Thai Journal of Mathematics Volume 10 (2012) Number 2 : 415–421

http://thaijmath.in.cmu.ac.th ISSN 1686-0209

Notes on the Spectrum of Lower Triangular Double-Band Matrices

Ali M. Akhmedov and Saad R. El-Shabrawy

Faculty of Mechanics and Mathematics, Baku State University Z. Khalilov Str., 23, AZ 1148, Baku, Azerbaijan e-mail: akhmedovali@rambler.ru (A.M. Akhmedov) srshabrawy@yahoo.com (S.R. El-Shabrawy)

Abstract : In the paper by Srivastava and Kumar [P.D. Srivastava, S. Kumar, Thai J. Math. 8 (2) (2010) 221–233], the authors have introduced the lower triangular double-band matrix Δ_v as an operator on the sequence space l_1 and studied the spectrum and fine spectrum of this operator over l_1 . The operator Δ_v on l_1 is defined by $\Delta_v x = (v_k x_k - v_{k-1} x_{k-1})_{k=0}^{\infty}$ with $x_{-1} = 0$, where $x = (x_k) \in l_1$ and (v_k) is either constant or strictly decreasing sequence of positive real numbers satisfying certain conditions. In this paper we give notes on the point spectrum and the residual spectrum of the operator Δ_v over the space l_1 in the case when (v_k) is a strictly decreasing sequence of positive real numbers.

Keywords : Spectrum of an operator; Generalized difference operator; Sequence spaces.

2010 Mathematics Subject Classification : 47A10; 47B37.

1 Introduction, Preliminaries and Notation

Let X and Y be Banach spaces and $T: X \to Y$ be a bounded linear operator. By R(T), we denote the range of T, i.e.,

 $R(T) = \{ y \in Y : y = Tx, \ x \in X \}.$

By B(X), we denote the set of all bounded linear operators on X into itself. If $T \in B(X)$, then the adjoint T^* of T is a bounded linear operator on the dual X^*

Copyright 2012 by the Mathematical Association of Thailand. All rights reserved.

of X defined by $(T^*f)(x) = f(Tx)$ for all $f \in X^*$ and $x \in X$.

We shall need some basic concepts in spectral theory which are given as follows (see [1, pp. 370-371]). Let $X \neq \{\theta\}$ be a complex normed space and $T: D(T) \to X$ be a linear operator with domain $D(T) \subseteq X$. With T we associate the operator

$$T_{\lambda} = T - \lambda I, \tag{1.1}$$

where λ is a complex number and I is the identity operator on D(T). If T_{λ} has an inverse, which is linear, we denote it by T_{λ}^{-1} , that is

$$T_{\lambda}^{-1} = (T - \lambda I)^{-1}, \tag{1.2}$$

and call it the resolvent operator of T. A regular value λ of T is a complex number such that

(R1) T_{λ}^{-1} exists,

(R2) T_{λ}^{-1} is bounded,

(R3) T_{λ}^{-1} is defined on a set which is dense in X.

The resolvent set of T, denoted by $\rho(T, X)$, is the set of all regular values λ of T. Its complement $\sigma(T, X) = \mathbb{C} \setminus \rho(T, X)$ in the complex plane \mathbb{C} is called the *spectrum* of T. Furthermore, the spectrum $\sigma(T, X)$ is partitioned into three disjoint sets as follows:

The point (discrete) spectrum $\sigma_p(T, X)$ is the set of all $\lambda \in \mathbb{C}$ such that T_{λ}^{-1} does not exist. Any such $\lambda \in \sigma_p(T, X)$ is called an *eigenvalue* of T.

The continuous spectrum $\sigma_c(T, X)$ is the set of all $\lambda \in \mathbb{C}$ such that T_{λ}^{-1} exists and satisfies (R3) but not (R2), that is, T_{λ}^{-1} is unbounded.

The residual spectrum $\sigma_r(T, X)$ is the set of all $\lambda \in \mathbb{C}$ such that T_{λ}^{-1} exists (and may be bounded or not) but does not satisfy (R3), that is, the domain of T_{λ}^{-1} is not dense in X.

By w, we shall denote the space of all real or complex valued sequences. Any vector subspace of w is called a *sequence space*. We write l_1 for the space of all absolutely summable sequences, i.e.,

$$l_1 = \left\{ x = (x_k) : \sum_{k=0}^{\infty} |x_k| < \infty \right\}.$$

Also, we write l_{∞} for the space of all bounded sequences. It is well-known that the dual space l_1^* of l_1 is isomorphic to the space l_{∞} .

