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Abstract : In this paper, the splitting trick coined by Chen [D.-R. Chen, On the
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739] is used to construct vector-valued multivariate wavelet frame packets with an
arbitrary dilation matrix A. It is shown that, as long as finitely many splitting
steps are applied, the resulting sequence of functions is a frame of L2(Rd)r. If
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bounds as shown in Theorem 3.3.
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1 Introduction

Considerable attention has been given to wavelet packet analysis as an impor-
tant generalization of wavelet analysis. Wavelet packet functions consist of a rich
family of building block functions and are localized in time, but offer more flexibil-
ity than wavelets in representing different kinds of signals. The power of wavelet
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packets lies in the fact that we have much more freedom in selecting which basis
functions are to be used to represent the given function. Wavelet packets, due
to their nice characteristics have been widely applied to signal processing, coding
theory, image compression, fractal theory and solving integral equations and so
on.

It is well-known that the classical orthonormal wavelet bases have poor fre-
quency localization. To overcome this disadvantage, Coifman et al. [1] constructed
univariate orthogonal wavelet packets. Chui and Li [2] generalized the concept
of orthogonal wavelet packets to the case of non-orthogonal wavelet packets so
that they can be applied to the spline wavelets and so on. The introduction
of biorthogonal wavelet packets attributes to Cohen and Daubechies [3]. Shen
[4] generalized the notion of univariate orthogonal wavelet packets to the case of
multivariate wavelet packets. Other notable generalizations are the orthogonal
version of wavelet packets on a positive half-line R+ [5], the orthogonal multi-
wavelet packets [6], non-orthogonal wavelet packets with r-scaling functions [7],
the wavelet frame packets [8] on R for dilation 2 and the orthogonal, biorthogonal
and frame packets on Rd by Long and Chen [9, 10] for the dyadic dilation.

Recently, Sun and Cheng [11] investigated the construction of a class of com-
pactly supported orthogonal vector-valued wavelets. The definition and construc-
tion of orthogonal vector-valued wavelet packets are given in a paper by Chen
and Chang [12]. Vector-valued wavelets are a class of generalized multiwavelets
and multiwavelets can be generated from the component function in vector-valued
wavelets (see [13]). Vector-valued wavelets and multiwavelets are different in the
following sense. Vector-valued wavelets can be used to decorrelate a vector-valued
signal not only in the time domain but also between components for a fixed time
where as multiwavelets focuses only on the decorrelation of signals in time domain.
Moreover, prefiltering is usually required for discrete multiwavelet transform but
not necessary for discrete vector-valued wavelet transforms. The concept of vector-
valued wavelet packets was subsequently generalized to vector-valued multivariate
wavelet packets by Chen et al. [14] for dilation 2 and for the dilation factor m by
Chen et al. [15]. In the same year, Xiao-Feng et al. [16] gave the construction and
characterization of all vector-valued multivariate wavelet packets associated with
dilation matrix by means of time-frequency analysis, matrix theory and operator
theory.

Since frames provide a useful model to obtain signal decompositions in cases
where redundancy, robustness, oversampling and irregular sampling play a role.
It is, therefore, worthwhile to generalize the construction of vector-valued multi-
variate wavelet packets to the case of frames. So the main purpose of this paper
is to give the construction of vector-valued multivariate wavelet frame packets as-
sociated with arbitrary dilation matrix using the splitting trick for frames. When
a finitely many splitting steps are used, the resulting sequence of vector-valued
functions is a frame of L2(Rd)r. Moreover, if the matrix Q(ξ) associated with the
splitting is unitary, then the splitting can be applied infinitely many times to prove
the existence of frame with frame bounds as shown in Theorem 3.3.
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2 Preliminaries and Vector-valued Multivariate

Wavelet Packets

Throughout, this paper, we use the following notations. Let R and C be all
real and complex numbers, respectively. Z and N0 denote all integers and all non-
negative integers, respectively. Zd and Rd denote the set of all d-tuples of integers
and d-tuples of reals, respectively. We denote

Z
d
+ =

{

z : (z1, z2, ..., zd) ∈ Z
d, zi ≥ 0, i = 1, 2, .., d

}

.

