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1 Introduction

Let Ω be a bounded Lipschitz domain in Rn and let ϕ be a real-valued function
defined in Ω ×R+ and satisfying the following conditions:

a) ϕ(x, .) is an N-function, i.e. convex, nondecreasing, continuous, ϕ(x, 0) = 0,
ϕ(x, t) > 0 for all t > 0, and

lim
t→0

sup
x∈Ω

ϕ(x, t)

t
= 0, lim

t→∞
inf
x∈Ω

ϕ(x, t)

t
= ∞;

b) ϕ(., t) is a Lebesgue measurable function.

A function ϕ(x, t), which satisfies the conditions a) and b) is called a Musielak-
Orlicz function.
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We define the functional

̺ϕ,Ω(u) =

∫

Ω

ϕ(x, |u(x)|)dx

where u : Ω 7→ R a Lebesgue measurable function. In the following the measura-
bility of a function u : Ω 7→ R means the Lebesgue measurability. The set

Kϕ(Ω) = {u : Ω → R mesurable |̺ϕ,Ω(u) < +∞}

is called the generalized Orlicz class. The Musielak-Orlicz space (called also the
generalized Orlicz spaces) Lϕ(Ω) is the vector space generated by Kϕ(Ω), that is,
Lϕ(Ω) is the smallest linear space containing the set Kϕ(Ω). Equivelently:

Lϕ(Ω) =

{

u : Ω → R mesurable |̺ϕ,Ω

(

|u(x)|

λ

)

< +∞, for some λ > 0

}

.

Let ψ(x, s) = supt≥0{st − ϕ(x, t)}, for any x ∈ Ω and s ∈ R+, that is, ψ be
the Musielak-Orlicz function complementary to ϕ(x, t) in the sense of Young with
respect to the variable s. In the space Lϕ(Ω) we define the following two norms:

||u||ϕ,Ω = inf

{

λ > 0|

∫

Ω

ϕ

(

x,
|u(x)|

λ

)

dx ≤ 1

}

,

which is called the Luxemburg norm and the so-called Orlicz norm by:

|||u|||ϕ,Ω = sup
||v||ψ≤1

∫

Ω

|u(x)v(x)|dx,

where ψ is the Musielak-Orlicz function complementary to ϕ. These two norms
are equivalent [1].

We say that a sequence of functions un ∈ Lϕ(Ω) is modular convergent to
u ∈ Lϕ(Ω) if there exists a constant k > 0 such that

lim
n→∞

̺ϕ,Ω

(

un − u

k

)

= 0.

The closure in Lϕ(Ω) of the bounded measurable functions with compact support
in Ω is denoted by Eϕ(Ω). The space Lϕ(Ω) is isomorph to the dual of Eψ(Ω).
For any fixed nonnegative integer m we define

WmLϕ(Ω) = {u ∈ Lϕ(Ω) : ∀|α| ≤ m Dαu ∈ Lϕ(Ω)}

where α = (α1, α2, ..., αn) with nonnegative integers αi, |α| = |α1|+|α2|+· · ·+|αn|

and Dαu = ∂|α|u
∂x
α1
1 ···∂xαnn

denote the distributional derivatives of u. The space

WmLϕ(Ω) is called the Musielak-Orlicz-Sobolev space.
Let

̺ϕ,Ω(u) =
∑

|α|≤m

̺ϕ,Ω(Dαu) and ||u||mϕ,Ω = inf
{

λ > 0 : ̺ϕ,Ω

(u

λ

)

≤ 1
}
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for any u ∈ WmLϕ(Ω). These functionals are a convex modular and a norm on
WmLϕ(Ω), respectively, and the pair < WmLϕ(Ω), ||u||mϕ,Ω > is a Banach space if
ϕ satisfies the following condition [1]:

there exist a constant c > 0 such that inf
x∈Ω

ϕ(x, 1) ≥ c. (1.1)

The space WmLϕ(Ω) will always be identified to a subspace of the product
∏

|α|≤m Lϕ(Ω) =
∏

Lϕ; this subspace is σ(ΠLϕ,ΠEψ) closed.

