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Abstract : Graph algebras establish a connection between directed graphs with-
out multiple edges and special universal algebras of type (2,0). We say that a
graph G satisfies a term equation s ≈ t if the corresponding graph algebra A(G)
satisfies s ≈ t. A class of graph algebras V is called a graph variety if V = ModgΣ

where Σ is a subset of T (X) × T (X). A graph variety V ′ = ModgΣ
′

is called an

(x(yz))z graph variety if Σ
′

is a set of (x(yz))z term equations.
In this paper we characterize all graphs which satisfy an equation s ≈ t where

s, t are (x(yz))z terms.
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1 Introduction

Graph algebras have been invented in [1] to obtain examples of nonfinitely
based finite algebras. To recall this concept, let G = (V, E) be a (directed) graph
with the vertex set V and the set of edges E ⊆ V × V . Define the graph algebra
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A(G) corresponding to G with the underlying set V ∪ {∞}, where ∞ is a symbol
outside V , and with two basic operations, namely a nullary operation pointing to
∞ and a binary one denoted by juxtaposition, given for u, v ∈ V ∪ {∞} by

uv =

{

u, if (u, v) ∈ E,
∞, otherwise.

In [2], Thongmoon and Poomsa-ard characterized all triregular leftmost with-
out loop and reverse arc graph varieties. In [3], Anantpinitwatna and Poomsa-ard
characterized all (x(yz))z with loop graph varieties.

We say that a graph variety V ′ = ModgΣ
′

is called a (x(yz))z graph variety if

Σ
′

is a set of (x(yz))z term equations. In this paper we characterize all (x(yz))z
graph varieties which Σ

′

is a set of one (x(yz))z term equation.

2 Terms and Graph Varieties

In [4], Pöschel introduced terms for graph algebras, the underlying formal
language has to contain a binary operation symbol (juxtaposition) and a symbol
for the constant ∞.

Definition 2.1. A term over the alphabet

X = {x1, x2, x3, ...}

is defined inductively as follows:

(i) every variable xi, i = 1, 2, 3, ..., and ∞ are terms;

(ii) if t1 and t2 are terms, then t1t2 is a term.

T (X) is the set of all terms which can be obtained from (i) and (ii) in finitely
many steps. Terms built up from the two-element set X2 = {x1, x2} of variables
are thus binary terms. We denote the set of all binary terms by T (X2). The
leftmost variable of a term t is denoted by L(t). A term, in which the symbol ∞
occurs is called a trivial term.

Definition 2.2. For each non-trivial term t of type τ = (2, 0) one can define
a directed graph G(t) = (V (t), E(t)), where the vertex set V (t) is the set of all
variables occurring in t and the edge set E(t) is defined inductively by

E(t) = φ if t is a variable and E(t1t2) = E(t1) ∪ E(t2) ∪ {(L(t1), L(t2))}

where t = t1t2 is a compound term.

L(t) is called the root of the graph G(t), and the pair (G(t), L(t)) is the rooted
graph corresponding to t. Formally, we assign the empty graph φ to every trivial
term t.
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Definition 2.3. A non-trivial term t of type τ = (2, 0) is called an (x(yz))z term
if and only if V (t) = {x, y, z} and (x, y), (y, z), (x, z) ∈ E(t). A term equation
s ≈ t of type τ = (2, 0) is called (x(yz))z term equation if and only if s, t are
(x(yz))z terms.

Definition 2.4. We say that a graph G = (V, E) satisfies a term equation s ≈ t
if the corresponding graph algebra A(G) satisfies s ≈ t (i.e., we have s = t for
every assignment V (s) ∪ V (t) → V ∪ {∞}), and in this case, we write G |= s ≈ t.
Given a class G of graphs and a set Σ of term equations (i.e., Σ ⊂ T (X) × T (X))
we introduce the following notation:

G |= Σ if G |= s ≈ t for all s ≈ t ∈ Σ, G |= s ≈ t if G |= s ≈ t for all G ∈ G,
G |= Σ if G |= Σ for all G ∈ G,

IdG = {s ≈ t | s, t ∈ T (X), G |= s ≈ t}, ModgΣ = {G | G is a graph and
G |= Σ}, Vg(G) = ModgIdG.

Vg(G) is called the graph variety generated by G and G is called graph variety if
Vg(G) = G. G is called equational if there exists a set Σ′ of term equations such
that G = ModgΣ

′. Obviously Vg(G) = G if and only if G is an equational class.

In [4], Pöschel showed that any non-trivial term t over the class of graph
algebras has a uniquely determined normal form term NF (t) and there is an
algorithm to construct the normal form term to a given term t. Without difficulties
one shows G(NF (t)) = G(t), L(NF (t)) = L(t).

Definition 2.5. Let G = (V, E) and G
′

= (V
′

, E
′

) be graphs. A homomorphism
h from G into G′ is a mapping h : V → V

′

carrying edges to edges ,that is, for
which (u, v) ∈ E implies (h(u), h(v)) ∈ E

′

.

In [5], the following proposition was proved:

Proposition 2.6. Let G = (V, E) be a graph and let h : X ∪ {∞} −→ V ∪ {∞}
be an evaluation of the variables such that h(∞) = ∞. Consider the canonical
extension of h to the set of all terms. Then there holds: if t is a trivial term
then h(t) = ∞. Otherwise, if h : G(t) −→ G is a homomorphism of graphs, then
h(t) = h(L(t)), and if h is not a homomorphism of graphs, then h(t) = ∞.

Further in [6] the following proposition was proved:

Proposition 2.7. Let G = (V, E) be a graph s and t be non-trivial terms. Then
G |= s ≈ t if and only if G |= NF (s) ≈ NF (t).

3 (x(yz))z Graph Varieties

By Proposition 2.7, we see that if Σ ⊂ T (X)×T (X) and Σ′ is the set of term
equations NF (s) ≈ NF (t) where s ≈ t ∈ Σ, then ModgΣ and ModgΣ

′ are the
same graph variety. Hence, if we want to find all (x(yz))z graph varieties, then it
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is enough to find all graph varieties ModgΣ
′

such that Σ
′

is any subset of T ′×T ′,
where T ′ is the set of all normal form terms of (x(yz))z terms. Since there are 64
normal form terms of x(yz))z terms (i.e. add loop or reverse arc), there are 4096
(x(yz))z term equations. So, there are 4096 (x(yz))z graph varieties of the form
Modg{s ≈ t} but some of them may be the same graph variety (i.e. there are some
(x(yz))z term equations s ≈ t and s′ ≈ t′ such that Modg{s ≈ t} = Modg{s

′ ≈
t′}). In this study we want to find all different (x(yz))z graph varieties of the form
Modg{s ≈ t}. Clearly, for each s ∈ T ′, K0 = Modg{s ≈ s} is the set of all graph
algebras.

The following proposition was proved in [5].

