Notes on the Spectrum of Lower Triangular Double-Band Matrices

Ali M. Akhmedov and Saad R. El-Shabrawy
Faculty of Mechanics and Mathematics, Baku State University
Z. Khalilov Str., 23, AZ 1148, Baku, Azerbaijan
e-mail : akhmedovali@rambler.ru (A.M. Akhmedov)
srshabrawy@yahoo.com (S.R. El-Shabrawy)

Abstract

In the paper by Srivastava and Kumar [P.D. Srivastava, S. Kumar, Thai J. Math. 8 (2) (2010) 221-233], the authors have introduced the lower triangular double-band matrix Δ_{v} as an operator on the sequence space l_{1} and studied the spectrum and fine spectrum of this operator over l_{1}. The operator Δ_{v} on l_{1} is defined by $\Delta_{v} x=\left(v_{k} x_{k}-v_{k-1} x_{k-1}\right)_{k=0}^{\infty}$ with $x_{-1}=0$, where $x=\left(x_{k}\right) \in l_{1}$ and $\left(v_{k}\right)$ is either constant or strictly decreasing sequence of positive real numbers satisfying certain conditions. In this paper we give notes on the point spectrum and the residual spectrum of the operator Δ_{v} over the space l_{1} in the case when $\left(v_{k}\right)$ is a strictly decreasing sequence of positive real numbers.

Keywords : Spectrum of an operator; Generalized difference operator; Sequence spaces.
2010 Mathematics Subject Classification : 47A10; 47B37.

1 Introduction, Preliminaries and Notation

Let X and Y be Banach spaces and $T: X \rightarrow Y$ be a bounded linear operator. By $R(T)$, we denote the range of T, i.e.,

$$
R(T)=\{y \in Y: y=T x, x \in X\}
$$

By $B(X)$, we denote the set of all bounded linear operators on X into itself. If $T \in B(X)$, then the adjoint T^{*} of T is a bounded linear operator on the dual X^{*}

[^0]of X defined by $\left(T^{*} f\right)(x)=f(T x)$ for all $f \in X^{*}$ and $x \in X$.
We shall need some basic concepts in spectral theory which are given as follows (see [1, pp. 370-371]). Let $X \neq\{\theta\}$ be a complex normed space and $T: D(T) \rightarrow X$ be a linear operator with domain $D(T) \subseteq X$. With T we associate the operator
\[

$$
\begin{equation*}
T_{\lambda}=T-\lambda I, \tag{1.1}
\end{equation*}
$$

\]

where λ is a complex number and I is the identity operator on $D(T)$. If T_{λ} has an inverse, which is linear, we denote it by T_{λ}^{-1}, that is

$$
\begin{equation*}
T_{\lambda}^{-1}=(T-\lambda I)^{-1}, \tag{1.2}
\end{equation*}
$$

and call it the resolvent operator of T. A regular value λ of T is a complex number such that
(R1) T_{λ}^{-1} exists,
(R2) T_{λ}^{-1} is bounded,
(R3) T_{λ}^{-1} is defined on a set which is dense in X.
The resolvent set of T, denoted by $\rho(T, X)$, is the set of all regular values λ of T. Its complement $\sigma(T, X)=\mathbb{C} \backslash \rho(T, X)$ in the complex plane \mathbb{C} is called the spectrum of T. Furthermore, the spectrum $\sigma(T, X)$ is partitioned into three disjoint sets as follows:

The point (discrete) spectrum $\sigma_{p}(T, X)$ is the set of all $\lambda \in \mathbb{C}$ such that T_{λ}^{-1} does not exist. Any such $\lambda \in \sigma_{p}(T, X)$ is called an eigenvalue of T.

The continuous spectrum $\sigma_{c}(T, X)$ is the set of all $\lambda \in \mathbb{C}$ such that T_{λ}^{-1} exists and satisfies (R3) but not (R2), that is, T_{λ}^{-1} is unbounded.

The residual spectrum $\sigma_{r}(T, X)$ is the set of all $\lambda \in \mathbb{C}$ such that T_{λ}^{-1} exists (and may be bounded or not) but does not satisfy (R3), that is, the domain of T_{λ}^{-1} is not dense in X.