We denote by D(Ω) the space of infinitely smooth functions with compact
support in Ω and by D(Ω) the restriction of D(Rn) on Ω. Let Wm

0 Lϕ(Ω) be the
σ(ΠLϕ,ΠEψ) closure of D(Ω) in WmLϕ(Ω). We say that a sequence of functions
un belong to WmLϕ(Ω) (respectively to Wm

0 Lϕ(Ω)) is modular convergent to
u ∈ WmLϕ(Ω) (respectively ∈ Wm

0 Lϕ(Ω)) if there exists a constant k > 0 such
that

lim
n→∞

̺ϕ,Ω

(

un − u

k

)

= 0.

For two complementary Musielak-Orlicz functions ϕ and ψ the following inequality
is called the young inequality [1]:

t.s ≤ ϕ(x, t) + ψ(x, s) for t, s ≥ 0, x ∈ Ω. (1.2)

This inequality implies the inequality

|||u|||ϕ,Ω ≤ ̺ϕ,Ω(u) + 1. (1.3)

In Lϕ(Ω) we have the following relations between the norm and the modular :

||u||ϕ,Ω ≤ ̺ϕ,Ω(u) if ||u||ϕ,Ω > 1 (1.4)

||u||ϕ,Ω ≥ ̺ϕ,Ω(u) if ||u||ϕ,Ω ≤ 1. (1.5)

For two complementary Musielak-Orlicz functions ϕ and ψ, if u ∈ Lϕ(Ω) and
v ∈ Lψ(Ω) we have the Hölder inequality [1]:

∣

∣

∣

∣

∫

Ω

u(x)v(x) dx

∣

∣

∣

∣

≤ ||u||ϕ,Ω|||v|||ψ,Ω. (1.6)

In this paper we assume that there exists a constant A > 0 such that for all
x, y ∈ Ω with |x− y| ≤ 1

2 we have:

ϕ(x, t)

ϕ(y, t)
≤ t

A

log( 1
|x−y| ) (1.7)

for all t ≥ 1. For some Musielak-Orlicz functions which verify (1.7) see examples in
the end of this chapter. In this paper we study the problem of density of smooth
functions in WmLϕ(Ω) and Wm

0 Lϕ(Ω) for the modular convergence, under the
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assumption (1.7). Our result generalizes that of the authors in [2] in the case of
Musielak-Orlicz-Sobolev spaces, that of Gossez in [3] in the case of classical Orlicz
spaces and those of Zhikov [4, 5] and Samko [6] in the case of variable exponent
Sobolev spaces.

Similar results have been provided by Hudzik in [7] and [8] by assuming the
following condition:

∫

M(x, |fε(x)|)dx ≤ K

∫

M(x, |f(x)|)dx (1.8)

for all functions f ∈ LM (Rn),where fε is a regularized function of f . In our paper
we don’t assume any condition of this type. For others approximations results
in Musielak-Orlicz-Sobolev spaces and some their applications to nonlinear partial
differential equations see [9]. And for nonlinear equations in classical Orlicz spaces
see [10–13, 16, 17] and references within.

2 Main Results

Let K(x) be a measurable function with support in the ball BR = B(0, R) and
let

Kε(x) =
1

εn
K

(x

ε

)

.

We consider the family of operators

Kεf(x) = κ−1
ε

∫

Ω

Kε(x− y)f(κεy) dy. (2.1)

Theorem 2.1. Let K(x) ∈ L∞(BR) and let ϕ and ψ be two complementary
Musielak-Orlicz functions such that ϕ satisfies the conditions (1.1), (1.7) and

if D ⊂ Ω is a bounded measurable set, then

∫

D

ϕ(x, 1)dx <∞ (2.2)

and ψ satisfies the following condition:

ψ(x, 1) ≤ C a.e. in Ω. (2.3)

Then the operators Kε are uniformly bounded from Lϕ(Ω) into Lϕ(Ω), namely

||Kεf ||ϕ,Ω ≤ C||f ||ϕ,Ω ∀f ∈ Lϕ(Ω), (2.4)

where C > 0 does not depend on ε.