Proposition 3.1. Let s and t be non-trivial terms from T (X) with variables
V (s) = V (t) = {x0, x1, ..., xn} and L(s) = L(t). Then a graph G = (V, E) satisfies
s ≈ t if and only if the graph algebra A(G) has the following property:

A mapping h : V (s) −→ V is a homomorphism from G(s) into G if and only
if it is a homomorphism from G(t) into G.

Proposition 3.1 gives a method to check whether a graph G = (V, E) satisfies
the term equation s ≈ t. The following are all graphs with at most three vertices
which satisfy at least one term equation s ≈ t, s, t ∈ T ′ and s 6= t.
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Next, we will use these graphs to find all different x(yz))z graph varieties and
characterize the properties of those graph varieties in the following way:

Since (x, y), (y, z), (x, z) belong to the graph G(s) for every (x(yz))z term
s, for any graph G = (V, E) which there are no vertices a, b, c ∈ V such that
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(a, b), (b, c), (a, c) ∈ E, we have the function h : V (s) → V is not a homomor-
phism from G(s) into G for all h and for all (x(yz))z terms s. By Proposi-
tion 3.1, we get G belongs to every (x(yz))z graph variety. In the same way,
for any complete graph G′ = (V ′, E′) we have the function h′ : V (s) → V ′

is a homomorphism from G(s) into G′ for all h′ and for all (x(yz))z terms s.
Hence, G′ belongs to every (x(yz))z graph variety. Let G = (V, E) with at most
three vertices a, b, c ∈ V such that (a, b), (b, c), (a, c) ∈ E but G is not a com-
plete graph and let s∗ = ((xx)(((yx)y)(((zx)y)z)))z. We will partition the edges
of G(s∗) with respect to G in the following way. Let AG be the set of edges
(u, v) ∈ E(s∗) such that (h(u), h(v)) ∈ E for all onto functions h : V (s∗) → V
which (h(x), h(y)), (h(y), h(z)), (h(x), h(z)) ∈ E, BG be the set of edges (u, v) ∈
E(s∗) such that (h(u), h(v)) ∈ E for some onto functions h : V (s∗) → V which
(h(x), h(y)), (h(y), h(z)), (h(x), h(z)) ∈ E and (h(u), h(v)) /∈ E for some onto func-
tions h : V (s∗) → V which (h(x), h(y)), (h(y), h(z)), (h(x), h(z)) ∈ E, CG be
the set of edges (u, v) ∈ E(s∗) such that (h(u), h(v)) /∈ E for all onto functions
h : V (s∗) → V which (h(x), h(y)), (h(y), h(z)), (h(x), h(z)) ∈ E. We see that
(x, y), (y, z), (x, z) ∈ AG for all G. Then, we have the following lemma.

Lemma 3.2. Let G = (V, E) with at most three vertices a, b, c ∈ V such that
(a, b), (b, c), (a, c) ∈ E but G is not a complete graph and Modg{s ≈ t} be an
(x(yz))z graph variety. Then, G /∈ Modg{s ≈ t} if and only if (i) E(s) contains
only element of AG and E(t) contains some elements of BG ∪CG or vise versa or
(ii) E(s) contains only element of AG ∪BG, E(t) contains some elements of BG ∪
CG and there exists a function h : V (s) → V such that (h(x), h(y)), (h(y), h(z)),
(h(x), h(z)) ∈ E which is a homomorphism from G(s) into G but it is not a
homomorphism from G(t) into G or vise versa

Proof. Suppose that G /∈ Modg{s ≈ t}. If E(s) and E(t) contain only element of
AG, then the function h : V (s) → V which (h(x), h(y)), (h(y), h(z)), (h(x), h(z)) ∈
E is a homomorphism from both G(s) and G(t) into G. Hence, the function h′ :
V (s) → V is a homomorphism from G(s) into G if and only if it is a homomorphism
from G(t) into G. By Proposition 3.1, we get G ∈ Modg{s ≈ t}. If both of
E(s) and E(t) contain element of CG, then the function h : V (s) → V which
(h(x), h(y)), (h(y), h(z)), (h(x), h(z)) ∈ E is not a homomorphism from both G(s)
and G(t) into G. Hence, the function h′ : V (s) → V is not a homomorphism
from both G(s) and G(t) into G. By Proposition 3.1, we get G ∈ Modg{s ≈
t}. Suppose that E(s) contains only element of AG ∪ BG, E(t) contains some
elements of BG ∪ CG and there exists no a function h : V (s) → V such that
(h(x), h(y)), (h(y), h(z)), (h(x), h(z)) ∈ E which is a homomorphism from G(s)
into G but it is not a homomorphism from G(t) into G. Hence, the function h′ :
V (s) → V is a homomorphism from G(s) into G if and only if it is a homomorphism
from G(t) into G. By Proposition 3.1, we get G ∈ Modg{s ≈ t}.

Conversely, suppose s and t satisfying (i) or (ii). Suppose that E(s) contains
only element of AG and E(t) contains some elements of BG ∪ CG. Let (u, v) ∈
BG ∪ CG and (u, v) ∈ E(t). We have there exists a function h : V (t) → V which
(h(x), h(y)), (h(y), h(z)), (h(x), h(z)) ∈ E such that (h(u), h(v)) /∈ E. Hence, h
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is not a homomorphism G(t) into G. By assumption, we get (h(u′), h(v′)) ∈ E
for all (u′, v′) ∈ E(s). Hence, h is a homomorphism from G(s) into G. By
Proposition 3.1, we get G /∈ Modg{s ≈ t}. Suppose that E(s) contains only
element of AG ∪ BG, E(t) contains some elements of BG ∪ CG and there exists a
function h : V (s) → V such that (h(x), h(y)), (h(y), h(z)), (h(x), h(z)) ∈ E which
is a homomorphism from G(s) into G but it is not a homomorphism from G(t)
into G. By Proposition 3.1, we get G /∈ Modg{s ≈ t}.

From Lemma 3.1, we have some remarks.

Remark 3.3. Let K = Modg{s ≈ t}. Then, we have

(i) G4 ∈ K if and only if E(s) ⊆ AG4
, E(t) ⊆ AG4

or E(s) ∩ CG4
6= φ,

E(t) ∩ CG4
6= φ,

(ii) G5 ∈ K if and only if E(s) ⊆ AG5
, E(t) ⊆ AG5

or E(s) ∩ CG5
6= φ,

E(t) ∩ CG5
6= φ,

(iii) G6 ∈ K if and only if E(s) ∩ (BG6
∪ CG6

) = E(t) ∩ (BG6
∪ CG6

) or both of
E(s) and E(t) contain either (z, x) or (y, x), (z, y),

(iv) G8 ∈ K if and only if E(s) ∩ BG8
= E(t) ∩ BG8

.

