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1 Introduction

Interval arithmetic was first suggested by Dwyer [1] in 1951. Development of
interval arithmetic as a formal system and evidence of its value as a computational
device was provided by Moore [2] in 1959 and Moore and Yang [3] in 1962. Fur-
thermore, Moore and others [1, 4, 5, 6] have developed applications to differential
equations.

Chiao [7] introduced sequence of interval numbers and defined usual conver-
gence of sequences of interval number. Recently Sengoniil and Eryilmaz [8] intro-
duced and studied bounded and convergent sequence spaces of interval numbers
and showed that these spaces are complete metric space.

The idea of statistical convergence for ordinary sequences was introduced by
Fast [9] in 1951. Schoenberg [10] studied statistical convergence as a summability
method and listed some of elementary properties of statistical convergence. Both
of these authors noted that if bounded sequence is statistically convergent, then
it is Cesaro summable. Existing work on statistical convergence appears to have

Copyright © 2012 by the Mathematical Association of Thailand.
All rights reserved.



446 Thai J. Math. 10 (2012)/ A. Esi

been restricted to real or complex sequence, but several authors extended the idea
to apply to sequences of fuzzy numbers and also introduced and discussed the
concept of statistically sequences of fuzzy numbers.

2 Preliminaries

Let p = (pi) be a positive sequence of real numbers. If 0 < h = infy pr, < pr <
H = sup, pr < o0 and D = max (1,2H_1), then for all ax, b, € C for all k£ € N,
we have
|ak + bi|™ < D (la|™ + [be™) .

By a lacunary sequence 8 = (k.), r = 0,1,2,..., where k, = 0, we shall
mean an increasing sequence of non-negative with integers h, = k, — k,_1 — 00
as r — 00. The intervals determined by 6 are denoted by I, = (k,._1,k.] and

the ratio kfil will be denoted by ¢,. The space of lacunary strongly convergent

sequence Ny was defined by Freedman et al. [11] as follows:

Ny = {x—(xz) lim iZ|:1:l-—L|:O for some L}.
"0 Ty
i€l

We denote the set of all real valued closed intervals by IR. Any elements
of IR is called interval number and denoted by T = [x;,2,]. Let 2; and z, be
first and last points of T interval number, respectively. For 1,72 €IR, we have
T, = To & X1, =%2,,T1, =2, Ty + Ty = {I eR: Ty, + T <z < Ty, —|—$2T},
and if @ > 0, then o = {z € R: azy, <z < azy,} and if @ < 0, then oF =
{zeR: ar, <z <oz},

T1.T2 = {x € R: min{z1,.29,, 21,.22,,21,.22,,T1,.T2, } < x <
max {x1,.29,, T1,.T2,, 21, .Ta,, T1,.L2, } | -
The set of all interval numbers IR is a complete metric space defined by
d (1, T2) = max {|x1, — x2,[, |21, — 22, |} [2].

In the special case T; = [a,a] and To = [b, b], we obtain usual metric of R.

Let’s define transformation f from N to R by k — f (k) =T, T = (). Then
T = (T}) is called sequence of interval numbers. The Ty, is called k" term of
sequence T = (Ty). w’ denotes the set of all interval numbers with real terms and
the algebraic properties of w’ can be found in [8].

Now we give the definition of convergence of interval numbers:

Definition 2.1 ([7]). A sequence T = (T) of interval numbers is said to be

convergent to the interval number T, if for each € > 0 there exists a positive

integer k, such that d (Zx,T,) < € for all kK > k, and we denote it by limy Ty = T,.
Thus, limy Ty, = T, < limg 2k, = o, and limg x5, = o,

In this paper, we introduce and study the concepts of lacunary strongly con-
vergence and lacunary statistically convergence for interval numbers.
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3 Main Results

In this section we give some definition and prove the results of this paper.