Remark 2.2. For any Musielak-Orlicz function ϕ we can replace it by a Musielak-
Orlicz function ϕ which is globally equivalent to ϕ such that ϕ(x, 1) + ψ(x, 1) =
1, where ψ is the Musielak-Orlicz function complementary to ϕ (see [14], §2.4).
Hence by (1.1) we may assume without loss of generality that the condition (2.3)
is always satisfied.
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Theorem 2.3. Let ϕ and K(x) satisfy the assumptions of Theorem 1 and

∫

BR

K(y) dy = 1. (2.5)

Then (2.1) is an identity approximation in Lϕ(Ω), that is,

∃λ > 0 : lim
ε→0

̺ϕ,Ω

(

Kεf − f

λ

)

= 0, f ∈ Lϕ(Ω). (2.6)

Corollary 2.4. Under the assumptions of Theorem 2.1, D(Ω) is dense in Lϕ(Ω)
with respect to the modular topology.

Theorem 2.5. Let ϕ be a Musielak-Orlicz function which satisfies the assumptions
of Theorem 2.1 and let f ∈ Wm

0 Lϕ(Ω). Then there exist λ > 0 and a sequence
fn ∈ D(Ω) such that for |α| ≤ m,

∫

Ω

ϕ

(

x,

(

Dαfn −Dαf

λ

))

→ 0 as n→ ∞.

Theorem 2.6. Let ϕ be a Musielak-Orlicz function which satisfies the assumptions
of Theorem 2.1 and let f ∈ WmLϕ(Ω). Then there exist λ > 0 and a sequence
fn ∈ D(Ω) such that for |α| ≤ m,

∫

Ω

ϕ

(

x,

(

Dαfn −Dαf

λ

))

→ 0 as n→ ∞.

Example 2.7. Let p : Ω 7→ [1,∞) be a measurable function such that there exist
a constant c > 0 such that for all points x, y ∈ Ω with |x − y| < 1

2 , we have the
inequality

|p(x) − p(y)| ≤
c

log
(

1
|x−y|

) .

Then the following Musielak-Orlicz functions satisfy the conditions of Theorem
2.1:

(1) ϕ(x, t) = tp(x) such that supx∈Ω p(x) <∞;

(2) ϕ(x, t) = tp(x) log(1 + t);

(3) ϕ(x, t) = t(log(t+ 1))p(x);

(4) ϕ(x, t) = (et)p(x) − 1.

3 Proofs

Proof of Theorem 2.1. We can assume that Ω is a starlike domain relative to
some ball Br0 = {|x| < r0}. This means that the segment joining a point in Ω
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with a point in Br0 is contained in Ω. Setting t = r−1
0 for the starlike domain we

can write

(1 − tε)Ω + εB ⊂ Ω, (3.1)

where B = {|x| < 1} is the unit ball. It is not difficult to pass from a starlike
domain to a Lipschitz domain because of the localization property.

We extend f ∈ Lϕ(Ω) by zero to Rn, so we have

Kεf(x) = κ−1
ε

∫

Ω

Kε(x− y)f(κεy) dy,

where κ−1
ε = 1 − tε. Then (3.1) implies that Kεf ∈ D(Ω). We also assume that

||f ||ϕ,Ω ≤ 1. (3.2)

It suffices to show that

̺ϕ,Ω(Kεf) =

∫

Ω

ϕ(x, |Kεf(x)|)dx ≤ c (3.3)

for some ε such that 0 < ε ≤ ε0 ≤ 1 and c > 0 independent of f . Let

Ω = ∪Nk=1ω
k

be any partition of Ω into small parts ωk comparable with the given ε:

diam ωk ≤ ε, k = 1, 2, 3, ..., N = N(ε).