By w, we shall denote the space of all real or complex valued sequences. Any vector subspace of w is called a sequence space. We write l_{1} for the space of all absolutely summable sequences, i.e.,

$$
l_{1}=\left\{x=\left(x_{k}\right): \sum_{k=0}^{\infty}\left|x_{k}\right|<\infty\right\} .
$$

Also, we write l_{∞} for the space of all bounded sequences. It is well-known that the dual space l_{1}^{*} of l_{1} is isomorphic to the space l_{∞}.

Let λ and μ be two sequence spaces and $A=\left(a_{n k}\right)$ be an infinite matrix of real or complex numbers $a_{n k}$, where $n, k \in \mathbb{N}=\{0,1,2, \ldots\}$. Then, we
say that A defines a matrix mapping from λ into μ, and we denote it by $A: \lambda \rightarrow \mu$, if for every sequence $x=\left(x_{k}\right) \in \lambda$, the sequence $A x=\left\{(A x)_{n}\right\}$, the A-transform of x, is in μ, where

$$
\begin{equation*}
(A x)_{n}=\sum_{k} a_{n k} x_{k}, \quad(n \in \mathbb{N}) . \tag{1.3}
\end{equation*}
$$

For simplicity in notation, here and in what follows, the summation without limits runs from 0 to ∞. By (λ, μ), we denote the class of all matrices A such that $A: \lambda \rightarrow \mu$. Thus, $A \in(\lambda, \mu)$ if and only if the series on the right side of (1.3) converges for each $n \in \mathbb{N}$ and every $x \in \lambda$, and we have $A x=\left\{(A x)_{n}\right\}_{n \in \mathbb{N}} \in \mu$ for all $x \in \lambda$. We use the convention that any term with negative subscript is equal to naught.

Now, we may give:
Lemma 1.1 ([2, p. 59]). T has a dense range if and only if T^{*} is one to one.

The generalized difference operator Δ_{v} on the space l_{1} has been introduced by Srivastava and Kumar [3]. The operator Δ_{v} on the space l_{1} is defined by

$$
\Delta_{v} x=\Delta_{v}\left(x_{k}\right)=\left(v_{k} x_{k}-v_{k-1} x_{k-1}\right)_{k=0}^{\infty} \text { with } x_{-1}=0,
$$

where $x=\left(x_{k}\right) \in l_{1}$ and $\left(v_{k}\right)$ is either constant or strictly decreasing sequence of positive real numbers satisfying

$$
\begin{gather*}
\lim _{k \rightarrow \infty} v_{k}=L>0 \text { and } \tag{1.4}\\
\sup _{k}\left(v_{k}\right) \leq 2 L . \tag{1.5}
\end{gather*}
$$

The operator Δ_{v} can be represented by the matrix

$$
\Delta_{v}=\left(\begin{array}{cccc}
v_{0} & 0 & 0 & \cdots \\
-v_{0} & v_{1} & 0 & \cdots \\
0 & -v_{1} & v_{2} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

Srivastava and Kumar [3] studied the spectrum and fine spectrum of the operator Δ_{v} over the sequence space l_{1}. We summarize the main results concerning the spectrum of the generalized difference operator Δ_{v} on the space l_{1} as stated in [3].

Theorem 1.2 ([3, Theorem 3.1]). The operator $\Delta_{v}: l_{1} \rightarrow l_{1}$ is a bounded linear operator and

$$
\left\|\Delta_{v}\right\|_{l_{1}}=2 \sup _{k}\left(v_{k}\right) .
$$

Theorem 1.3 ([3, Theorem 3.2]). The spectrum of the operator Δ_{v} on l_{1} is given by

$$
\sigma\left(\Delta_{v}, l_{1}\right)=\left\{\lambda \in \mathbb{C}:\left|1-\frac{\lambda}{L}\right| \leq 1\right\} .
$$