Let λ and μ be two sequence spaces and $A = (a_{nk})$ be an infinite matrix of real or complex numbers a_{nk} , where $n, k \in \mathbb{N} = \{0, 1, 2, ...\}$. Then, we

say that A defines a matrix mapping from λ into μ , and we denote it by $A : \lambda \to \mu$, if for every sequence $x = (x_k) \in \lambda$, the sequence $Ax = \{(Ax)_n\}$, the A-transform of x, is in μ , where

$$(Ax)_n = \sum_k a_{nk} x_k, \quad (n \in \mathbb{N}).$$
(1.3)

For simplicity in notation, here and in what follows, the summation without limits runs from 0 to ∞ . By (λ, μ) , we denote the class of all matrices Asuch that $A : \lambda \to \mu$. Thus, $A \in (\lambda, \mu)$ if and only if the series on the right side of (1.3) converges for each $n \in \mathbb{N}$ and every $x \in \lambda$, and we have $Ax = \{(Ax)_n\}_{n \in \mathbb{N}} \in \mu$ for all $x \in \lambda$. We use the convention that any term with negative subscript is equal to naught.

Now, we may give:

Lemma 1.1 ([2, p. 59]). T has a dense range if and only if T^* is one to one.

The generalized difference operator Δ_v on the space l_1 has been introduced by Srivastava and Kumar [3]. The operator Δ_v on the space l_1 is defined by

$$\Delta_v x = \Delta_v(x_k) = (v_k x_k - v_{k-1} x_{k-1})_{k=0}^{\infty} \text{ with } x_{-1} = 0,$$

where $x = (x_k) \in l_1$ and (v_k) is either constant or strictly decreasing sequence of positive real numbers satisfying

$$\lim_{k \to \infty} v_k = L > 0 \text{ and} \tag{1.4}$$

$$\sup_{k} (v_k) \le 2L. \tag{1.5}$$

The operator Δ_v can be represented by the matrix

$$\Delta_v = \begin{pmatrix} v_0 & 0 & 0 & \cdots \\ -v_0 & v_1 & 0 & \cdots \\ 0 & -v_1 & v_2 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}.$$

Srivastava and Kumar [3] studied the spectrum and fine spectrum of the operator Δ_v over the sequence space l_1 . We summarize the main results concerning the spectrum of the generalized difference operator Δ_v on the space l_1 as stated in [3].

Theorem 1.2 ([3, Theorem 3.1]). The operator $\Delta_v : l_1 \to l_1$ is a bounded linear operator and

$$\|\Delta_v\|_{l_1} = 2\sup_k (v_k).$$

Theorem 1.3 ([3, Theorem 3.2]). The spectrum of the operator Δ_v on l_1 is given by

$$\sigma(\Delta_v, l_1) = \left\{ \lambda \in \mathbb{C} : \left| 1 - \frac{\lambda}{L} \right| \le 1 \right\}.$$

Theorem 1.4 ([3, Theorem 3.3]). The point spectrum of the operator Δ_v on l_1 is given by

 $\sigma_p(\Delta_v, l_1) = \begin{cases} \varnothing, \ if \ (v_k) \ is \ a \ constant \ sequence. \\ \{v_0, v_1, v_2, \ldots\}, \ if \ (v_k) \ is \ a \ strictly \ decreasing \ sequence. \end{cases}$

Theorem 1.5 ([3, Theorem 4.1]). The point spectrum of the operator Δ_v^* on l_1^* is given by

$$\sigma_p(\Delta_v^*, l_1^*) = \left\{ \lambda \in \mathbb{C} : \left| 1 - \frac{\lambda}{L} \right| \le 1 \right\}.$$

Theorem 1.6 ([3, Theorem 4.2]). The residual spectrum of the operator Δ_v on l_1 is given by

$$\sigma_r(\Delta_v, l_1) = \begin{cases} \left\{ \lambda \in \mathbb{C} : \left| 1 - \frac{\lambda}{L} \right| \le 1 \right\}, if (v_k) is a constant sequence. \\ \left\{ \lambda \in \mathbb{C} : \left| 1 - \frac{\lambda}{L} \right| \le 1 \right\} \setminus \{v_0, v_1, v_2, \ldots\}, if (v_k) is a strictly \\ decreasing sequence. \end{cases}$$

Theorem 1.7 ([3, Theorem 4.3]). The continuous spectrum of the operator Δ_v on l_1 is $\sigma_c(\Delta_v, l_1) = \emptyset$.