We represent the integral in (3.3) as

̺ϕ,Ω(Kεf) =

N
∑

k=1

∫

ωk
ϕ

(

x,

∣

∣

∣

∣

κ−1
ε

∫

Ω

Kε(x− y)f(κεy) dy

∣

∣

∣

∣

)

dx. (3.4)

We put

ϕk(t) = inf{ϕ(x, t), x ∈ Ωk} ≤ inf{ϕ(x, t), x ∈ ωk} (3.5)

where some larger partition Ωk ⊃ ωk comparable with ε will be chosen later:

diam Ωk ≤ mε,m > 1. (3.6)

Hence

̺ϕ,Ω(Kεf) =

N
∑

k=1

∫

ωk
Ak(x, ε) ϕk

(
∣

∣

∣

∣

κ−1
ε

∫

Ω

Kε(x− y)f(κεy) dy

∣

∣

∣

∣

)

dx, (3.7)

where

Ak(x, ε) :=
ϕ(x, |κ−1

ε

∫

ΩKε(x− y)f(κεy) dy|)

ϕk(|κ
−1
ε

∫

Ω
Kε(x− y)f(κεy) dy|)

.
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We shall prove the uniform estimate

Ak(x, ε) ≤ c, x ∈ ωk, (3.8)

where c > 0 does not depend on x ∈ ωk, k and ε ∈ (0, ε0) with some ε0 > 0. By
(1.6) we have

α(x, ε) :=

∣

∣

∣

∣

κ−1
ε

∫

Ω

Kε(x− y)f(κεy) dy

∣

∣

∣

∣

≤
(1 + t)M

εn

∫

Ω

|χBεR(y)f(κεy)|dy

≤
(1 + t)M

εn
||f ||ϕ |||χBεR |||ψ,

where M = supBR |K(y)|. By (1.3) and condition (2.3) we obtain

|||χBεR |||ψ ≤ c2|BεR| + 1 ≤ c2 + 1 (3.9)

for 0 < ε ≤ |B(0, 1)|−
1
n := ε01. Hence

α(x, ε) ≤
c1

εn
. (3.10)

We observe now that by (1.7) and (3.5) we have

ϕ(x, t)

ϕk(t)
=

ϕ(x, t)

ϕ(ξk, t)
≤ t

A

log

�
1

|x−ξk|

�
, (3.11)

where x ∈ ωk, ξk ∈ Ωk. Evidently |x− ξk| ≤ diam Ωk ≤ mε. Therefore,

Ak(x, ε) =
ϕ(x, α(x, ε))

ϕ(ξk, α(x, ε))
≤ (α(x, ε))

A

log( 1
mε )

≤ (c1ε
−n)

A

log( 1
mε ) ≤ (c1)

A

log( 1
m ) (ε−n)

A

log( 1
mε ) (3.12)

under the assumption that 0 < ε ≤ 1
2m := ε02. Then from (3.12)

Ak(x, ε) ≤ c4 := c3e
2nA, c3 = (c1)

A

log( 1
m ) (3.13)

for x ∈ ωk and

0 < ε ≤
1

m2
:= ε03. (3.14)

Therefore, we have the uniform estimate (3.8) with c = c3e
2nA and 0 < ε ≤

ε0, ε0 = min1≤k≤3 ε
0
k, ε

0
k being given above. Using estimate (3.8) we obtain from

(3.7)

̺ϕ,Ω(Kεf) = c

N
∑

k=1

∫

ωk
ϕk

(
∣

∣

∣

∣

∫

Ω

Kε(x− y)f(κεy) dy

∣

∣

∣

∣

)

dx. (3.15)



378 Thai J. Math. 10 (2012)/ A. Benkirane and M. Ould Mohamedhen Val

So by the Jensen integral inequality we obtain

̺ϕ,Ω(Kεf) ≤
N

∑

k=1

∫

|y|<εR

|Kε(y)|dy

∫

ωk
ϕk(f(κε(x− y)))dx

= c

N
∑

k=1

∫

|y|<R

|K(y)|dy

∫

x+εκ−1
ε y∈ωk

ϕk(f(x))dx. (3.16)