Theorem 1.4 ([3, Theorem 3.3]). The point spectrum of the operator Δ_{v} on l_{1} is given by
$\sigma_{p}\left(\Delta_{v}, l_{1}\right)=\left\{\begin{array}{l}\varnothing, \text { if }\left(v_{k}\right) \text { is a constant sequence. } \\ \left\{v_{0}, v_{1}, v_{2}, \ldots\right\}, \text { if }\left(v_{k}\right) \text { is a strictly decreasing sequence. }\end{array}\right.$
Theorem 1.5 ([3, Theorem 4.1]). The point spectrum of the operator Δ_{v}^{*} on l_{1}^{*} is given by

$$
\sigma_{p}\left(\Delta_{v}^{*}, l_{1}^{*}\right)=\left\{\lambda \in \mathbb{C}:\left|1-\frac{\lambda}{L}\right| \leq 1\right\} .
$$

Theorem 1.6 ([3, Theorem 4.2]). The residual spectrum of the operator Δ_{v} on l_{1} is given by
$\sigma_{r}\left(\Delta_{v}, l_{1}\right)=\left\{\begin{array}{l}\left\{\lambda \in \mathbb{C}:\left|1-\frac{\lambda}{L}\right| \leq 1\right\}, \text { if }\left(v_{k}\right) \text { is a constant sequence. } \\ \left\{\lambda \in \mathbb{C}:\left|1-\frac{\lambda}{L}\right| \leq 1\right\} \backslash\left\{v_{0}, v_{1}, v_{2}, \ldots\right\}, \text { if }\left(v_{k}\right) \text { is a strictly } \\ \text { decreasing sequence. }\end{array}\right.$
Theorem 1.7 ([3, Theorem 4.3]). The continuous spectrum of the operator Δ_{v} on l_{1} is $\sigma_{c}\left(\Delta_{v}, l_{1}\right)=\varnothing$.

However, Theorems 1.4 and 1.6 which appear on pages 227 and 230 of [3], are incorrect in the case when the sequence $\left(v_{k}\right)$ is a strictly decreasing sequence of positive real numbers. This will be shown by a counterexample in Section 2. Next, we provide the corrected results in Section 3.

2 A Counterexample

Consider the sequence $\left(v_{k}\right)$, where $v_{k}=\frac{k+3}{2 k+5}$. Clearly, $\left(v_{k}\right)$ is a strictly decreasing sequence of positive real numbers satisfying the conditions (1.4) and (1.5); indeed

$$
\lim _{k \rightarrow \infty} v_{k}=L=\frac{1}{2}, \sup _{k}\left(v_{k}\right)=\frac{3}{5} \leq 1=2 L .
$$

We can prove that $v_{0}=\frac{3}{5} \notin \sigma_{p}\left(\Delta_{v}, l_{1}\right)$. Indeed, suppose for contrary that there exists $x=\left(x_{k}\right) \neq \theta$ in l_{1} such that $\Delta_{v} x=v_{0} x$. Then

$$
\left(v_{0}-v_{0}\right) x_{0}=0 \quad \text { and } \quad-v_{k} x_{k}+\left(v_{k+1}-v_{0}\right) x_{k+1}=0,
$$

for all $k \in \mathbb{N}$. If $x_{0}=0$, then $x_{k}=0$, for all $k \geq 1$, and so we have a contradiction since $x \neq \theta$. Also, if $x_{0} \neq 0$ then

$$
\lim _{k \rightarrow \infty}\left|\frac{x_{k+1}}{x_{k}}\right|=\left|\frac{L}{L-v_{o}}\right|=5>1
$$

and so we have a contradiction since $x \in l_{1}$. Then $v_{0} \notin \sigma_{p}\left(\Delta_{v}, l_{1}\right)$.
The operator $\Delta_{v}-v_{0} I$ on l_{1} is defined by

$$
\begin{equation*}
\left(\Delta_{v}-v_{0} I\right) x=\left(0,-v_{0} x_{0}+\left(v_{1}-v_{0}\right) x_{1},-v_{1} x_{1}+\left(v_{2}-v_{0}\right) x_{2}, \ldots\right), \tag{2.1}
\end{equation*}
$$