Definition 3.1. Let 6 = (k) be a lacunary sequence and p = (py) be any sequence
of strictly positive real numbers. A sequence T = () of interval numbers is said
to be lacunary strongly convergent if there is a interval number ¥, such that

: 1 7, 7 )Pk
hgnh—r Z [d (%, To)]"* = 0.
kel,
In this case we write T, — T, (Ns) or NZ; —lim7, = 7T,. We denote with N§
the set of all lacunary strongly convergent sequences of interval numbers. In the
special case 6 = (27), we shall write N" instead of Ny.

Definition 3.2. Let 8 = (k,) be a lacunary sequence. A sequence T = (Tj) of
interval numbers is said to be lacunary statistically convergent to interval number
T, if for every € > 0

1
lim = [{k € I : d(Tk,T,) 2 e} = 0.

In this case we write Ty — T, (S9) or Sp — lim Ty, = T,. The set of all lacunary
statistically convergent sequences of interval number sequences is denoted by Sp.
In the special case § = (27), we shall write 3§ instead of 3.

Theorem 3.3. Let T = (Tx) and § = () be sequences of interval numbers.

(i) If Sp —limTy =T, and a € R, then 59 — lim aTy, = aT,.

(i1) If s9 — limTy =T, and 59 — lim7y, =7, then 59 — lim (T, + Y1) = To + Y-
Proof. (i) Let a € R. We have d (aZy, o) = || d (Tk, T,). For a given € > 0

{ke]rz d (Tn, To) > i}‘

1
— {k Ir: d(ax , Qo > =
I {k e (aTy, 0T,) > €} o]

1
Ry
Hence 59 — lim aT, = oT,.

(ii) Suppose that 59 — im Ty, = T, and 59 — limg, = 7,. We have
d(fk + Yk To +y0) <d (Ekvfo) + d(ylwyo) .

Therefore given € > 0, we have

1
k€ Ty 1 d (T + T, To +T,) 2 2]

IN

1
7 [k € I d (@5, To) + d (T, Fo) 2 €}

€

: {keIT: d(f;@,fo)2§}‘+h% {keIT: d(yk,yo)zg}‘.

Thus, 39 — lim (T, + J,) = To + T,- O

IN
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Theorem 3.4. Let 6 = (k,) be a lacunary sequence and T = (Tx) be a sequence
of interval numbers. Then

(i) Forliminf, g, > 1, then Ty, — To,(N") implies T — To(Np);
(ii) Forlimsup, g, < co, then Ty, — To(Np) implies Ty — To(N');

(i) If 1 < hHllIlfT ¢ < limsup, ¢, < oo, then T — To(N') if and only if
T — To(Np).

Proof. (i) Let T — To(N") and liminf, g, > 1, then there exists a § > 0 such
that ¢, > 1+ ¢ for sufficiently large . Then we write

ky kr—1
1 1 & 1
7 [d (Ekvxo)] * = h_ Z [d (Tkvfo)]pk - h_ [d (Ekvfo)]pk
" kel, " k=1 T k=1
k Kr—1
k 1 kr_1 1
=T = d(Tp, T,)]P* | — = d (T, T, )|P*
- (kr ;[ (fL'k,fL' )] ) h’r‘ k’r‘fl Pt [ (‘Tk?x )]
Since h, = k,—k,_1, we have kr > : 5 and 72— by - > 1. The terms o Zk 1 ld @k, T )]
and % Z;ll [d (Tk,T,)]"* both converge to O as r — co. Hence Ty, — To(Np).

(i) If lim Sup,. gy < 00, then there exists C > 0 such that ¢, < C for all r > 1.
Let T, — To(Np) and € > 0. There exists B > 0 such that for every j > i

A = hi 3 [d @0 T <.

J kel;

We can also find K > 0 such that A; < K for all j =1,2,3,.... Now let n be any
integer with k,_1 < n < k,,where r > B. Then

1 & 1 &
- " < d = _O Pk
nz xkvx =k [ (xkvx )]
k=1 k=1
1 1
= A [d (Ekvfo)]pk + k— Z [d (Ekvfo)]pk
1 ren T kel

bt Y A T

3
—

kel
k1 _ ko — Ky _ _
— d o Pk d o Pk
kkz[ @™ + Ry 2 (4@ 7o)
1 (S
ki — ki1 _
- - v - d " Pk
+ + krfl(ki_kifl) Z[ (:Ckax )]

kel;
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ky kz -k ki — ki kr — kr_1
A P A ek 3 It
o S

{supA } {supA }k — ki
_7>1 j=t krfl

+ eC.