Obviously, the domain of the integration in x in the last integral is embedded
into the domain

⋃

y∈BεR

{x : x+ κ−1
ε y ∈ ωk} (3.17)

which does not depend on y. Now, we choose in (3.5) the sets Ωk which were not
determined until now, as the sets (3.17). Then, evidently, Ωk ⊃ ωk, and it is easily
seen that

diam Ωk ≤ (1 + 2R)ε, (3.18)

so the requirement (3.6) is satisfied with m = 1 + 2R.
From (3.17) we have

̺ϕ,Ω(Kεf) ≤ c

N
∑

k=1

∫

|y|<R

|K(y)|dy

∫

Ωk
ϕk(f(x))dx

≤ c

∫

|y|<R

|K(y)|dy
N

∑

k=1

∫

Ωk
ϕk(f(x))dx. (3.19)

Therefore,

̺ϕ,Ω(Kεf) ≤ c5

∫

Ω

ϕ̃(x, f(x)) dx, (3.20)

where ϕ̃(x, t) = maxi ϕi(t), the maximum being taken with respect to all the sets
Ωk. Evidently, ϕ̃(x, t) ≤ ϕ(x, t) ∀x ∈ Ω. Then from (3.20) and (3.2) we arrive to
the final estimate

̺ϕ,Ω(Kεf) ≤ c5

∫

Ω

ϕ(x, f(x)) dx ≤ c5. (3.21)

Proof of Theorem 2.3. To prove (2.6), we use Theorem 2.1, which provides the
uniform boundedness of the operators Kε from Lϕ(Ω) into Lϕ(Ω). Then by the
Banach-Steinhaus theorem it suffices to verify that (2.6) holds for some dense set
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in Lϕ(Ω). So, it is sufficient to prove (2.6) for the characteristic functions χE(x)
of all bounded measurable sets E ⊂ Ω [1]. We have

Kε(χE)(x) − χE(x) =

∫

BR

k(y)[κ−1
ε χE(x − εκεy) − χE(x)]dy,

whence for λ > 0,

̺ϕ,Ω

(

Kε(χE) − χE

λ

)

=

∫

Ω

ϕ

(

x,
1

λ

∫

BR

k(y)[κ−1
ε χE(x− εκεy) − χE(x)]dy

)

dx

≤

∫

BR

k(y)

(
∫

Ω

ϕ

(

x,
1

λ
[κ−1
ε χE(x− εκεy) − χE(x)]

)

dx

)

dy

by the Fubini theorem and the Jensen inequality. Hence by condition (2.2) and
the Lebesgue dominated convergence theorem we obtain (2.6) for some λ > 0.

Proof of Corollary 2.4. The proof is immediate from the Theorem 2.3.

Proof of Theorem 2.5. Let f(x) ∈ Wm
0 Lϕ(Ω) and let us extend f by zero to

Rn and apply the same smoothing procedure as above, obtaining

̺ϕ,Ω

(

f −Kεf

λ

)

=
∑

|j|≤m

̺ϕ,Ω

(

Djf −Kε(D
jf)

λ

)

.

Then it suffices to apply Theorem 2.3.

Proof of Theorem 2.6. It is essentially the same as that above except that one
takes κε = 1 − tε and we put

vε(x) =

{

κ−1
ε u(κεx) if x ∈ Ω

0 if x ∈ Rn \ Ω.

This definition has meaning since (3.1) implies that κεΩ ⊂ Ω. Hence vε ∗ Kε ∈
D(Rn) and we also put

uε(x) =

{

vε ∗Kε(x) if x ∈ Ω
0 if x ∈ Rn \ Ω.

Therefore uε ∈ D(Ω) and the remaining arguments remain the same.
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