Let A denotes a d×d dilation matrix, whose determinant is m(m ∈ Z, m ≥ 2).
A d × d matrix A is said to be a dilation matrix for Rd if

(i) A(Zd) ⊂ Zd;

(ii) all eigenvalues λ of A satisfy |λ| > 1.

Property (i) implies that A has integer entries and hence |detA| is greater than 1.
Let B = At, the transpose of A and m = |detA| = |detB|. It is known that there
exists m-elements ρ0, ρ1, ρ2, ..., ρm−1 in Zd

+, by the finite group theory such that

Z
d =

⋃

ρ∈Ω0

(ρ + AZ
d); (ρ1 + AZ

d) ∩ (ρ1 + AZ
d) = ∅

where Ω0 = {ρ0, ρ1, ρ2, ..., ρm−1} denotes the set of all different representative
elements in the quotient group Zd/AZd and ρ1, ρ2 denote two arbitrary elements
in Ω0. Set ρ0 = {0}, where {0} is the null of the set Z

d
+. Let Ω = Ω0 − {0} and

Ω, Ω0 be two index sets. Let L2(Rd)r denotes the set of all r × 1 vector-valued
functions Φ(x), i.e.,

L2(Rd)r =
{

Φ(x) =
(

φ1(x), φ2(x), ..., φr(x)
)t

: φi(x) ∈ L2(Rd), i = 1, 2, ..., r
}

.

For Φ(x) ∈ L2(Rd)r, ‖Φ‖ denotes the norm of vector-valued function ‖Φ(x)‖
as follows:

‖Φ‖ =

(

r
∑

i=1

∫

Rd

|φi(x)|2dx

)1/2

. (2.1)

For Φ ∈ L2(Rd)r, its integration and Fourier transform are defined, respec-
tively, as follows:

∫

Rd

Φ(x)dx =

(∫

Rd

φ1(x)dx,

∫

Rd

φ2(x)dx, ...,

∫

Rd

φr(x)dx

)

, (2.2)

Φ̂(ξ) =

∫

Rd

Φ(x)e−i〈x,ξ〉dx, (2.3)
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where 〈x, ξ〉 denotes the inner product of real vector x and ξ. Moreover, for any
two vector-valued functions Φ, Ψ ∈ L2(Rd)r, 〈Φ, Ψ〉 denote their symbol as inner
product, i.e.,

〈Φ, Ψ〉 =

∫

Rd

Φ(x)Ψ(x)∗dx, (2.4)

where the superscript ∗ means the transpose and complex conjugate.
We now recall the notion of higher dimensional vector-valued multiresolution

analysis and orthogonal vector-valued wavelets of L2(Rd)r.

Definition 2.1 ([12]). A sequence {Vj}j∈Z
of closed subspaces of L2(Rd)r is called

a vector-valued multiresolution analysis (MRA) of L2(Rd)r associated with a di-
lation matrix A if the following conditions are satisfied:

(i) Vj ⊂ Vj+1 for all j ∈ Z,

(ii)
⋃

j∈Z
Vj is dense in L2(Rd)r,

(iii)
⋂

j∈Z
Vj = {0}, where {0} is r-dimensional zero vector,

(iv) F ∈ Vj if and only if F (A.) ∈ Vj+1 for all j ∈ Z,

(v) there exists a vector-valued function Φ in V0, called the scaling function,
such that the system of vector-valued functions

{

Φ(x − k) : k ∈ Zd
}

forms
an orthonormal basis for V0.

