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Abstract : The main aim of this paper is to define and study of a new polynomial,
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1 Introduction and Preliminaries

Special functions, as a branch of mathematics are of utmost importance to
scientists and engineers in many areas of applications [1]. Hermite and Chebyshev
polynomials in [1] are among the most important special functions, with very
diverse applications to physics, engineering and mathematical physics ranging from
abstract number theory to problems of physics and engineering. Recently, the
Hermite matrix polynomials have been introduced and studied in a number of
papers [2–8]. In [9–17], extension to the matrix framework of the classical families
of Hermite-Hermite, Hermite, Laguerre, Chebyshev and Gegenbauer polynomials
have been proposed.
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Our main aim in this paper deals with the introduction and study of Her-
mite matrix polynomials taking advantage of those recently treated in [2, 11, 12].
The organization of this paper is as follows. In Section 2 some new properties
of two-index Hermite-Hermite matrix polynomials such as the three terms recur-
rence formula are established and deals with the two-index Hermite-Hermite ma-
trix polynomials series expansions of exp (xA), cos (xA), sin (xA) cosh (xA) and
sinh (xA) of an arbitrary matrix as well as with theirs finite series truncation.
Finally, we study the case relevant to results are applied to certain differential
equation in terms of Hermite-Hermite matrix polynomials.

If D0 is the complex plane cut along the negative real axis and log(z) denotes

the principal logarithm of z, then z
1

2 represents exp(1
2 log(z)). If A is a matrix in

CN×N , its two-norm denoted by ||A||2 is defined by

||A||2 =
||Ax||2
||x||2

,

where for a vector y in CN , ||y||2 denotes the Euclidean norm of y, ||y||2 = (yT y)
1

2 .
The set of all eigenvalues of A is denoted by σ(A). If f(z) and g(z) are holomorphic
functions of the complex variable z, which are defined in an open set Ω of the
complex plane, and if A is a matrix in CN×N such that σ(A) ⊂ Ω, then the matrix
functional calculus [18] yields that

f(A)g(A) = g(A)f(A). (1.1)

If A is a matrix with σ(A) ⊂ D0, then A
1

2 =
√

A = exp(1
2 log(A)) denotes the

image by z
1

2 =
√

z = exp(1
2 log(z)) of the matrix functional calculus acting on the

matrix A. We say that A is a positive stable matrix [9, 5, 7] if

Re(z) > 0 for all z ∈ σ(A). (1.2)

If A(k, n) and B(k, n) are matrices on C
N×N for n ≥ 0, k ≥ 0, it follows in an

analogous way to the proof of Lemma 11 of [1] that

∞∑

n=0

∞∑

k=0

A(k, n) =

∞∑

n=0

[ n

m
]∑

k=0

A(k, n − mk),

∞∑

n=0

∞∑

k=0

B(k, n) =

∞∑

n=0

n∑

k=0

B(k, n − k)

(1.3)
for m is a positive integer, similarly to (1.3), we can write

∞∑

n=0

[ n

m
]∑

k=0

A(k, n) =
∞∑

n=0

∞∑

k=0

A(k, n + mk),
∞∑

n=0

n∑

k=0

B(k, n) =
∞∑

n=0

∞∑

k=0

B(k, n + k).

(1.4)

1.1 Extension of the Hermite Matrix Polynomials

One of the most direct ways of exploring generalized classes of Hermite ma-
trix polynomials is to start from modified forms of the ordinary Hermite matrix
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polynomials generating matrix function. We consider therefore the generalized
Hermite matrix polynomials Hn,m(x, A) defined a two-index by the generating
matrix function

∞∑

n=0

tn

n!
Hn,m(x, A) = exp

(
xt
√

mA − tmI

)
(1.5)

with m being a positive integer. The matrix polynomials Hn,m(x, A) are explicitly
provided by

Hn,m(x, A) = n!

[ n

m
]∑

k=0

(−1)k

k!(n − mk)!