Consider the graph at most two vertices, G1, G2, G3, G4, G5, G6, G7, G8,
G9. We see that the graphs G1, G2, G3, G7, G9 belong to every (x(yz))z graph
variety. For convenience to classify the (x(yz))z graph varieties, we will partition
the set of all (x(yz))z graph varieties in to at most sixteen sets which generated by
G4, G5, G6 and G8 i.e. the set of graph varieties which do not contain all of G4,
G5, G6 and G8, the set of graph varieties which contain only G4, the set of graph
varieties which contain only G5, the set of graph varieties which contain only G6,
the set of graph varieties which contain only G8, the set of graph varieties which
contain only G4 and G5, and so on until the set of graph varieties which contain
all of G4, G5, G6 and G8. We will denote these classes by Gi, i = 1, 2, 3, ..., 16
respectively. By Lemma 3.1 and Remark 3.1, we have G11,G14,G15 are empty sets,
since if G6, G8 belong to graph variety K, then G4, G5 belong to graph variety K.

Next we will use Lemma 3.1 to classify graph varieties in each Gi, i = 1, 2, 3, ...,
16. In this case we need the AG, BG and CG of any graph which consider. We see
that (x, y), (y, z), (x, z) ∈ AG for every G. We collect these properties of graphs
which we need to consider as the following:

AG4
= {(y, y), (z, y), (z, z)}, BG4

= φ, CG4
= {(x, x), (y, x), (z, x)}.

AG5
= {(x, x), (y, x), (y, y)}, BG5

= φ, CG5
= {(z, x), (z, y), (z, z)}.

AG6
= {(x, x), (y, y), (z, z)}, BG6

= {(y, x), (z, y)}, CG6
= {(z, x)}.

AG8
= {(y, x), (z, x), (z, y)}, BG8

= {(x, x), (y, y), (z, z)}, CG8
= φ.

AG52
= φ, BG52

= φ, CG52
= {(x, x), (y, y), (z, z), (y, x), (z, x), (z, y)}.

AG60
= {(z, y)}, BG60

= φ, CG60
= {(x, x), (y, y), (z, z), (y, x), (z, x)}.

AG70
= {(z, x)}, BG70

= φ, CG70
= {(x, x), (y, y), (z, z), (y, x), (z, y)}.

AG78
= {(y, x)}, BG78

= φ, CG78
= {(x, x), (y, y), (z, z), (z, x), (z, y)}.
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AG84
= φ, BG84

= {(y, x), (z, x), (z, y)}, CG84
= {(x, x), (y, y), (z, z)}.

AG92
= {(y, x), (z, x), (z, y)}, BG92

= φ, CG92
= {(x, x), (y, y), (z, z)}.

Since G1 is the set of all graph varieties which do not contain all of G4, G5, G6,
G8, we see that each element of G1 contain at most these graphs G1, G2, G3, G7,
G9, G10, G16, G24, G30, G38, G46, G51, G52, G60, G66, G70, G78, G84, G92, G95.
We have G1, G2, G3, G7, G9, G10, G16, G24, G30, G38, G46, G51, G66, G95 belong
to all graph varieties in G1. Hence, the graph varieties in G1 generated by G52,
G60, G70, G78, G84, G92 are given as the following theorem:

Theorem 3.4. There are only seven graph varieties in G1.

Proof. Since elements of G1 generated by G52, G60, G70, G78, G84, G92, we see
that G1 has at most sixty four graph varieties. From the properties of G4, G5, G6,
G8, G52, G60, G70, G78, G84, G92, by Lemma 3.1 and the properties of G1, we
have the following:

Consider for G52, by Lemma 3.1 we see that G52 /∈ K = Modg{s ≈ t} if s =
(x(yz))z, E(t)∩CG4

6= φ, E(t)∩CG5
6= φ, E(t)∩(BG6

∪CG6
) 6= φ, E(t)∩BG8

6= φ
and E(t)∩CG52

6= φ. Since E(t)∩BG8
6= φ, we have K does not contain all of G52

G60, G70, G78, G84, G92. Hence, the graph variety in G1 which does not contain all
of G52, G60, G70, G78, G84, G92 is K1 = Modg{(x(yz))z ≈ ((xx)(y(zx)))z}.

For G60, we see that G60 /∈ K = Modg{s ≈ t} different from K1 if s =
(x(y(zy)))z, E(t) ∩ CG4

6= φ, E(t) ⊆ AG5
, E(t) ∩ BG8

6= φ and E(t) ∩ CG60
6= φ

which there is one graph variety. The graph variety in G1 which does not contain
only G60, G84, G92 is K2 = Modg{(x(y(zy)))z ≈ ((xx)(yz))z}.

For G70, we see that G70 /∈ K = Modg{s ≈ t} different from K1, K2 if
s = (x(y(zx)))z, E(t) ⊆ AG4

, E(t) ⊆ AG5
, E(t) ∩ BG8

6= φ and E(t) ∩ CG70
6= φ

which there is one graph variety. The graph variety in G1 which does not contain
only G70, G84, G92 is K3 = Modg{(x(y(zx)))z ≈ (x((yy)z))z}.

For G78, we see that G78 /∈ K = Modg{s ≈ t} different from K1, K2, K3 if
s = (x((yx)z))z, E(t) ⊆ AG4

, E(t)∩CG5
6= φ, E(t)∩BG8

6= φ and E(t)∩CG78
6= φ

which there is one graph variety. The graph variety in G1 which does not contain
only G78, G84, G92 is K4 = Modg{(x((yx)z))z ≈ (x(y(zz)))z}.

For G84, we see that G84 /∈ K = Modg{s ≈ t} different from K1, K2, K3, K4

if s = (x((yx)(zy)))z or s = (x((yx)(zx)))z or s = (x(y((zx)y)))z, E(t) ⊆ AG4
,

E(t) ⊆ AG5
and E(t) ∩ CG84

6= φ which there is one graph variety. The graph
variety in G1 which does not contain only G84, G92 is K5 = Modg{(x((yx)(zy)))z ≈
(x((yy)z))z}.

For G92, we see that G92 /∈ K = Modg{s ≈ t} different from K1, K2, K3, K4,
K5 if s = (x((yx)((zx)y)))z), E(t) ⊆ AG4

, E(t) ⊆ AG5
and E(t)∩CG92

6= φ which
there is one graph variety. The graph variety in G1 which does not contain only
G92 is K6 = Modg{(x((yx)((zx)y)))z ≈ (x((yy)z))z}.

The graph variety which contains all G52, G60, G70, G78, G84, G92 is K7 =
Modg{((xx)((yx)z))z ≈ (x((yy)(zy)))z}. By the properties of G4, G5, G6, G8,
G52, G60, G70, G78, G84, G92, by Lemma 3.1 and the properties of G1, we have
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there are no other graph varieties in G1. Hence, there are only seven graph varieties
in G1.

Next, we will use the Proposition 3.1 to characterize the properties of the
graphs in each graph variety in G1.