Since Φ(x) ∈ V0 ⊂ V1, there exists finitely supported r × r matrix constant
sequence {Pk}k∈Zd ∈ l2(Zd)r×r, which has finite non-zero terms, such that

Φ(x) =
∑

k∈Zd

PkΦ(Ax − k) (2.5)

Equation (2.5) is called a refinement equation and Φ(x) is a vector-valued scaling
function. Taking the Fourier transform of (2.5), we get

Φ̂(ξ) = P (ξ)Φ̂(ξ), ξ ∈ R
d (2.6)

where

P (ξ) =
1

m

∑

k∈Zd

Pke−i〈k,ξ〉, ξ ∈ R
d (2.7)

is a 2πZd-periodic function, called the symbol of Φ(x).
Let Wj , j ∈ Z be the orthogonal complementary subspaces of Vj in Vj+1, i.e.,

Wj = Vj+1 ⊖ Vj , j ∈ Z. These subspaces inherit the scaling property of {Vj},
namely

f ∈ Wj if and only if f(A.) ∈ Wj+1. (2.8)

Moreover, they are mutually orthogonal, and we have the following orthogonal
decompositions:

L2(Rd)r =
⊕

j∈Z

Wj = V0 ⊕





⊕

j≥0

Wj



 . (2.9)
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A set of vector-valued functions Ψσ, σ ∈ Ω in L2(Rd)r is said to be a set of
basic vector-valued wavelets associated with the vector-valued MRA if the collec-
tion

{

Ψσ(x − k) : σ ∈ Ω, k ∈ Zd
}

forms an orthonormal basis for W0. In view of
(2.8) and (2.9), it is clear that if {Ψ1, Ψ2, ..., Ψm−1} is a basic set of vector-valued
wavelets, then

{

mj/2Ψσ(Ajx − k) : j ∈ Z, k ∈ Z
d, σ ∈ Ω

}

forms an orthonormal basis for L2(Rd)r (see [11, 12]). Hence, Eq. (2.9) becomes

L2(Rd)r =
⊕

j∈Z

(

⊕

σ∈Ω

W σ
j

)

. (2.10)

Since Ψσ(x) ∈ W0 ⊂ V1, σ ∈ Ω, there exist m − 1 finite supported constant r × r
matrix sequences {P σ

k }k∈Zd ∈ l2(Zd)r×r such that

Ψσ(x) =
∑

k∈Zd

P σ
k m1/2Φ(Ax − k), σ ∈ Ω. (2.11)

In order to define the vector-valued wavelet packets, we set

G0(x) = Φ(x), Gσ(x) = Ψσ(x), Pk = Qk, P σ
k = Qσ

k , σ ∈ Ω, k ∈ Z
d.

Then, the Eqs. (2.5) and (2.11) can be jointly written as follows:

Gσ(x) =
∑

k∈Zd

Qσ
km1/2G0(Ax − k), σ ∈ Ω0. (2.12)

The Fourier transform of (2.12) yields

Ĝσ (Aξ) = Qσ(ξ) Ĝ0(ξ), (2.13)

where
Qσ(ξ) =

∑

k∈Zd

Qσ
k e−i〈k,ξ〉, σ ∈ Ω0. (2.14)

The functions Qσ, σ ∈ Ω0, are in L2(Rd)r such that

Q(ξ) =
(

Qσ
(

B−1(ξ + 2πρ)
)

)

σ,ρ∈Ω0

(2.15)

is a unitary matrix for a.e. ξ ∈ [0, 2π]d (see [12, 13]).
For any α ∈ Z

d
+, the basic vector-valued multivariate wavelet packets associ-

ated with the orthogonal vector-valued scaling function G0 are defined recursively
by

Gα(x) = GAµ+σ(x) =
∑

k∈Zd

m1/2Qσ
k Gµ(Ax − k), σ ∈ Ω0, µ ∈ Z

+. (2.16)
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Let D be a dilation operator (Df)(x) = f(Ax), where f ∈ L2(Rd)r and denote a
set DU = {Df : f ∈ U}, where U ⊂ L2(Rd)r. For any µ ∈ Zd

+, define

Uµ =







f(x) : f(x) =
∑

k∈Zd

SkGµ(x − k), {Sk} ∈ l2(Zd)r×r







where the family
{

Gµ(x) : µ ∈ Zd
+

}

are the vector-valued wavelet packets with
respect to orthogonal vector-valued scaling function G0(x) = Φ(x). Then, we
observe that U0 = V0 and Uσ = W σ

0 , σ ∈ Ω.
For µ ∈ Zd

+, the set DUµ can be orthogonally decomposed into subspaces
UAµ+σ, σ ∈ Ω0, i.e.,

DUµ =
⊕

σ∈Ω0

UAµ+σ. (2.17)

Let

∆j =
{

α : (α1, α2, ..., αd) ∈ Z
d
+, mj−1 ≤ αℓ ≤ mj − 1, j ∈ Z, 1 ≤ ℓ ≤ d

}

.