IN

<K
krfl

Since ky_1 — 00 as n — oo, it follows that 1 37 | [d(Zy,T,)]"* — 0. Hence
Tr — To(NY).

(iii) Tt follows from (i) and (ii). O
Theorem 3.5. Let 6 = (k,) be a lacunary sequence and T = (Tx) be a sequence
of interval numbers. Then

(i) T, — To(Np) implies T, — To(36);
(ii) T = (T1) € M and Ty, — T, (S9) imply Tp, — To(Np);
(iii) If T = (Ty) € ™, then Ty, — To(Ny) and Ty, — T, (30);
where M = {T = (Tg) : supy, d (Tk, Tp) < 00}.
Proof. (i) Let ¢ > 0 and T, — To(Np). Then we write

GRS ST N R S T N

" kel " kel " kel
d(Ty,,To)>e d(Ty,,To)<e

Y
= =
=Y
=l
3
s
Q
=
3
kol
\V
=
m
]
ol

T kel T kel
AT To)2e A(Tp To) e
1
> . {k el : d(T,T,) >} min (ah,gH) )

Hence T, — T, (39).

(ii) Suppose that T = (Tx) € M and Ty, — T, (Sp). Since T = (Ty) € M, there
is a constant C' > 0 such that d (Ty,T,) < C. Given € > 0, we have

ESdEE)t = Y W@ m s S AT

" kel, kel, " kel

d(Ty,,To)>e d(Ty ,To)<e
1 1
Ly mmenemst Yoo
kel kel,.
d(Ty,,To)>e d(Ty, ,To)<e

< max (C",CH) hi {k el : d@kTo) > e}| +max (", ef).

Thus we obtain T, — Z,(Np).
(iii) Tt follows from (i) and (ii). O
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Theorem 3.6. Let 6 = (k) be a lacunary sequence and T = (Tx) be a sequence
of interval numbers. Then

(i) For liminf, ¢, > 1, then T, — T, (3) implies Ty, — To (Sg);
(i1) For limsup, g < 0o, then T — T, (39) implies T, — Tp (3);
(i) If 1 < liminf, ¢, < limsup,. ¢ < 0o, then Ty, — T, (3) if and only if T, —
T, (59).

Proof. (i) Suppose that liminf, ¢, > 1, then there exists a § > 0 such that ¢, >
1 + ¢ for sufficiently large r, which implies

hy )
s
kr — 1456

if Ty, — T, (3), then for every ¢ > 0 and for sufficiently large r, we have

v

1 1
= {k <k, :d(Tk,T,) > e} . {k €I, :d(Tk,T,) > e}

o 1
1446 h,

v

k€1, : d (T To) > e} .

Hence Tx, — T, (Sp).

(ii) If lim sup,. ¢, < oo, then there exists C' > 0 such that ¢, < C for all » > 1.
Let Ty, — T, (S9) and set A, = |{k € I,, : d(Tk,T») > €}|. Then there exists an
r, € N such that

% < ¢ for all r > r,. (3.1)

Now let N = max{A4,: 1 <r <r,} and choose n such that k,_1 < n < k,.
Then we have
1

1
b < s d (@, T0) 2 e} < [k < b d (@) 2 2}

r—1

1
= —{Ai+ At A HAp i+ T A
r—1
N 1 Alro+1) A,
< —1y [ hr ° hr_
o krflr * krfl { ot hroJrl + + hr
N 1 A,
< -— o e hr hr
o krflr + krfl (TSSPO hr) { ot + + }
ky — ky
< ; ° by (3.1
- krflr e krfl y( )
< kr—lro +&qr

IA
?‘
_|_
[}
Q

Thus we obtain T, — T, (3).
(iii) Tt follows from (i) and (ii). O
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