Theorem 3.5. Let G = (V, E) be a graph and K1 = Modg{(x(yz))z ≈ ((xx)(y(zx)
))z}. Then, G ∈ K if and only if for any a, b, c ∈ V if (a, b), (b, c), (a, c) ∈ E, then
(a, a), (c, a) ∈ E.

Proof. Let G = (V, E) be a graph. Suppose that G ∈ K1 and for any a, b, c ∈ V ,
(a, b), (b, c), (a, c) ∈ E. Let s = (x(yz))z, t = ((xx)(y(zx)))z and let h : V (s) →
V be a function such that h(x) = a, h(y) = b and h(z) = c. We see that
h is a homomorphism from G(s) into G. By Proposition 3.1, we have h is a
homomorphism from G(t) into G. Since (x, x) ∈ E(t) and (z, x) ∈ E(t), we have
(h(x), h(x)) = (a, a) ∈ E and (h(z), h(x)) = (c, a) ∈ E.

Conversely, suppose that G = (V, E) is a graph which has property that, for
any a, b, c ∈ V if (a, b), (b, c), (a, c) ∈ E, then (a, a), (c, a) ∈ E. Let s = (x(yz))z,
t = ((xx)(y(zx)))z and let h : V (s) → V be a function. Suppose that h is
a homomorphism from G(s) into G. Since (x, y), (y, z), (x, z) ∈ E(s), we have
(h(x), h(y)), (h(y), h(z)), (h(x), h(z)) ∈ E. By assumption, we get (h(x), h(x)), (h(z
), h(x)) ∈ E. Hence, h is a homomorphism from G(t)) into G. Clearly, if h is a
homomorphism from G(t) into G, then it is a homomorphism from G(s) into G.
Then, by Proposition 3.1 we get A(G) satisfies s ≈ t.

Theorem 3.6. Let G = (V, E) be a graph and K2 = Modg{(x(y(zy)))z ≈
((xx)(yz))z}. Then, G ∈ K2 if and only if for any a, b, c ∈ V if (a, b), (b, c), (a, c) ∈
E, then (c, b) ∈ E if and only if (a, a) ∈ E.

Proof. Let G = (V, E) be a graph. Suppose that G ∈ K2 and for any a, b, c ∈ V
suppose that (a, b), (b, c), (a, c), (c, b) ∈ E. Let s = (x(y(zy)))z, t = ((xx)(yz))z}
and let h : V (s) → V be a function such that h(x) = a, h(y) = b and h(z) = c. We
see that h is a homomorphism from G(s) into G. By Proposition 3.1, we have h
is a homomorphism from G(t) into G. Since (x, x) ∈ E(t), we have (h(x), h(x)) =
(a, a) ∈ E. For any a, b, c ∈ V suppose that (a, b), (b, c), (a, c), (a, a) ∈ E. Let
s = (x(y(zy)))z, t = ((xx)(yz))z} and let h : V (s) → V be a function such that
h(x) = a, h(y) = b and h(z) = c. We see that h is a homomorphism from G(t)
into G. By Proposition 3.1, we have h is a homomorphism from G(s) into G. Since
(z, y) ∈ E(t), we have (h(z), h(y)) = (c, b) ∈ E.

Conversely, suppose that G = (V, E) is a graph which has property that, for
any a, b, c ∈ V if (a, b), (b, c), (a, c) ∈ E, then (c, b) ∈ E if and only if (a, a) ∈ E. Let
s = (x(y(zy)))z, t = ((xx)(yz))z and let h : V (s) → V be a function. Suppose that
h is a homomorphism from G(s) into G. Since (x, y), (y, z), (x, z), (z, y) ∈ E(s),
we have (h(x), h(y)), (h(y), h(z)), (h(x), h(z)), (h(z), h(y)) ∈ E. By assumption,
we get (h(x), h(x)) ∈ E. Hence, h is a homomorphism from G(t)) into G. In the
same way, we can prove that if h is a homomorphism from G(t) into G, then it is a
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homomorphism from G(s) into G. Then, by Proposition 3.1 we get A(G) satisfies
s ≈ t.

Theorem 3.7. Let G = (V, E) be a graph and K3 = Modg{(x(y(zx)))z ≈
(x((yy)z))z}. Then G ∈ K3 if and only if for any a, b, c ∈ V if (a, b), (b, c), (a, c) ∈
E, then (c, a) ∈ E if and only if (b, b) ∈ E.

Proof. The proof is similar to the proof of Theorem 3.6.

Theorem 3.8. Let G = (V, E) be a graph and K4 = Modg{(x((yx)z))z ≈
(x(y(zz)))z}. Then G ∈ K4 if and only if for any a, b, c ∈ V if (a, b), (b, c), (a, c) ∈
E, then (b, a) ∈ E if and only if (c, c) ∈ E.

Proof. The proof is similar to the proof of Theorem 3.6.

Theorem 3.9. Let G = (V, E) be a graph and K5 = Modg{(x((yx)(zy)))z ≈
(x((yy)z))z}. Then G ∈ K5 if and only if for any a, b, c ∈ V if (a, b), (b, c), (a, c) ∈
E, then (b, a), (c, b) ∈ E if and only if (b, b) ∈ E.

Proof. Let G = (V, E) be a graph. Suppose that G ∈ K5. For any a, b, c ∈ V ,
suppose that (a, b), (b, c), (a, c), (b, a), (c, b) ∈ E. Let s = (x((yx)(zy)))z, t =
(x((yy)z))z and let h : V (s) → V be a function such that h(x) = a, h(y) = b and
h(z) = c. We see that h is a homomorphism from G(s) into G. By Propo-
sition 3.1, we have h is a homomorphism from G(t) into G. Since (y, y) ∈
E(t), we have (h(y), h(y)) = (b, b) ∈ E. In the same way, we can prove that
if (a, b), (b, c), (a, c), (b, b) ∈ E, then (b, a), (c, b) ∈ E.

Conversely, suppose that G = (V, E) be a graph which has property that,
for any a, b, c ∈ V if (a, b), (b, c), (a, c) ∈ E, then (b, a), (c, b) ∈ E if and only
if (b, b) ∈ E. Let s = (x((yx)(zy)))z, t = (x((yy)z))z and let h : V (s) → V
be a function. Suppose that h is a homomorphism from G(s) into G. Since
(x, y), (y, z), (x, z), (y, x), (z, y) ∈ E(s), we have (h(x), h(y)), (h(y), h(z)), (h(x),
h(z)), (h(y), h(x)), (h(z), h(y)) ∈ E. By assumption, we get (h(y), h(y)) ∈ E.
Hence, h is a homomorphism from G(t)) into G. In the same way, we can prove
that if h is a homomorphism from G(t) into G, then it is a homomorphism from
G(s) into G. Then, by Proposition 3.1 we get A(G) satisfies s ≈ t.

Theorem 3.10. Let G = (V, E) be a graph and K6 = Modg{(x((yx)((zx)y)))z ≈
(x((yy)z))z}. Then G ∈ K6 if and only if for any a, b, c ∈ V if (a, b), (b, c), (a, c) ∈
E, then (b, a), (c, a), (c, b) ∈ E if and only if (b, b) ∈ E.