(
x
√

mA
)n−mk

, n ≥ 0. (1.6)

It is clear that

H−1,m(x, A) = 0, H0,m(x, A) = I, H1,m(x, A) = x
√

mA.

which reduces to the ordinary case for m = 2 in [3, 4, 7]. Their recurrence prop-
erties can be derived either from (1.5) or from (1.6). It is indeed easy to prove
that

d

dx
Hn,m(x, A) = n

√
mAHn−1,m(x, A),

Hn+1,m(x, A) =

[
x
√

mA − m
dm−1

dxm−1

(√
mA

)1−m
]
Hn,m(x, A).

(1.7)

The matrix differential equation satisfied by Hn,m(x, A) can be straightforwardly
deduced by introducing the shift operators

P̂ =
d

dx

(√
mA

)
−1

, M̂ = x
√

mA − m
dm−1

dxm−1

(√
mA

)1−m

(1.8)

which act on Hn,m(x, A) according to the rules

P̂Hn,m(x, A) = nHn−1,m(x, A), M̂Hn,m(x, A) = Hn+1,m(x, A). (1.9)

Using the identity
M̂P̂Hn,m(x, A) = nHn,m(x, A) (1.10)

holds using the explicit definition of M̂ and P̂ given by (1.10), we find that
Hn,m(x, A) satisfies the following ordinary matrix differential equation of mth

order
[

dm

dxm
I − x

m

d

dx

(√
mA

)m

+
n

m

(√
mA

)m
]
Hn,m(x, A) = 0. (1.11)

We consider the operational definition of Hermite matrix polynomials [2] in the
form

Hn,m(x, A) = exp

(
− dm

dxm

(√
mA

)
−m

)(
x
√

mA
)n

. (1.12)
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Our aim is to prove some known properties as well as new expansions formulae
related to these two-index Hermite-Hermite matrix polynomials. In the following,
we will apply the above results to Hermite matrix polynomials and we will see
that the results, summarized in this section, can be exploited to state quite general
results.

2 Definition of Two-index Hermite-Hermite

Matrix Polynomials

Let A be a matrix in CN×N satisfying the condition (1.2). The two-index
Hermite-Hermite matrix polynomials are defined by the series

HHn,m(x, A) = n!

[ n

m
]∑

k=0

(−1)k
(√

mA
)n−mk

k!(n − mk)!
Hn−mk,m(x, A). (2.1)

Using (1.4), (1.5) and (2.1), we arrange the series in the form

∞∑

n=0

tn

n!
HHn,m(x, A) =

∞∑

n=0

[ n

m
]∑

k=0

(−1)k
(√

mA
)n−mk

Hn−mk,m(x, A)

k!(n − mk)!
tn

=

∞∑

n=0

∞∑

k=0

(−1)k
(√

mA
)n

Hn,m(x, A)

k!n!
tn+mk

=
∞∑

n=0

(√
mA

)n

n!
tnHn,m(x, A)

∞∑

k=0

(−1)k

k!
tmkI

= exp

(
xt

(√
mA

)2

−
(
t
√

mA
)m

)
exp

(
− tmI

)

= exp

(
xt

(√
mA

)2

− tm
((√

mA
)m

+ I
))

.

(2.2)

We obtain an explicit representation for the two-index Hermite-Hermite matrix
polynomials by the generating matrix function in the form

F (x, t, A) =
∞∑

n=0

HHn,m(x, A)tn

n!

= exp

(
xt

(√
mA

)2

− tm
((√

mA
)m

+ I
) )

; |t| < ∞
(2.3)

where F (x, t, A) regarded as a function of the complex variable t is an entire matrix,
therefore has the Taylor series about t = 0 and the series obtained converges for
all values of x and t.
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2.1 Matrix Recurrence Relations

Some matrix recurrence relations will be established for the two-index Hermite
matrix polynomials. First, we obtain

Theorem 2.1. Let A be a matrix in CN×N satisfying (1.2). The two-index
Hermite-Hermite matrix polynomials HHm,n(x, A) satisfy the relations

dr

dxr HHn,m(x, A) =

(√
mA

)2r

n!

(n − r)!
HHn−r,m(x, A), 0 ≤ r ≤ n. (2.4)

Proof. Differentiating the identity (2.3) with respect to x yields

∞∑

n=0

tn

n!

d

dx
HHn,m(x, A) = t

(√
mA

)2

exp

(
xt

(√
mA

)2

− tm
((√

mA
)m

+ I
))

.