For any a ∈ N0, set Ẽa =
∑a

ℓ=0 AℓΩ0, Ea = Ẽa+1 − Ẽa = AΩ0. Now, in view of
(2.17), we have

DU0 = U0

⊕

σ∈Ω0

Uσ. (2.18)

Since U0 = V0 and W0 =
⊕

σ∈Ω W σ
j =

⊕

σ∈Ω Uσ, hence DU0 = V0⊕W0. Therefore,
by the repeated applications of (2.17) and (2.18), we obtain

DjU0 = Dj−1U0

⊕

α∈Ea

Uα. (2.19)

But Vj+1 = Vj ⊕ Wj , thus it follows that

DjU0 = Dj−1U0 ⊕ Dj−1W0.

Therefore, from (2.18), we have

L2(Rd)r = V0





⊕

j≥0

DjW0



 = U0

⊕





⊕

j>0

(

⊕

α∈Ea

Uα

)



 =
⊕

α∈Z
d
+

Uα. (2.20)

Let Ξ = {(a, j) : a ∈ N0, j ∈ Z} be a set which satisfies for any n ∈ Z, there exists
a unique pair of number (a, j) ∈ Ξ, such that n = a + j. It was shown in [13] that
the collection of vector-valued functions

F =
{

mj/2Gα(Aj . − k) : α ∈ Ea, (a, j) ∈ Ξ, k ∈ Z
d
}

forms an orthonormal basis of L2(Rd)r.
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3 Splitting Trick and Vector-valued Wavelet Frame

Packets

Let H be a Hilbert space. A sequence {xk : k ∈ Z} of H is said to be a frame
for H if there exist constants C1 and C2, 0 < C1 ≤ C2 < ∞ such that

C1‖x‖
2 ≤

∑

k∈Z

∣

∣〈x, xk〉
∣

∣

2
≤ C2‖x‖

2 (3.1)

for all x ∈ H. The largest C1 and the smallest C2 for which (3.1) holds are called
frame bounds. A frame is a tight frame if C1 and C2 can be chosen so that
C1 = C2, and is a normalized tight frame if C1 = C2 = 1.

Let Φ =
{

Φσ1
, Φσ2

, ..., Φσm−1

}

be a family of m − 1 vector-valued functions

in L2(Rd)r such that
{

Φσ(x − k) : σ ∈ Ω0, k ∈ Zd
}

is a frame for its closed linear

span S(Φ). Suppose that the m − 1 vector-valued functions
{

Ψσ1
, Ψσ2

, ..., Ψσm−1

}

are in S(Φ), so that each Ψσ, is a linear combination of Φσ(x−k) : σ ∈ Ω0, k ∈ Zd.
Now, it is natural to ask: whether

{

Ψσ(x − k) : σ ∈ Ω0, k ∈ Zd
}

is also a frame for
S(Φ). If Ψσ, σ ∈ Ω0 are in S(Φσ), then there exists constant r×r matrix sequences
{Hσ

µ,k}µ∈Ω0,k∈Zd in l2(Zd)r×r such that

Ψσ(x) =
∑

µ∈Ω0

∑

k∈Zd

Hσ
µ,k Φµ(x − k), σ ∈ Ω0. (3.2)

Taking Fourier transform, we get

Ψ̂σ(ξ) =
∑

µ∈Ω0

∑

k∈Zd

Hσ
µ,k Φ̂µ(ξ) e−i〈k,ξ〉

=
∑

µ∈Ω0

Hσ
µ Φ̂µ(ξ), σ ∈ Ω0

where Hσ
µ (ξ) =

∑

k∈Zd Hσ
µ,k e−i〈k,ξ〉. Let H(ξ) =

(

Hσ
µ (ξ)

)

σ,µ∈Ω0

.