Proof. The proof is similar to the proof of Theorem 3.9.

Theorem 3.11. Let G = (V, E) be a graph and K7 = Modg{((xx)((yx)z))z ≈
(x((yy)(zy)))z}. Then G ∈ K7 if and only if for any a, b, c ∈ V if (a, b), (b, c), (a, c)
∈ E, then (a, a), (b, a) ∈ E if and only if (b, b), (c, b) ∈ E.

Proof. The proof is similar to that of Theorem 3.9.
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Consider the same as G1, we have the graph varieties in G2 are generated by
G52, G55, G60, G70, G78, G80, G84, G92. The graph varieties in G3 are generated
by G52, G54, G60, G62, G70, G78, G82, G84, G92. The graph varieties in G4 are
generated by G52, G59, G60, G65, G70, G77, G78, G83, G84, G91, G92. The graph
varieties in G5 are generated by G52, G60, G70, G78, G84, G85, G92, G93, G94. The
graph varieties in G6 are generated by G53, G54, G55, G60, G62, G64, G70, G72,
G75, G78, G80, G82, G84, G92. The graph varieties in G7 are generated by G52,
G55, G57, G59, G60, G64, G65, G70, G77, G78, G80, G83, G84, G91, G92. The graph
varieties in G8 are generated by G52, G55, G60, G61, G64, G70, G73, G78, G80, G84,
G85, G87, G89, G92, G93, G94. The graph varieties in G9 are generated by G52,
G54, G59, G60, G62, G65, G70, G77, G78, G82, G83, G84, G91, G92. The graph
varieties in G10 are generated by G52, G54, G60, G62, G70, G71, G78, G79, G82,
G84, G85, G86, G88, G92, G93, G94. The graph varieties in G12 are generated by
G52, G53, G54, G55, G56, G57, G58, G59, G60, G62, G64, G65, G70, G72, G75, G77,
G78, G80, G82, G83, G84, G91, G92. The graph varieties in G13 are generated by
G52, G53, G54, G55, G60, G61, G62, G64, G70, G71, G72, G73, G75, G78, G79, G80,
G82, G84, G85 G86, G87, G88, G89, G92, G93, G94. The graph varieties in G16 are
generated by G52, G53, G54, G55, G56, G57, G58, G59, G60, G61, G62, G63, G64,
G65,, G70, G71, G72, G73, G74, G75, G76, G77, G78, G79, G80, G81, G82, G83, G84,
G85, G86, G87, G88, G89, G90, G91, G92, G93, G94. By the same method that use
in G1, we get all graph varieties in other classes and the properties of graphs as
the following table:

Table. Other (x(yz))z graph varieties and the properties of graphs.
Graph variety Properties of graphs, for any a,

b, c ∈ V if (a, b), (b, c), (a, c) ∈ E,
K8 = Modg{(x((yx)z))z then (b, a) ∈ E iff

≈ (x((yy)(zy)))z} (b, b), (c, b) ∈ E.
K9 = Modg{(x(y(zy)))z then (c, b) ∈ E iff

≈ (x((yy)z))z} (b, b) ∈ E.
K10 = Modg{(x(y(zx)))z then (c, a) ∈ E iff

≈ ((xx)(yz))z} (a, a) ∈ E.
K11 = Modg{(x((yx)z))z then (b, a) ∈ E iff

≈ ((xx)(y(zx)))z} (a, a), (c, a) ∈ E.
K12 = Modg{(x((yx)(zz)))z then (b, a), (c, c) ∈ E iff

≈ ((xx)(yz))z} (a, a) ∈ E.
K13 = Modg{(x((yx)(zy)))z (b, a), (c, b) ∈ E iff

≈ ((xx)(yz))z} (a, a) ∈ E.
K14 = Modg{(x((yx)((zx)y)))z (b, a), (c, a), (c, b) ∈ E

≈ ((xx)(yz))z} iff (a, a) ∈ E.
K15 = Modg{((xx)(y(zy)))z (a, a), (c, b) ∈ E iff

≈ (x(((yx)y)z))z} (b, a), (b, b) ∈ E.
K16 = Modg{(x(yz))z then (a, a), (b, a) ∈ E.

≈ ((xx)((yx)z))z}
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Table. (continue).
Graph variety Properties of graphs, for any a,

b, c ∈ V if (a, b), (b, c), (a, c) ∈ E,
K17 = Modg{(x(y(zy)))z then (c, b) ∈ E iff

≈ (x(y((zx)z)))z} (c, a), (c, c) ∈ E.
K18 = Modg{((xx)(y(zy)))z then (a, a), (c, b) ∈ E iff

≈ (x(y(zz)))z} (c, c) ∈ E.
K19 = Modg{(x(y(zx)))z then (c, a) ∈ E iff

≈ (x(y(zz)))z} (c, c) ∈ E.
K20 = Modg{(x((yx)z))z then (b, a) ∈ E iff

≈ (x((yy)z))z} (b, b) ∈ E.
K21 = Modg{(x((yx)(zy)))z then (b, a), (c, b) ∈ E iff

≈ (x(y(zz)))z} (c, c) ∈ E.
K22 = Modg{(x((yx)((zx)y)))z then (b, a), (c, a), (c, b) ∈ E

≈ (x(y(zz)))z} iff (c, c) ∈ E.
K23 = Modg{(x((yx)(zz)))z then (b, a), (c, c) ∈ E iff

≈ (x((yy)(zx)))z} (b, b), (c, a) ∈ E.
K24 = Modg{(x(yz))z then (a, a), (c, c) ∈ E.

≈ ((xx)(y(zz)))z}
K25 = Modg{((xx)(yz))z then (a, a) ∈ E iff

≈ (x((yy)(zz)))z} (b, b), (c, c) ∈ E.
K26 = Modg{(x(yz))z then (c, a) ∈ E.

≈ (x(y(zx)))z}
K27 = Modg{(x(yz))z then (b, a), (c, b) ∈ E.