However, Theorems 1.4 and 1.6 which appear on pages 227 and 230 of [3], are incorrect in the case when the sequence (v_k) is a strictly decreasing sequence of positive real numbers. This will be shown by a counterexample in Section 2. Next, we provide the corrected results in Section 3.

2 A Counterexample

Consider the sequence (v_k) , where $v_k = \frac{k+3}{2k+5}$. Clearly, (v_k) is a strictly decreasing sequence of positive real numbers satisfying the conditions (1.4) and (1.5); indeed

$$\lim_{k \to \infty} v_k = L = \frac{1}{2}, \ \sup_k (v_k) = \frac{3}{5} \le 1 = 2L.$$

Notes on the spectrum of Lower Triangular Double-Band Matrices

We can prove that $v_0 = \frac{3}{5} \notin \sigma_p(\Delta_v, l_1)$. Indeed, suppose for contrary that there exists $x = (x_k) \neq \theta$ in l_1 such that $\Delta_v x = v_0 x$. Then

$$(v_0 - v_0)x_0 = 0$$
 and $-v_k x_k + (v_{k+1} - v_0)x_{k+1} = 0$,

for all $k \in \mathbb{N}$. If $x_0 = 0$, then $x_k = 0$, for all $k \ge 1$, and so we have a contradiction since $x \neq \theta$. Also, if $x_0 \neq 0$ then

$$\lim_{k \to \infty} \left| \frac{x_{k+1}}{x_k} \right| = \left| \frac{L}{L - v_o} \right| = 5 > 1,$$

and so we have a contradiction since $x \in l_1$. Then $v_0 \notin \sigma_p(\Delta_v, l_1)$.

The operator $\Delta_v - v_0 I$ on l_1 is defined by

$$(\Delta_v - v_0 I)x = (0, -v_0 x_0 + (v_1 - v_0)x_1, -v_1 x_1 + (v_2 - v_0)x_2, ...), \quad (2.1)$$

where $x = (x_k) \in l_1$. The operator $(\Delta_v - v_0 I)^{-1}$ exists since $v_0 \notin \sigma_p(\Delta_v, l_1)$. But $(\Delta_v - v_0 I)^{-1}$ does not satisfy (R3). Indeed, consider the sequence y = (1, 0, 0, ...) in l_1 and let y be the center of a small ball, say, of radius $\frac{1}{3}$. Clearly, by (2.1), this ball does not intersect the range of the operator $\Delta_v - v_0 I$. Then, the operator $\Delta_v - v_0 I$ does not have a dense range in l_1 . Hence, by definition, $v_0 \in \sigma_r(\Delta_v, l_1)$. Thus, we have the following assertions

$$\sigma_p(\Delta_v, l_1) \neq \{v_0, v_1, v_2, \ldots\} \text{ and}$$
$$\sigma_r(\Delta_v, l_1) \neq \left\{\lambda \in \mathbb{C} : \left|1 - \frac{\lambda}{L}\right| \le 1\right\} \setminus \{v_0, v_1, v_2, \ldots\}$$

This proves that Theorems 1.4 and 1.6 are incorrect in the case when the sequence (v_k) is a strictly decreasing sequence of positive real numbers.

3 Corrected Results for the Point Spectrum and the Residual Spectrum of the Operator Δ_v on the Space l_1

In this section, we introduce corrected versions of Theorems 1.4 and 1.6 in the case when the sequence (v_k) is a strictly decreasing sequence of positive real numbers satisfying the conditions (1.4) and (1.5).

Theorem 3.1. $\sigma_p(\Delta_v, l_1) = \emptyset$.

Proof. Consider the equation $\Delta_v x = \lambda x$ for $x \neq \theta = (0, 0, 0, ...)$ in l_1 . Then

$$(v_0 - \lambda)x_0 = 0$$
 and $-v_k x_k + (v_{k+1} - \lambda)x_{k+1} = 0$, for all $k \in \mathbb{N}$.