Now, we state a lemma which is the generalization of Lemma 3.1 in [8].

Lemma 3.1. Let Φσ, Ψσ for σ, µ ∈ Ω0 and H(ξ) be as above. Suppose that there

exist constants C1 and C2, 0 < C1 ≤ C2 < ∞ such that

C1Ir ≤ H∗(ξ)H(ξ) ≤ C2Ir for a.e. ξ ∈ R
d.

Then, for all f ∈ L2(Rd)r, we have

C1

∑

µ∈Ω0

∑

k∈Zd

∣

∣〈f, Φµ(x − k)〉
∣

∣

2
≤
∑

σ∈Ω0

∑

k∈Zd

∣

∣〈f, Ψσ(x − k)〉
∣

∣

2

≤ C2

∑

µ∈Ω0

∑

k∈Zd

∣

∣〈f, Φµ(x − k)〉
∣

∣

2
. (3.3)
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Now, we apply the splitting trick to vector-valued wavelet frames. Let Φ ∈
L2(Rd)r, V0 = span

{

Φ(x − k) : k ∈ Zd
}

and
{

Φ(x − k) : k ∈ Zd
}

be a frame for
V0 with frame bounds C1 and C2. For σ ∈ Ω0, suppose that there exists matrix
sequences {Qσ

k}k∈Zd with
∑

k∈Zd |Qσ
k |

2 < ∞. We define Gσ as in (2.12), that is,

Gσ(x) =
∑

k∈Zd

Qσ
k m1/2Φ(Ax − k). (3.4)

Let Q(ξ) be the matrix defined in (2.15) and Qσ(ξ) be the functions as in
(2.14). Assume that there exist constants C1 and C2, 0 < C1 ≤ C2 < ∞ such
that

C1Ir ≤ Q∗(ξ)Q(ξ) ≤ C2Ir for a.e. ξ ∈ [0, 2π]d. (3.5)

Furthermore, the vector-valued functions Gσ(x) has the equivalent expression

Gσ(x) =
∑

k∈Zd

Qσ
k m1/2G0(Ax − k)

=
∑

µ∈Ω0

∑

k′∈Zd

Rσ
µ,k′ Φ(µ)(x − k′)

where

Rσ
µ,k′ = m1/2Qσ

k , when k = mk′ − µ, k′ ∈ Z
d, µ ∈ Ω0

and

Φ(µ)(x) = m1/2Φ(Ax − k′), µ ∈ Ω0. (3.6)

Taking Fourier transform, we obtain

Ĝσ (ξ) =
∑

µ∈Ω0

∑

k′∈Zd

Rσ
µ,k′ (Φ(µ))∧(ξ) e−i〈k,ξ〉

=
∑

µ∈Ω0

Hσ
µ (ξ) (Φ(µ))∧(ξ), σ ∈ Ω,

where Hσ
µ (ξ) =

∑

k′∈Zd Rσ
µ,k′ e−i〈k,ξ〉.

Let H(ξ) =
(

Hσ
µ (ξ)

)

σ,µ∈Ω
. Then it is easy to verify that Q∗(ξ)Q(ξ) and

H∗(ξ)H(ξ) are similar matrices (see [10]). Let λ(ξ) and Λ(ξ) be the minimal and
maximal eigenvalues of the positive definite matrix Q∗(ξ)Q(ξ), respectively and
let λ = infξ λ(ξ) and Λ = supξ Λ(ξ). Suppose 0 < λ ≤ Λ < ∞. Then, by Eq.
(3.6), we have

λIr ≤ Q∗(ξ)Q(ξ) ≤ ΛIr for a.e. ξ ∈ [0, 2π]d.