≈ (x((yx)(zy)))z}
K28 = Modg{(x(y(zy)))z then (c, b) ∈ E iff

≈ (x((yx)z))z} (b, a) ∈ E.
K29 = Modg{(x((yy)z))z and (b, b) ∈ E, then

≈ (x((yy)(zx)))z} (c, a) ∈ E.
K30 = Modg{((xx)(yz))z then (a, a) ∈ E iff

≈ (x((yx)z))z} (b, a) ∈ E.
K31 = Modg{((xx)(yz))z then (a, a) ∈ E iff

≈ (x(((yx)y)z))z} (b, a), (b, b) ∈ E.
K32 = Modg{(x(y(zz))z then (c, c) ∈ E iff

≈ (x(y(zy)))z} (c, b) ∈ E.
K33 = Modg{(x(y(zz))z then (c, c) ∈ E iff

≈ (x((yy)(zy)))z} (b, b), (c, b) ∈ E.
K34 = Modg{(x(y(zy))z then (c, b) ∈ E iff

≈ (x((yy)(zz)))z} (b, b), (c, c) ∈ E.
K35 = Modg{((xx)(y(zy)))z then (a, a), (c, b) ∈ E iff

≈ (x(y(zx))z} (c, a) ∈ E.
K36 = Modg{((xx)(y(zy))z then (a, a), (c, b) ∈ E

≈ (x((yy)(zx)))z} iff (b, b), (c, a) ∈ E.
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Table. (continue).
Graph variety Properties of graphs, for any a,

b, c ∈ V if (a, b), (b, c), (a, c) ∈ E,
K37 = Modg{((xx)(y(zy))z then (a, a), (c, b) ∈ E iff

≈ (x((yx)(zz)))z} (b, a), (c, c) ∈ E.
K38 = Modg{((xx)(y(zy))z then (a, a), (c, b) ∈ E iff

≈ (x(y((zx)z)))z} (c, a), (c, c) ∈ E.
K39 = Modg{((xx)(y(zy))z then (a, a), (c, b) ∈ E iff

≈ (x((yx)(zx)))z} (b, a), (c, a) ∈ E.
K40 = Modg{((xx)(y(zy))z and (c, b) ∈ E, then

≈ (x((yx)((zx)y)))z} (a, a) ∈ E iff (b, a), (c, a) ∈ E.
K41 = Modg{(x(y(zx))z then (c, a) ∈ E iff

≈ (x((yx)(zz)))z} (b, a), (c, c) ∈ E.
K42 = Modg{(x(y(zx))z} then (c, a) ∈ E iff

≈ ((xx)(y(zy)))z} (a, a), (c, b) ∈ E.
K43 = Modg{(x(y(zx)))z} then (c, a) ∈ E iff

≈ ((xx)(y(zz)))z} (a, a), (c, c) ∈ E.
K44 = Modg{(x((yy)(zx)))z then (b, b), (c, a) ∈ E iff

≈ (x((yx)(zz)))z} (b, a), (c, c) ∈ E.
K45 = Modg{(x((yy)(zx)))z then (b, b), (c, a) ∈ E iff

≈ ((xx)(y(zz)))z} (a, a), (c, c) ∈ E.
K46 = Modg{((xx)(y(zz)))z then (a, a), (c, c) ∈ E iff

≈ (x((yx)(zy)))z} (b, a), (c, b) ∈ E.
K47 = Modg{((xx)(y(zz)))z and (c, c) ∈ E, then

≈ (x((yx)(zz))z} (a, a) ∈ E iff (b, a) ∈ E.
K48 = Modg{(x(y((zx)z)))z then (c, a) ∈ E iff

≈ ((xx)(y(zy))z} (a, a), (c, b) ∈ E.
K49 = Modg{(x((yx)z))z then (b, a) ∈ E iff

≈ ((xx)((yy)z))z} (a, a), (b, b) ∈ E.
K50 = Modg{(x((yx)(zz)))z and (b, a) ∈ E, then

≈ (x((yx)(zy)))z} (c, c) ∈ E iff (c, b) ∈ E.
K51 = Modg{(x((yx)(zz)))z then (b, a), (c, c) ∈ E iff

≈ ((xx)(y((zx)y)))z} (a, a), (c, a), (c, b) ∈ E.
K52 = Modg{(x((yx)(zz)))z and (b, a) ∈ E, then

≈ (x((yx)((zx)y)))z} (c, c) ∈ E iff (c, a), (c, b) ∈ E.
K53 = Modg{(x((yx)(zy))z then (b, a), (c, b) ∈ E iff

≈ ((xx)((yy)(zz)))z} (a, a), (b, b), (c, c) ∈ E.
K54 = Modg{(x((yx)((zx)y))z then (b, a), (c, a), (c, b) ∈ E iff

≈ ((xx)((yy)(zz)))z} (a, a), (b, b), (c, c) ∈ E.
K55 = Modg{(x(((yx)y)(zx)))z then (b, a), (b, b), (c, a) ∈ E iff

≈ ((xx)(y((zy)z)))z} (a, a), (c, b), (c, c) ∈ E.
K56 = Modg{(x(yz))z then (c, c) ∈ E.

≈ (x(y(zz)))z}
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Table. (continue).
Graph variety Properties of graphs, for any a,

b, c ∈ V if (a, b), (b, c), (a, c) ∈ E,
K57 = Modg{(x(yz))z then (b, b), (c, c) ∈ E.

≈ (x((yy)(zz)))z}
K58 = Modg{(x(y(zz)))z then (c, c) ∈ E iff

≈ (x((yy)z))z} (b, b) ∈ E.
K59 = Modg{(x((yx)z)))z and (b, a) ∈ E, then

≈ (x((yx)(zz)))z} (c, c) ∈ E.
K60 = Modg{(x((yx)z)))z and (b, a) ∈ E, then

≈ (x(((yx)y)(zz)))z} (b, b), (c, c) ∈ E.
K61 = Modg{(x((yx)(zz))))z and (b, a) ∈ E, then

≈ ((xx)((yx)z))z} (c, c) ∈ E iff (a, a) ∈ E.
K62 = Modg{(x(yz))z then (c, b) ∈ E.

≈ (x(y(zy)))z}
K63 = Modg{(x(y(zx))z then (c, a) ∈ E iff

≈ (x((yx)z))z} (b, a) ∈ E.
K64 = Modg{(x((yx)z)z and (b, a) ∈ E, then

≈ (x((yx)(zy)))z} (c, b) ∈ E.
K65 = Modg{((xx)((yx)z)z and (a, a) ∈ E, then

≈ ((xx)(y(zy)))z} (b, a) ∈ E iff (c, b) ∈ E.
K66 = Modg{(x((yy)(zx))))z and (b, b) ∈ E, then

≈ (x(((yx)y)z)))z} (c, a) ∈ E iff (b, a) ∈ E.
K67 = Modg{(x((yy)(zx))))z and (b, b) ∈ E, then

≈ (x(((yx)y)z)))z} (c, a) ∈ E iff (b, a) ∈ E.
K68 = Modg{((xx)((yx)(zz))))z and (a, a) ∈ E, then

≈ ((xx)(y((zy)z))))z} (b, a), (c, c) ∈ E iff (c, b) ∈ E.
K69 = Modg{(x(yz))z then (a, a) ∈ E.

≈ ((xx)(yz))z}
K70 = Modg{(x(yz))z then (a, a), (b, b) ∈ E.

