}

j
n=0 is a family of linear mappings from M ∩ algL into M satisfying the

condition (∗) (in particular, if {dn}
j
n=0 is a local higher derivation), then {dn}

j
n=0

is a higher derivation.

Corollary 3.8. Let N be a nest in a factor von Neumann algebra M on H. If
{dn}

j
n=0 is a family of linear mappings from M ∩ algN into M satisfying the

condition (∗) (in particular, if {dn}
j
n=0 is a local higher derivation), then {dn}

j
n=0

is a higher derivation.

Theorem 3.9. Suppose that A is topologically generated by its idempotents. If
{dn}

j
n=0 is a family of continuous linear mappins from A into a topological al-

gebra B satisfying the condition (∗) (in particular, if {dn}
j
n=0 is a local higher

derivation), then {dn}
j
n=0 is a higher derivation.

Proof. If a =
∑m

i=1 αi

∏ti

j=1 p
(i)
j , b =

∑l

s=0 βs

∏us

k=1 q
(s)
k , where p

(i)
j , q

(s)
k are idem-

potents of A and αi, βs ∈ C, Lemma 2.2 implies that dn(ab) =
∑n

k=0 dn−k(a)dk(b).

Since {dn}
j
n=0 is continuous and A is topologically generated by its idempotents,

the result follows.

By [13, Proposition 2.3] and Theorem 3.9, it follows that
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Corollary 3.10. Suppose that N is a nest in a von Neumann algebra M and
A = M ∩ algN . If {dn}

j
n=0 is a w∗-continuous local higher derivation from A

into M, then {dn}
j
n=0 is a higher derivation.

Corollary 3.11. Let A and B be as in Theorem 3.1. Then hder(A,B) is reflexive.

Proof. Suppose that {dn}
j
n=0 is a family of continuous linear mappings from A into

B such that for each x ∈ A and n ∈ N, dn(x) ∈ [hder(A,B)x]. Then there exists a
sequence {∆n

m} (depending on x) in hder(A) such that limm→∞ ∆n
m(x) = dn(x).

Let p, q be idempotents of A. For any a ∈ A, take x = paq. It follows that

(1 − p)

(

dn(paq) −
n−1
∑

k=1

dn−k(pa)dk(q)

)

(1 − q)

= lim
m→∞

(1 − p)

(

∆n
m(paq) −

n−1
∑

k=1

∆n−k
m (pa)∆k

m(q)

)

(1 − q) = 0.

Lemma 2.1 and Theorem 3.1 imply that {dn}
j
n=0 is a higher derivation, hence

hder(A,B) is reflexive.
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