This is equivalent to say that

λIr ≤ H∗(ξ)H(ξ) ≤ ΛIr for a.e. ξ ∈ [0, 2π]d.
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Then by Lemma 3.1, for all g ∈ L2(Rd)r, we have

λ
∑

µ∈Ω0

∑

k∈Zd

∣

∣〈g, Φ(µ)(x − k)〉
∣

∣

2
≤
∑

µ∈Ω0

∑

k∈Zd

∣

∣〈g, Gµ(x − k)〉
∣

∣

2

≤ Λ
∑

µ∈Ω0

∑

k∈Zd

∣

∣〈g, Φ(µ)(x − k)〉
∣

∣

2
, (3.7)

where Φ(µ) is defined in (3.6). Since

∑

k∈Z
d

∣

∣〈g, m1/2Φ(Ax − k)〉
∣

∣

2
=
∑

µ∈Ω0

∑

k∈Zd

∣

∣〈g, Φ(µ)(x − k)〉
∣

∣

2
,

which follows from (3.6), inequality (3.7) can be written as

λ
∑

k∈Zd

∣

∣〈g, m1/2Φ(Ax − k)〉
∣

∣

2
≤
∑

µ∈Ω0

∑

k∈Zd

∣

∣〈g, Gµ(x − k)〉
∣

∣

2

≤ Λ
∑

k∈Zd

∣

∣〈g, m1/2Φ(Ax − k)〉
∣

∣

2
. (3.8)

This is the splitting trick for frames. We now apply this trick to the vector-valued
functions Gµ, for each µ ∈ Ω0 to obtain

λ
∑

k∈Zd

∣

∣〈g, m1/2Gµ(Ax − k)〉
∣

∣

2
≤
∑

σ∈Ω0

∑

k∈Zd

∣

∣〈g, Gσ,µ(x − k)〉
∣

∣

2

≤ Λ
∑

k∈Zd

∣

∣〈g, m1/2Gµ(Ax − k)〉
∣

∣

2
(3.9)

where Gσ,µ, σ, µ ∈ Ω0 are defined as in (3.4) (Gµ now replacesΦ):

Gσ,µ(x) =
∑

k∈Zd

Qσ
k m1/2Gµ(Ax − k), µ ∈ Ω0. (3.10)

Summing (3.9) over µ ∈ Ω0, we have

λ
∑

µ∈Ω0

∑

k∈Zd

∣

∣〈g, m1/2Gµ(Ax − k)〉
∣

∣

2
≤
∑

σ∈Ω0

∑

µ∈Ω0

∑

k∈Zd

∣

∣〈g, Gσ,µ(x − k)〉
∣

∣

2

≤ Λ
∑

µ∈Ω0

∑

k∈Zd

∣

∣〈g, m1/2Gµ(Ax − k)〉
∣

∣

2
.

Using (3.8), we obtain

λ2
∑

k∈Zd

∣

∣〈g, m2/2Φ(A2x − k)〉
∣

∣

2
≤
∑

σ∈Ω0

∑

µ∈Ω0

∑

k∈Zd

∣

∣〈g, Gσ,µ(x − k)〉
∣

∣

2

≤ Λ2
∑

k∈Zd

∣

∣〈g, m2/2Φ(A2x − k)〉
∣

∣

2
. (3.11)
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We now define the vector-valued wavelet frame packets Gα, α ∈ Zd, similar to
the orthonormal case (see Eq. (2.16)). Thus, in order to ensure that Gα are in
L2(Rd)r, it is sufficient to assume that all the entries in the matrix Q(ξ), defined
in (2.15), are bounded functions. Comparing (3.10) and (2.16), we see that

{Gµ,σ : σ, µ ∈ Ω0} = {GAµ+σ : σ, µ ∈ Ω0} = {Gα : α ∈ ∆2} .

So (3.11) can be written as

λ2
∑

k∈Zd

∣

∣〈g, m2/2Φ(A2x − k)〉
∣

∣

2
≤
∑

α∈∆2

∑

k∈Zd

∣

∣〈g, Gα(x − k)〉
∣

∣

2

≤ Λ2
∑

k∈Zd

∣

∣〈g, m2/2Φ(A2x − k)〉
∣

∣

2
.