≈ ((xx)((yy)z))z}
K71 = Modg{((xx)(yz))z then (a, a) ∈ E iff

≈ (x((yy)z))z} (b, b) ∈ E.
K72 = Modg{(x(y(zy)))z and (c, b) ∈ E, then

≈ ((xx)(y(zy)))z} (a, a) ∈ E.
K73 = Modg{(x(y(zy)))z and (c, b) ∈ E, then

≈ ((xx)(y((zy)z)))z} (a, a), (c, c) ∈ E.
K74 = Modg{((xx)(y(zy)))z and (c, b) ∈ E, then

≈ (x(y((zy)z)))z} (a, a) ∈ E iff (c, c) ∈ E.
K75 = Modg{(x(yz))z then (b, a) ∈ E.

≈ (x((yx)z))z}
K76 = Modg{(x(y(zy)))z then (c, b) ∈ E iff

≈ (x(y(zx)))z} (c, a) ∈ E.
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Table. (continue).
Graph variety Properties of graphs, for any a,

b, c ∈ V if (a, b), (b, c), (a, c) ∈ E,
K77 = Modg{(x(y(zy)))z and (c, b) ∈ E, then

≈ (x((yx)(zy))z} (b, a) ∈ E.
K78 = Modg{(x(y(zz)))z and (c, c) ∈ E, then

≈ (x((yx)(zz))z} (b, a) ∈ E.
K79 = Modg{(x((yy)z))z and (b, b) ∈ E, then

≈ (x((yy)(zy))z} (c, b) ∈ E.
K80 = Modg{(x(yz))z then (b, b) ∈ E.

≈ (x((yy)z))z}
K81 = Modg{((xx)(yz))z and (a, a) ∈ E, then

≈ ((xx)((yy)z))z} (b, b) ∈ E.
K82 = Modg{(x(y(zz)))z and (c, c) ∈ E, then

≈ (x((yy)(zz)))z} (b, b) ∈ E.
K83 = Modg{((xx)(y(zz)))z and (a, a), (c, c) ∈ E, then

≈ ((xx)((yy)(zz)))z} (b, b) ∈ E.
K84 = Modg{(x(y(zy)))z and (c, b) ∈ E, then

≈ (x((yy)(zy)))z} (b, b) ∈ E.
K85 = Modg{((xx)(y(zy)))z and (a, a), (c, b) ∈ E, then

≈ ((xx)((yy)(zy)))z} (b, b) ∈ E.
K86 = Modg{(x(y(zx)))z and (c, a) ∈ E, then

≈ ((xx)(y(zx)))z} (a, a) ∈ E.
K87 = Modg{(x(y(zx)))z and (c, a) ∈ E, then

≈ (x((yy)(zx)))z} (b, b) ∈ E.
K88 = Modg{(x(y(zx)))z and (c, a) ∈ E, then

≈ ((xx)((yy)(zx)))z} (a, a), (b, b) ∈ E.
K89 = Modg{(x(y(zx)))z then (c, a) ∈ E iff

≈ (x((yx)(zy)))z} (b, a), (c, b) ∈ E.
K90 = Modg{(x((yy)(zx)))z and (c, a) ∈ E, then

≈ ((xx)(y(zx)))z} (b, b) ∈ E iff (a, a) ∈ E.
K91 = Modg{(x((yy)(zx)))z and (b, b), (c, a) ∈ E, then

≈ ((xx)((yy)(zx)))z} (a, a) ∈ E.
K92 = Modg{(x((yy)(zx)))z then (b, b), (c, a) ∈ E iff

≈ ((xx)((yx)(zy)))z} (a, a), (b, a), (c, b) ∈ E.
K93 = Modg{(x((yy)(zx)))z then (b, b), (c, a) ∈ E iff

≈ (x((yx)(zy)))z} (b, a), (c, b) ∈ E.
K94 = Modg{((xx)(y(zx)))z and (a, a), (c, a) ∈ E, then

≈ ((xx)((yy)(zx)))z} (b, b) ∈ E.
K95 = Modg{((xx)(y(zx)))z then (a, a), (c, a) ∈ E iff

≈ (x((yx)(zy)))z} (b, a), (c, b) ∈ E.
K96 = Modg{((xx)(y(zx)))z then (a, a), (c, a) ∈ E iff

≈ (x(((yx)y)(zy)))z} (b, a), (b, b), (c, b) ∈ E.
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Table. (continue).
Graph variety Properties of graphs, for any a,

b, c ∈ V if (a, b), (b, c), (a, c) ∈ E,
K97 = Modg{((xx)((yy)(zx)))z then (a, a), (b, b), (c, a) ∈ E iff

≈ (x((yx)(zy)))z} (b, a), (c, b) ∈ E.
K98 = Modg{((xx)((yy)(zx)))z then (a, a), (b, b), (c, a) ∈ E iff

≈ (x((yx)((zy)z)))z} (b, a), (c, b), (c, c) ∈ E.
K99 = Modg{(x((yx)z))z and (b, a) ∈ E, then

≈ ((xx)((yx)z))z} (a, a) ∈ E.
K100 = Modg{(x((yx)(zz)))z and (b, a), (c, c) ∈ E, then

≈ ((xx)((yx)(zz)))z} (a, a) ∈ E.
K101 = Modg{(x((yx)(zy)))z and (b, a), (c, b) ∈ E, then

≈ ((xx)((yx)(zy)))z} (a, a) ∈ E.
K102 = Modg{(x((yx)(zy)))z then (b, a), (c, b) ∈ E iff

≈ ((xx)(y(zx)))z} (a, a), (c, a) ∈ E.
K103 = Modg{((xx)((yx)(zx)))z and (b, a) ∈ E, then (a, a), (c, a)

≈ (x(((yx)y)((zy)z))z} ∈ E iff (b, b), (c, b), (c, c) ∈ E.
K104 = Modg{(x(yx)((zx)y)))z and (b, a), (c, a), (c, b) ∈ E,

≈ (xx)((yx)((zx)y))z} then (a, a) ∈ E.
K105 = Modg{((xx)(yz))z and (a, a) ∈ E, then

≈ ((xx)((yx)z))z} (b, a) ∈ E.
K106 = Modg{(x(y(zz)))z and (c, c) ∈ E, then

≈ (x(y((zy)z)))z} (c, b) ∈ E.
K107 = Modg{((xx)(y(zy)))z and (a, a) ∈ E, then

≈ ((xx)(y(zx)))z} (c, b) ∈ E iff (c, a) ∈ E.
K108 = Modg{((xx)(y(zy)))z and (a, a) ∈ E, then

≈ ((xx)((yx)(zx)))z} (c, b) ∈ E iff (b, a), (c, a) ∈ E.
K109 = Modg{((xx)(y(zy)))z and (a, a), (c, b) ∈ E, then

≈ ((xx)((yx)(zy)))z} (b, a) ∈ E.
K110 = Modg{(x(y((zx)z)))z then (c, c) ∈ E, then

≈ (x((yx)(zz)))z} (c, a) ∈ E iff (b, a) ∈ E.
K111 = Modg{((xx)(y((zx)z)))z and (a, a), (c, c) ∈ E, then