(2.5)
From (2.5) and (2.3), we have

∞∑

n=0

1

n!

d

dx
HHn,m(x, A)tn =

(√
mA

)2 ∞∑

n=0

1

n!
HHn,m(x, A)tn+1.

Hence, identifying the coefficients at tn, we obtain

d

dx
HHn,m(x, A) = n

(√
mA

)2

HHn−1,m(x, A), n ≥ 1. (2.6)

Iteration (2.6) for 0 ≤ r ≤ n implies (2.4). Therefore, the expression (2.4) is
established and the proof of Theorem 2.1 is completed.

The above three-terms recurrence relation will be used in the following
theorem.

Theorem 2.2. Let A be a positive stable matrix in CN×N satisfying the condition
(1.2). Then we have

HHn,m(x, A) =x
(√

mA
)2

HHn−1,m(x, A)

− m (n − 1)!

(n − m)!

((√
mA

)m

+ I
)

HHn−m,m(x, A), n ≥ m.

(2.7)

Proof. Differentiating (2.3) with respect to x and t, we find respectively

∂

∂x
F (x, t, A) = t

(√
mA

)2

exp

(
xt

(√
mA

)2

− tm
((√

mA
)m

+ I
) )

=

∞∑

n=0

1

n!

d

dx
HHn,m(x, A)tn
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and

∂

∂t
F (x, t, A) =

(
x

(√
mA

)2

− mtm−1
((√

mA
)m

+ I
))

× exp

(
xt

(√
mA

)2

− tm
((√

mA
)m

+ I
) )

=

∞∑

n=1

1

(n − 1)!
HHn,m(x, A)tn−1.

Therefore, F (x, t, A) satisfies the partial matrix differential equation

x
(√

mA
)2

− mtm−1
((√

mA
)m

+ I)
) ∂F

∂x
− t

(√
mA

)2 ∂F

∂t
= 0

which, by virtue of (2.3), becomes

(√
mA

)2 ∞∑

n=0

n

n!
HHn,m(x, A)tn

= x
(√

mA
)2 ∞∑

n=0

1

n!

d

dx
HHn,m(x, A)tn

− m
((√

mA
)m

+ I
) ∞∑

n=0

d

dx

1

n!
HHn,m(x, A)tn+m−1.

Since x d
dx HH1,m(x, A) = HH1,m(x, A), it follows that

n
(√

mA
)2

HHn,m(x, A) = x
(√

mA
)2 d

dx
HHn,m(x, A)

−
m n!

((√
mA

)m

+ I
)

(n − m + 1)!

d

dx
HHn−m+1,m(x, A).

(2.8)

Using (2.6) and (2.8), we get (2.7). The proof of Theorem 2.2 is completed.

The above recurrence properties can be derived either from (2.1) or from (2.2).
It is easy to prove that

d

dx
HHn,m(x, A) = n

(√
mA

)2

HHn−1,m(x, A) = mnA HHn−1,m(x, A),

HHm,n+1(x, A) =

[
mxA − m

dm−1

dxm−1

((√
mA

)m

+ I
)

(mA)1−m

]
HHn,m(x, A).

(2.9)

The matrix differential equation satisfied by HHn,m(x, A) can be straightforwardly
inferred by introducing the shift operators

P̃ =
d

dx
(mA)−1, M̃ = mxA − m

dm−1

dxm−1
((
√

mA)m + I)(mA)m−1 (2.10)
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which act on HHn,m(x, A) according to the rules

P̃ HHn,m(x, A) = n HHn−1,m(x, A), M̃ HHn,m(x, A) =H Hn+1,m(x, A). (2.11)

Using the identity
M̃P̃ HHn,m(x, A) = n HHn,m(x, A) (2.12)

from (2.12), we find that HHn,m(x, A) satisfies the following ordinary matrix dif-
ferential equation of the mth order

[
m

dm

dxm

((√
mA

)m

+ I
)
− x

d

dx
(mA)m + n(mA)m

]
HHn,m(x, A) = 0. (2.13)

In the next result, the two-index Hermite-Hermite matrix polynomials appear as
finite series solutions of the mth order order matrix differential equation.