By induction, we get for each j ≥ 1,

λj
∑

k∈Zd

∣

∣〈g, mj/2Φ(Ajx − k)〉
∣

∣

2
≤
∑

α∈∆j

∑

k∈Zd

∣

∣〈g, Gα(x − k)〉
∣

∣

2

≤ Λj
∑

k∈Zd

∣

∣〈g, mj/2Φ(Ajx − k)〉
∣

∣

2
. (3.12)

The vector-valued functions
{

Gα : α ∈ Zd
+

}

will be called the vector-valued

multivariate wavelet frame packets and we summarize the above discussion in the
following theorem.

Theorem 3.2. Let Φ ∈ L2(Rd)r such that
{

Φ(x − k) : k ∈ Zd
}

is a frame for

its closed linear span V0 with frame bounds C1 and C2. Let Q(ξ), λ and Λ be as

above. Assume that the entries of Q(ξ) are bounded measurable functions such that

0 < λ ≤ Λ < ∞. Let
{

Gα : α ∈ Zd
+

}

be the vector-valued wavelet frame packets

and let Vj =
{

f : f(A−j .) ∈ V0

}

. Then, for all j ≥ 0, the system of vector-valued

functions
{

Gα(x − k) : α ∈ Z
d
+, k ∈ Z

d
}

is a frame of Vj with frame bounds λ
j

C1 and Λ
j

C2.

Proof. Since
{

Φ(x − k) : k ∈ Zd
}

is a frame of V0 with frame bounds C1 and C2,

it is clear that for all j,
{

mj/2Φ(Ajx − k) : k ∈ Z
d
}

is a frame of Vj with same
frame bounds. So from (3.12), we have

λ
j

C1‖g‖
2 ≤

∑

α∈∆j

∑

k∈Zd

∣

∣〈g, Gα(x − k)〉
∣

∣

2
≤ Λ

j

C2‖g‖
2, ∀ g ∈ Vj . (3.13)

Let V0 = span
{

Φ(x − k) : k ∈ Zd
}

, Vj =
{

f : f(A−j .) ∈ V0

}

and Vj ⊂ Vj+1.
Let W = ∪Vj . Then, it is easy to check that W is invariant under translations
by A−jk and these elements are dense in Rd. Therefore, W is a closed translation
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invariant subspace of L2(Rd)r. Hence, W = L2
E(Rd)r for some E ⊂ Rd (see [17]),

where

L2
E(Rd)r =

{

f ∈ L2(Rd)r : supp f̂ ⊂ E
}

.

Since the basic vector-valued wavelet packets form an orthonormal basis for
L2(Rd)r = ∪Vj , an analogous result holds for the vector-valued wavelet frame
packets if the matrix Q(ξ) defined in (2.15), is unitary. Hence, when Q(ξ) is
unitary for a.e. ξ, then the splitting trick can be operated for infinitely many
times as shown by the following theorem.

Theorem 3.3. Let
{

Φ(x − k) : k ∈ Zd
}

be a frame for its closed linear span V0,

with frame bounds C1 and C2 and let V0 ⊂ V1, where Vj =
{

f : f(A−j .) ∈ V0

}

.

Assume that Q(ξ) is unitary for a.e. ξ. Then
{

Gα(x − k) : α ∈ Zd
+, k ∈ Zd

}

is a

frame for the spaces ∪j≥0Vj with same frame bounds.

More generally, let Ξ = {(a, j) ∈ N0 × Z} be such that
⋃

(a,j)∈Ξ ∆j is a parti-

tion of N0. Then, the collection of functions

FΞ =
{

mj/2Gα(Ajx − k) : (a, j) ∈ Ξ, k ∈ Z
d
}

is a frame for ∪j≥0Vj with same bounds C1 and C2.