where $x=\left(x_{k}\right) \in l_{1}$. The operator $\left(\Delta_{v}-v_{0} I\right)^{-1}$ exists since $v_{0} \notin \sigma_{p}\left(\Delta_{v}, l_{1}\right)$. But $\left(\Delta_{v}-v_{0} I\right)^{-1}$ does not satisfy (R3). Indeed, consider the sequence $y=(1,0,0, \ldots)$ in l_{1} and let y be the center of a small ball, say, of radius $\frac{1}{3}$. Clearly, by (2.1), this ball does not intersect the range of the operator $\Delta_{v}-v_{0} I$. Then, the operator $\Delta_{v}-v_{0} I$ does not have a dense range in l_{1}. Hence, by definition, $v_{0} \in \sigma_{r}\left(\Delta_{v}, l_{1}\right)$. Thus, we have the following assertions

$$
\begin{gathered}
\sigma_{p}\left(\Delta_{v}, l_{1}\right) \neq\left\{v_{0}, v_{1}, v_{2}, \ldots\right\} \text { and } \\
\sigma_{r}\left(\Delta_{v}, l_{1}\right) \neq\left\{\lambda \in \mathbb{C}:\left|1-\frac{\lambda}{L}\right| \leq 1\right\} \backslash\left\{v_{0}, v_{1}, v_{2}, \ldots\right\} .
\end{gathered}
$$

This proves that Theorems 1.4 and 1.6 are incorrect in the case when the sequence $\left(v_{k}\right)$ is a strictly decreasing sequence of positive real numbers.

3 Corrected Results for the Point Spectrum and the Residual Spectrum of the Operator Δ_{v} on the Space l_{1}

In this section, we introduce corrected versions of Theorems 1.4 and 1.6 in the case when the sequence $\left(v_{k}\right)$ is a strictly decreasing sequence of positive real numbers satisfying the conditions (1.4) and (1.5).

Theorem 3.1. $\sigma_{p}\left(\Delta_{v}, l_{1}\right)=\varnothing$.

Proof. Consider the equation $\Delta_{v} x=\lambda x$ for $x \neq \theta=(0,0,0, \ldots)$ in l_{1}. Then

$$
\left(v_{0}-\lambda\right) x_{0}=0 \quad \text { and } \quad-v_{k} x_{k}+\left(v_{k+1}-\lambda\right) x_{k+1}=0, \quad \text { for all } k \in \mathbb{N} .
$$

Hence, for all $\lambda \notin\left\{v_{k}: k \in \mathbb{N}\right\}$, we have $x_{k}=0$, for all $k \in \mathbb{N}$. So, $\lambda \notin$ $\sigma_{p}\left(\Delta_{v}, l_{1}\right)$. This shows that $\sigma_{p}\left(\Delta_{v}, l_{1}\right) \subseteq\left\{v_{k}: k \in \mathbb{N}\right\}$. Now, let $\lambda=v_{0}$. If $x_{0}=0$, then $x_{k}=0$ for all $k \geq 1$ which contradicts the assumption that $x \neq \theta$. Also, if $x_{0} \neq 0$ then

$$
x_{k}=\frac{v_{k-1}}{v_{k}-v_{0}} x_{k-1} \neq 0,
$$

for all $k \geq 1$, and hence we can take $x=\left(x_{k}\right) \neq \theta$ which satisfies $\Delta_{v} x=v_{0} x$, but

$$
\left|x_{k}\right|=\left|\frac{v_{0} v_{1} \ldots v_{k-1}}{\left(v_{1}-v_{0}\right)\left(v_{2}-v_{0}\right) \ldots\left(v_{k}-v_{0}\right)}\right|\left|x_{0}\right|>\left|x_{0}\right|,
$$

for all $k \geq 1$. This contradicts the assumption that $x \in l_{1}$, and so $v_{0} \notin$ $\sigma_{p}\left(\Delta_{v}, l_{1}\right)$.