Corollary 2.3. Let A be a matrix in CN×N satisfying (1.2). The two-index
Hermite-Hermite matrix polynomials are solutions of the matrix differential equa-
tion

[
m

dm

dxm

((√
mA

)m

+ I
)
− x

d

dx
(mA)m + n(mA)m

]
HHn,m(x, A) = 0, n ≥ 0.

(2.14)

Proof. Replacing n by n − m + 1 in (2.6) gives

d

dx
HHn−m+1,m(x, A)) = (n − m + 1)(mA) HHn−m,m(x, A). (2.15)

Substituting from (2.15) into (2.4) yields

dm

dxm HHn,m(x, A) =
n!

(n − m)!
(mA)m

HHn−m,m(x, A)

=
n!

(n − m + 1)!
(mA)m−1 d

dx
HHn−m+1,m(x, A).

(2.16)

From (2.7), (2.15) and (2.16) we obtain (2.14). Thus the proof of Corollary 2.3 is
completed.

2.2 Expansion of Two-index Hermite-Hermite Matrix

Polynomials

Now, we can use the expansion of two-index Hermite-Hermite matrix polyno-
mials together with their properties to prove the following result.

Theorem 2.4. Let A be a positive stable matrix in C
N×N satisfying (1.2). Then,

we have

(mxA)n = n!

[ n

m
]∑

k=0

((√
mA

)m

+ I
)k

k!(n − mk)!
HHn−mk,m(x, A), −∞ < x < ∞. (2.17)
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Proof. By (1.3) and (2.2) we can write

exp
(
mxtA

)
=

∞∑

n=0

(mxA)n

n!
tn =

∞∑

n=0

∞∑

k=0

((√
mA

)m

+ I
)k

HHn,m(x, A)

n!k!
tn+mk

=

∞∑

n=0

[ n

m
]∑

k=0

((√
mA

)m

+ I
)k

HHn−mk,m(x, A)

k!(n − mk)!
tn.

(2.18)

Expanding the left-hand side of (2.18) into powers of t and identifying the co-
efficients of tn on both sides gives (2.17). Therefore, the expression (2.17) is
established and the proof of Theorem 2.4 is completed.

2.3 Two-index Hermite-Hermite Matrix Polynomials Series

Expansions

It is well-known that the matrix exponential plays an important role in many
different fields. Using two-index Hermite-Hermite matrix polynomial series we
propose new expansions of the matrices exp(xB), sin(xB), cos(xB), cosh(xB) and
sinh(xB) for matrices satisfying the spectral property

|Re(x)| > |Im(x)| for all x ∈ σ(B). (2.19)

Theorem 2.5. Let B be a matrix in CN×N satisfying the condition (2.19). Then

exp
(
xB

)
= exp

((√
B

)m

+ I
) ∞∑

n=0

1

n!
HHn,m

(
x,

1

m
B

)
,−∞ < x < ∞, (2.20)

cos(xB) = exp
(
(−1)

m

2

((√
B

)m

+ I
)) ∞∑

n=0

(−1)n

(2n)!
HH2n,m

(
x,

1

m
B

)
,−∞ < x < ∞,

(2.21)

sin(xB) = exp
(
(−1)

m

2

((√
B

)m

+ I
)) ∞∑

n=0

(−1)n

(2n + 1)!
HH2n+1,m

(
x,

1

m
B

)
,

(2.22)
−∞ < x < ∞,

cosh(xB) = exp
((√

B
)m

+ I
) ∞∑

n=0

1

(2n)!
HH2n,m

(
x,

1

m
B

)
,−∞ < x < ∞

(2.23)
and

sinh(xB) = exp
((√

B
)m

+ I
) ∞∑

n=0

1

(2n + 1)!
HH2n+1,m

(
x,

1

m
B

)
,−∞ < x < ∞.