Hence, for all $\lambda \notin \{v_k : k \in \mathbb{N}\}$, we have $x_k = 0$, for all $k \in \mathbb{N}$. So, $\lambda \notin \sigma_p(\Delta_v, l_1)$. This shows that $\sigma_p(\Delta_v, l_1) \subseteq \{v_k : k \in \mathbb{N}\}$. Now, let $\lambda = v_0$. If $x_0 = 0$, then $x_k = 0$ for all $k \ge 1$ which contradicts the assumption that $x \ne \theta$. Also, if $x_0 \ne 0$ then

$$x_k = \frac{v_{k-1}}{v_k - v_0} x_{k-1} \neq 0,$$

for all $k \ge 1$, and hence we can take $x = (x_k) \ne \theta$ which satisfies $\Delta_v x = v_0 x$, but

$$|x_k| = \left| \frac{v_0 v_1 \dots v_{k-1}}{(v_1 - v_0)(v_2 - v_0) \dots (v_k - v_0)} \right| |x_0| > |x_0|,$$

for all $k \geq 1$. This contradicts the assumption that $x \in l_1$, and so $v_0 \notin \sigma_p(\Delta_v, l_1)$.

Similarly, we can prove that $v_k \notin \sigma_p(\Delta_v, l_1)$ for all $k \ge 1$. Thus $\sigma_p(\Delta_v, l_1) = \emptyset$. This completes the proof.

Now, we establish the corrected result for the residual spectrum of the operator Δ_v over l_1 .

Theorem 3.2.
$$\sigma_r(\Delta_v, l_1) = \left\{\lambda \in \mathbb{C} : \left|1 - \frac{\lambda}{L}\right| \le 1\right\}.$$

Proof. For $|1 - \frac{\lambda}{L}| \leq 1$, the operator $\Delta_v - \lambda I$ is one to one and hence has inverse. But $\Delta_v^* - \lambda I$ is not one to one by Theorem 1.5. Now, Lemma 1.1 yields the fact that $\overline{R(\Delta_v - \lambda I)} \neq l_1$ and this completes the proof.

Combining Theorems 1.2, 1.3, 1.5, 1.7, 3.1 and 3.2, we can have the following main theorem:

Theorem 3.3.

1. The operator $\Delta_v : l_1 \to l_1$ is a bounded linear operator and

$$\|\Delta_v\|_{l_1} = 2\sup_k (v_k) = 2v_0.$$

2. $\sigma(\Delta_v, l_1) = \left\{ \lambda \in \mathbb{C} : \left| 1 - \frac{\lambda}{L} \right| \le 1 \right\}.$ 3. $\sigma_p(\Delta_v, l_1) = \emptyset.$ 4. $\sigma_p(\Delta_v^*, l_1^*) = \left\{ \lambda \in \mathbb{C} : \left| 1 - \frac{\lambda}{L} \right| \le 1 \right\}.$ Notes on the spectrum of Lower Triangular Double-Band Matrices

5.
$$\sigma_r(\Delta_v, l_1) = \left\{ \lambda \in \mathbb{C} : \left| 1 - \frac{\lambda}{L} \right| \le 1 \right\}.$$

6. $\sigma_c(\Delta_v, l_1) = \emptyset.$

Remark 3.4. Note That, if (v_k) is a constant sequence, say $v_k = L \neq 0$ for all $k \in \mathbb{N}$, then the operator Δ_v is reduced to the operator B(r, s) with r = L, s = -L and the results for the spectrum and fine spectrum of the operator Δ_v on l_1 follow immediately from the corresponding results in [4].

Remark 3.5. A modification of the operator Δ_v over the sequence spaces c and l_p , where 1 introduced and studied in [5].

Acknowledgement : The authors would like to record their gratitude to the reviewer for his/her careful reading and making useful comments which improved the presentation of the paper.

References

- [1] E. Kreyszig, Introductory Functional Analysis with Applications, John Wiley & Sons Inc., New York, Chichester, Brisbane, Toronto, 1978.
- [2] S. Goldberg, Unbounded Linear Operators, Dover Publications, Inc., New York, 1985.
- [3] P.D. Srivastava, S. Kumar, Fine spectrum of the generalized difference operator Δ_v on sequence space l_1 , Thai J. Math. 8 (2) (2010) 221–233.
- [4] H. Furkan, H. Bilgiç, K. Kayaduman, On the fine spectrum of the generalized difference operator B(r, s) over the sequence spaces l_1 and bv, Hokkaido Math. J. 35 (2006) 893–904.
- [5] A.M. Akhmedov, S.R. El-Shabrawy, On the fine spectrum of the operator Δ_v over the sequence spaces c and l_p , (1 , Appl. Math.Inf. Sci. 5 (3) (2011) 635–654.

(Received 25 April 2011) (Accepted 3 November 2011)