Similarly, we can prove that $v_{k} \notin \sigma_{p}\left(\Delta_{v}, l_{1}\right)$ for all $k \geq 1$. Thus $\sigma_{p}\left(\Delta_{v}, l_{1}\right)=\varnothing$. This completes the proof.

Now, we establish the corrected result for the residual spectrum of the operator Δ_{v} over l_{1}.

Theorem 3.2. $\sigma_{r}\left(\Delta_{v}, l_{1}\right)=\left\{\lambda \in \mathbb{C}:\left|1-\frac{\lambda}{L}\right| \leq 1\right\}$.
Proof. For $\left|1-\frac{\lambda}{L}\right| \leq 1$, the operator $\Delta_{v}-\lambda I$ is one to one and hence has inverse. But $\Delta_{v}^{*}-\lambda I$ is not one to one by Theorem 1.5. Now, Lemma 1.1 yields the fact that $\overline{R\left(\Delta_{v}-\lambda I\right)} \neq l_{1}$ and this completes the proof.

Combining Theorems 1.2, 1.3, 1.5, 1.7, 3.1 and 3.2 , we can have the following main theorem:

Theorem 3.3.

1. The operator $\Delta_{v}: l_{1} \rightarrow l_{1}$ is a bounded linear operator and

$$
\left\|\Delta_{v}\right\|_{l_{1}}=2 \sup _{k}\left(v_{k}\right)=2 v_{0} .
$$

2. $\sigma\left(\Delta_{v}, l_{1}\right)=\left\{\lambda \in \mathbb{C}:\left|1-\frac{\lambda}{L}\right| \leq 1\right\}$.
3. $\sigma_{p}\left(\Delta_{v}, l_{1}\right)=\varnothing$.
4. $\sigma_{p}\left(\Delta_{v}^{*}, l_{1}^{*}\right)=\left\{\lambda \in \mathbb{C}:\left|1-\frac{\lambda}{L}\right| \leq 1\right\}$.
5. $\sigma_{r}\left(\Delta_{v}, l_{1}\right)=\left\{\lambda \in \mathbb{C}:\left|1-\frac{\lambda}{L}\right| \leq 1\right\}$.
6. $\sigma_{c}\left(\Delta_{v}, l_{1}\right)=\varnothing$.

Remark 3.4. Note That, if $\left(v_{k}\right)$ is a constant sequence, say $v_{k}=L \neq 0$ for all $k \in \mathbb{N}$, then the operator Δ_{v} is reduced to the operator $B(r, s)$ with $r=L, s=-L$ and the results for the spectrum and fine spectrum of the operator Δ_{v} on l_{1} follow immediately from the corresponding results in [4].
Remark 3.5. A modification of the operator Δ_{v} over the sequence spaces c and l_{p}, where $1<p<\infty$ introduced and studied in [5].

Acknowledgement : The authors would like to record their gratitude to the reviewer for his/her careful reading and making useful comments which improved the presentation of the paper.

References

[1] E. Kreyszig, Introductory Functional Analysis with Applications, John Wiley \& Sons Inc., New York, Chichester, Brisbane, Toronto, 1978.
[2] S. Goldberg, Unbounded Linear Operators, Dover Publications, Inc., New York, 1985.
[3] P.D. Srivastava, S. Kumar, Fine spectrum of the generalized difference operator Δ_{v} on sequence space l_{1}, Thai J. Math. 8 (2) (2010) 221-233.
[4] H. Furkan, H. Bilgiç, K. Kayaduman, On the fine spectrum of the generalized difference operator $B(r, s)$ over the sequence spaces l_{1} and $b v$, Hokkaido Math. J. 35 (2006) 893-904.
[5] A.M. Akhmedov, S.R. El-Shabrawy, On the fine spectrum of the operator Δ_{v} over the sequence spaces c and $l_{p},(1<p<\infty)$, Appl. Math. Inf. Sci. 5 (3) (2011) 635-654.
(Received 25 April 2011)
(Accepted 3 November 2011)

Thai J. Math. Online @ nttp://thaijmatn.in.cmu.ac.th

[^0]: Copyright © 2012 by the Mathematical Association of Thailand. All rights reserved.