≈ ((xx)((yx)(zz)))z} (c, a) ∈ E iff (b, a) ∈ E.
K112 = Modg{((xx)(y((zx)z)))z and (a, a), (c, c) ∈ E, then

≈ ((xx)(y((zy)z)))z} (c, a) ∈ E iff (c, b) ∈ E.
K113 = Modg{(x((yx)(zz)))z and (c, c) ∈ E, then

≈ (x(y(((zx)y)z)))z} (b, a) ∈ E iff (c, a), (c, b) ∈ E.
K114 = Modg{(x((yx)(zz)))z and (b, a), (c, c) ∈ E, then

≈ (x((yx)((zx)z)))z} (c, a) ∈ E.
K115 = Modg{((xx)((yy)(zx)))z and (a, a), (b, b) ∈ E, then

≈ ((xx)((yy)(zy)))z} (c, a) ∈ E iff (c, b) ∈ E.
K116 = Modg{((xx)(y((zy)z)))z and (a, a), (c, c) ∈ E, then

≈ ((xx)((yx)(zz)))z} (c, b) ∈ E iff (b, a) ∈ E.
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Table. (continue).
Graph variety Properties of graphs, for any a,

b, c ∈ V if (a, b), (b, c), (a, c) ∈ E,
K117 = Modg{((xx)(y((zx)z)))z and (a, a), (c, c) ∈ E, then

≈ ((xx)(y((zy)z)))z} (c, a) ∈ E iff (c, b) ∈ E.
K118 = Modg{(x(y(zx)))z then (c, a) ∈ E iff

≈ (x((yx)(zy)))z} (b, a), (c, b) ∈ E.
K119 = Modg{((xx)(y(zx)))z and (a, a) ∈ E, then

≈ ((xx)((yx)(zy)))z} (c, a) ∈ E iff (b, a), (c, b) ∈ E.
K120 = Modg{(x((yy)(zx)))z and (b, b) ∈ E, then

≈ (x(((yx)y)(zy)))z} (c, a) ∈ E iff (b, a), (c, b) ∈ E.
K121 = Modg{(x(y((zx)z)))z and (c, c) ∈ E, then

≈ (x((yx)((zy)z)))z} (c, a) ∈ E iff (b, a), (c, b) ∈ E.
K122 = Modg{((xx)((yy)(zx))z and (a, a), (b, b) ∈ E, then

≈ ((xx)(((yx)y)(zy))z} (c, a) ∈ E iff (b, a), (c, b) ∈ E.
K123 = Modg{((xx)(y((zx)z)))z and (a, a), (c, c) ∈ E, then

≈ ((xx)((yx)((zy)z)))z} (c, a) ∈ E iff (b, a), (c, b) ∈ E.
K124 = Modg{(x((yy)((zx)z)))z and (b, b), (c, c) ∈ E, then

≈ (x(((yx)y)((zy)z)))z} (c, a) ∈ E iff (b, a), (c, b) ∈ E.
K125 = Modg{((xx)((yy)((zx)z)))z and (a, a), (b, b), (c, c) ∈ E, then

≈ ((xx)((yx)y)((zy)z)))z} (c, a) ∈ E iff (b, a), (c, b) ∈ E.
K126 = Modg{(x((yx)(zy)))z and (c, b) ∈ E, then

≈ (x(y((zx)y)))z} (b, a) ∈ E iff (c, a) ∈ E.
K127 = Modg{(x(((yx)y)(zy)))z and (b, a), (b, b) ∈ E,

≈ (x(((yx)y)(zx))z} then (c, b) ∈ E iff (c, a) ∈ E.
K128 = Modg{(x((yx)((zy)z))z and (c, b), (c, c) ∈ E,

≈ (x(y(((zx)y)z)))z} then (b, a) ∈ E iff (c, a) ∈ E.
K129 = Modg{(x((yx)((zy)z)))z and (c, b), (c, c) ∈ E,

≈ (x(y(((zx)y)z)))z} then (b, a) ∈ E iff (c, a) ∈ E.
K130 = Modg{((xx)((yx)(zy)))z and (a, a), (b, a) ∈ E,

≈ ((xx)((yx)(zx)))z} then (c, b) ∈ E iff (c, a) ∈ E.
K131 = Modg{((xx)((yx)(zy)))z and (a, a), (c, b) ∈ E,

≈ ((xx)(y((zx)y)))z} then (b, a) ∈ E iff (c, a) ∈ E
K132 = Modg{(x(((yx)y)(zx)))z and (b, a), (b, b) ∈ E,

≈ (x(((yx)y)(zy)))z} then (c, a) ∈ E iff (c, b) ∈ E.
K133 = Modg{(x((yy)((zx)y)))z and (b, b), (c, b) ∈ E,

≈ (x(((yx)y)(zy)))z} then (c, a) ∈ E iff (b, a) ∈ E.
K134 = Modg{(x((yx)((zx)z)))z and (b, a), (c, c) ∈ E,

≈ (x((yx)((zy)z)))z} then (c, a) ∈ E iff (c, b) ∈ E.
K135 = Modg{((xx)(((yx)y)(zy)))z and (a, a), (b, a), (b, b) ∈ E,

≈ ((xx)(((yx)y)(zx)))z} then (c, b) ∈ E iff (c, a) ∈ E.
K136 = Modg{((xx)(y(((zx)y)z)))z and (a, a), (c, a), (c, c) ∈ E,

≈ ((xx)((yx)((zx)z)))z} then (c, b) ∈ E iff (b, a) ∈ E.
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Table. (continue).
Graph variety Properties of graphs, for any a,

b, c ∈ V if (a, b), (b, c), (a, c) ∈ E,
K137 = Modg{((xx)(y(((zx)y)z)))z and (a, a), (c, b), (c, c) ∈ E,

≈ ((xx)((yx)((zy)z)))z} then (c, a) ∈ E iff (b, a) ∈ E.
K138 = Modg{((xx)((yx)((zx)z)))z and (a, a), (b, a), (c, c) ∈ E,

≈ ((xx)((yx)((zy)z)))z} then (c, a) ∈ E iff (c, b) ∈ E.
K139 = Modg{((xx)((yx)((zx)z)))z and (a, a), (c, a), (c, c) ∈ E,

≈ ((xx)(y(((zx)y)z)))z} then (b, a) ∈ E iff (c, b) ∈ E.
K140 = Modg{((xx)((yy)((zx)y)))z and (a, a), (b, b), (c, b) ∈ E,

≈ ((xx)(((yx)y)(zy)))z} then (c, a) ∈ E iff (b, a) ∈ E.
K141 = Modg{((xx)((yy)(((zx)y)z)))z and (a, a), (b, b), (c, a), (c, c) ∈ E,

≈ ((xx)(((yx)y)((zx)z)))z} then (c, b) ∈ E iff (b, a) ∈ E.

Let K0 = Modg{(x(yz))z ≈ (x(yz))z}. We see that there are 142 (x(yz))z
graph varieties of the form Modg{s ≈ t}.
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