(2.24)
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Proof. Let A = 1
m

B. By the spectral mapping theorem [3, 4, 6, 18] and (2.19), it
follows that

σ(A) =

{
b

m
; b ∈ σ(B)

}
, Re

(
b

m

)
=

1

m
{Re(b) − Im(b)} > 0, b ∈ σ(B). (2.25)

Thus A is a positive stable matrix and taking t = 1 in (2.2), B = mA gives

exp

(
xB −

((√
B

)m

+ I
))

=

∞∑

n=0

1

n!
HHn,m

(
x,

1

m
B

)
. (2.26)

Therefore, (2.20) follows.
Considering (2.17) for the positive stable matrix A = 1

m
B, we obtain that

(xB)2n = (2n)!

[ 2n

m
]∑

k=0

((√
B

)m

+ I
)k

k!(2n − mk)!
HH2n−mk,m

(
x,

1

m
B

)
.

Taking into account the series expansion of cos(xB) and (1.4), we can write

cos(xB) =
∞∑

n=0

(−1)n

(2n)!
(xB)2n

=

∞∑

n=0

[ 2n

m
]∑

k=0

(−1)n
((√

B
)m

+ I
)k

k!(2n − mk)!
HH2n−mk,m

(
x,

1

m
B

)

=

∞∑

n=0

∞∑

k=0

(−1)n+ mk

2

((√
B

)m

+ I
)k

k!(2n)!
HH2n,m

(
x,

1

m
B

)

=

∞∑

k=0

(−1)
mk

2

((√
B

)m

+ I
)k

k!

∞∑

n=0

(−1)n

(2n)!
HH2n,m

(
x,

1

m
B

)

= exp

(
(−1)

mk

2

((√
B

)m

+ I
)) ∞∑

n=0

(−1)n

(2n)!
HH2n,m

(
x,

1

m
B

)
.

Therefore, (2.21) follows. By similar arguments we can prove the relations (2.22),
(2.23) and (2.24). Moreover, the convergence of the matrix series appearing
in (2.20)-(2.23) and (2.24) to the respective matrix function exp(xB), sin(xB),
cos(xB), sinh(xB) and cosh(xB) is uniform in any bounded interval of the real
axis. Therefore, the result is established.

Remark 2.6. The series developments given by (2.20)-(2.24) have one important
advantage as compared to the Taylor series, from the computational point of view.
In fact, the advantage follows from the fact that it is not necessary to compute the
powers Bn of the matrix B, as well as from the fact that using relationship (2.7),
the two-index Hermite-Hermite matrix polynomials can be computed recurrently in
terms of HH0,m(x, 1

m
B) = I and HH1,m(x, 1

m
B) = xB.
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In the next theorem we obtain another representation for the two-index Hermite-
Hermite matrix polynomials.

Theorem 2.7. Suppose that A is a matrix in CN×N satisfying (1.2). Then the
two-index Hermite-Hermite matrix polynomials have the representation

HHn,m(x, A) = exp

(
− dm

dxm
(mA)−m

) (√
mA

)n

Hn,m(x, A). (2.27)

Proof. It is clear by (1.7) and (2.1) that

exp

(
− dm

dxm
(mA)−m

) (√
mA

)n

Hn,m(x, A)

=

∞∑

n=0

(−1)k

k!

dmk

dxmk
(mA)−mk

(√
mA

)n

Hn,m(x, A)

= n!
∞∑

k=0

(−1)k
(√

mA
)
−mk

k!(n − mk)!

(√
mA

)n

Hn−mk,m(x, A)

= n!

[ n

m
]∑

k=0

(−1)k
(√

mA
)n−mk

k!(n − mk)!
Hn−mk,m(x, A) = HHn,m(x, A).

Therefore, the result is established.

The use of the inverse of (2.27) allows to conclude that

Hn,m(x, A) = exp

(
dm

dxm
(mA)−m

) (√
mA

)
−n

HHn,m(x, A). (2.28)

Using (2.9) and substituting for n the values 0, 1, ..., n− 1, we get

HHn,m(x, A) =

[
mxA − m

dm−1

dxm−1

((√
mA

)m

+ I
)

(mA)m−1

]n

HH0,m(x, A).

(2.29)
The two-index Hermite-Hermite matrix polynomials are a particular case of

HHn,m(x, A), accordingly, HHn,m(x, A) =HHn,2(x, A) in [14]. These last identi-
ties indicate that the method described in this paper can go beyond the specific
problem addressed here and can be exploited in a wider context.
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