Proof. Since Q(ξ) is unitary, λ = Λ = 1 so that the inequalities in (3.12) are
equalities, and from (3.13) we have

C1‖g‖
2 ≤

∑

α∈∆j

∑

k∈Zd

∣

∣〈g, Gα(x − k)〉
∣

∣

2
≤ C2‖g‖

2, ∀ g ∈ Vj . (3.14)

Now, let h ∈ ∪j≥0Vj , then there exists hj ∈ Vj such that hj → h as j → ∞. We
now, fix j, then for j < j′, we have from equation (3.14)

∑

α∈∆j

∑

k∈Zd

∣

∣〈hj′ , Gα(x − k)〉
∣

∣

2
≤ C2‖hj′‖

2.

Letting j′ → ∞ first and then j → ∞, we have for all h ∈ ∪j≥0Vj

∑

α∈Z
d
+

∑

k∈Zd

∣

∣〈h, Gα(x − k)〉
∣

∣

2
≤ C2‖h‖

2. (3.15)

To get the reverse inequality, we again use (3.14)

C1‖hj‖
2 ≤

∑

α∈∆j

∑

k∈Zd

∣

∣〈hj , Gα(x − k)〉
∣

∣

2

=
∑

α∈∆j

∑

k∈Zd

∣

∣〈hj − h, Gα(x − k)〉 + 〈h, Gα(x − k)〉
∣

∣

2
.
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Therefore,

C
1/2
1 ‖hj‖ ≤





∑

α∈∆j

∑

k∈Zd

∣

∣〈hj − h, Gα(x − k)〉
∣

∣

2





1
2

+





∑

α∈∆j

∑

k∈Zd

∣

∣〈h, Gα(x − k)〉
∣

∣

2





1
2

≤ C
1/2
2 ‖hj − h‖ +





∑

α∈∆j

∑

k∈Zd

∣

∣〈h, Gα(x − k)〉
∣

∣

2





1
2

. (by (3.15))

Letting j → ∞, we get

C1‖h‖
2 ≤

∑

α∈Z
d
+

∑

k∈Zd

∣

∣〈h, Gα(x − k)〉
∣

∣

2
, for all h ∈ ∪Vj .

Hence the first part is proved. Since Q(ξ) is unitary, we have λ = Λ = 1 and hence
there must be an equality in (3.9). Therefore,

∑

k∈Zd

∣

∣〈g, m1/2Gα(Ax − k)〉
∣

∣

2
=
∑

σ∈Ω0

∑

k∈Zd

∣

∣〈g, GAµ+σ(x − k)〉
∣

∣

2
.

Using this result, we get
∑

k∈Zd

∣

∣〈g, m2/2Gα(A2x − k)〉
∣

∣

2
=
∑

σ∈Ω0

∑

τ∈Ω0

∑

k∈Zd

∣

∣〈g, GA(Aµ+σ)+τ (x − k)〉
∣

∣

2

=
∑

σ∈∆2

∑

k∈Zd

∣

∣〈g, Gσ(x − k)〉
∣

∣

2
.

Similarly, we obtain
∑

k∈Zd

∣

∣〈g, mj/2Gα(Ajx − k)〉
∣

∣

2
=
∑

σ∈∆j

∑

k∈Zd

∣

∣〈g, Gσ(x − k)〉
∣

∣

2
. (3.16)

From the first part of the theorem, we have

C1‖g‖
2 ≤

∑

α∈Z
d
+

∑

k∈Zd

∣

∣〈g, Gα(x − k)〉
∣

∣

2
≤ C2‖g‖

2, ∀ g ∈ ∪Vj .

But the set Ξ is such that
⋃

(a,j)∈Ξ ∆j = N0. Therefore,

C1‖g‖
2 ≤

∑

(a,j)∈Ξ

∑

σ∈∆j

∑

k∈Zd

∣

∣〈g, Gσ(x − k)〉
∣

∣

2
≤ C2‖g‖

2.

Using (3.16), we get

C1‖g‖
2 ≤

∑

(a,j)∈Ξ

∑

k∈Zd

∣

∣〈g, mj/2Gα(Ajx − k)〉
∣

∣

2
≤ C2‖g‖

2

for all g ∈ ∪Vj . This completes the proof of the theorem complelety.
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