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1 Introduction

Let €2 be a bounded Lipschitz domain in R™ and let ¢ be a real-valued function
defined in ©Q x R and satisfying the following conditions:

a) ¢(x,.) is an N-function, i.e. convex, nondecreasing, continuous, ¢(z,0) = 0,
o(x,t) > 0 for all t > 0, and
o(z,t)

z,t
lim sup 2C)) =0, lim inf —% = oc;
t_’o:cGQ t t—oo xe) t

b) ¢(.,t) is a Lebesgue measurable function.

A function ¢(z,t), which satisfies the conditions a) and b) is called a Musielak-
Orlicz function.
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We define the functional
o) = [ plafuta))ds

where u : 2 — R a Lebesgue measurable function. In the following the measura-
bility of a function u : 2 — R means the Lebesgue measurability. The set

K,(Q) = {u: Q — R mesurable |g, o(u) < +o0}

is called the generalized Orlicz class. The Musielak-Orlicz space (called also the
generalized Orlicz spaces) L, (1) is the vector space generated by K, (), that is,
L, () is the smallest linear space containing the set K (f2). Equivelently:

[u@)]

L,(Q) = {u :  — R mesurable |g, 0 (' 5y > < +00, for some A > O} .

Let ¢(z,s) = sup;sofst — ¢(z,t)}, for any z € Q and s € RT, that is, ¢ be
the Musielak-Orlicz function complementary to ¢(x,t) in the sense of Young with
respect to the variable s. In the space L, () we define the following two norms:

[|ul]p,0 =inf{)\ > O|/ %) (w, M) dr < 1},
Q A

which is called the Luxemburg norm and the so-called Orlicz norm by:

ulllpo = sup [ |u(z)o(z)|de,
llolly <1/
where 1 is the Musielak-Orlicz function complementary to ¢. These two norms
are equivalent [1].
We say that a sequence of functions w, € L,(2) is modular convergent to
u € L, () if there exists a constant k& > 0 such that

7g&wn(wgu>=0

The closure in Ly (€2) of the bounded measurable functions with compact support
in Q is denoted by E,(£2). The space L, (f2) is isomorph to the dual of Ey(£2).
For any fixed nonnegative integer m we define

WML, (Q) = {u € Ly(Q) : V]a| < m D € L,(Q)}

where a = (a1, g, ..., ay, ) with nonnegative integers v, |a| = |aq|+|ae|+- - -+ |ay|

and D%u = - ‘?‘i_‘gzan denote the distributional derivatives of u. The space
1 n

W™L, (1) is called the Musielak-Orlicz-Sobolev space.
Let

Zoolu) = Y. gp0(Du) and [|ull g = inf {A>0:5,0 () <1}

laf<m
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for any u € WL, (). These functionals are a convex modular and a norm on
W Ly (82), respectively, and the pair < W™ Ly (€2), [|u[|), > is a Banach space if
¢ satisfies the following condition [1]:

there exist a constant ¢ > 0 such that ing p(x,1) > c. (1.1)
S

The space W™ L, () will always be identified to a subspace of the product
[Tjaj<m Le(§2) = [T Ly; this subspace is o(I1Ly, I1Ey,) closed.
We denote by D(2) the space of infinitely smooth functions with compact

support in Q and by D(2) the restriction of D(R™) on Q. Let W§"L,(f2) be the
o(IIL,,IIEy) closure of D(£2) in W™ L,(€2). We say that a sequence of functions
Uy, belong to W™L, () (respectively to W§"L,(€2)) is modular convergent to
u € W™L,(Q) (respectively € WL, (£2)) if there exists a constant & > 0 such

that
. _ Up — U
Am 2.0 (T) =0

For two complementary Musielak-Orlicz functions ¢ and 1 the following inequality
is called the young inequality [1]:

t.s < p(z,t) +Y(z,s) for t,s >0, z € Q. (1.2)
This inequality implies the inequality
[ulllp. < 0p,0(u) + 1. (1.3)
In L,(€2) we have the following relations between the norm and the modular :

lulle.0 < ep0(u) if [lull,0 > 1 (1.4)
lulle.2 = 0p,a(u) if [Jullp,o < 1. (1.5)

For two complementary Musielak-Orlicz functions ¢ and ¢, if u € L,(Q) and
v € Ly(€2) we have the Holder inequality [1]:

< ullg,alllv/lly.0- (1.6)

/Q w(z)v(z) da

In this paper we assume that there exists a constant A > 0 such that for all
z,y € Q with |z — y| < 1 we have:

A

P(E,t) _ ee(n1y)
o h) = ) (L)

for all ¢ > 1. For some Musielak-Orlicz functions which verify (1.7) see examples in
the end of this chapter. In this paper we study the problem of density of smooth
functions in W™L,(Q2) and W§"L,(§2) for the modular convergence, under the
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assumption (1.7). Our result generalizes that of the authors in [2] in the case of
Musielak-Orlicz-Sobolev spaces, that of Gossez in [3] in the case of classical Orlicz
spaces and those of Zhikov [4, 5] and Samko [6] in the case of variable exponent
Sobolev spaces.

Similar results have been provided by Hudzik in [7] and [8] by assuming the
following condition:

/ M(z, |f-(2)))dz < K / Mz, |f(z)))dz (18)

for all functions f € Lj;(R™),where f. is a regularized function of f. In our paper
we don’t assume any condition of this type. For others approximations results
in Musielak-Orlicz-Sobolev spaces and some their applications to nonlinear partial
differential equations see [9]. And for nonlinear equations in classical Orlicz spaces
see [10-13, 16, 17] and references within.

2 Main Results

Let K(z) be a measurable function with support in the ball B = B(0, R) and

let 1
K.(1) = —K (f)

en €
We consider the family of operators

K. f(z) = ’igl o Ke(x —y)f(key) dy. (2.1)

Theorem 2.1. Let K(z) € L*(Bgr) and let ¢ and 3 be two complementary
Musielak-Orlicz functions such that ¢ satisfies the conditions (1.1), (1.7) and

if D C Q is a bounded measurable set, then / o(x,1)dx < oo (2.2)
D

and Y satisfies the following condition:
P(x,1) < C a.e. in Q. (2.3)
Then the operators K. are uniformly bounded from L, (§2) into L,(Q), namely

K fllp.0 < Cllfllp YVf € Lyo(Q), (2.4)

where C' > 0 does not depend on €.

Remark 2.2. For any Musielak-Orlicz function @ we can replace it by a Musielak-
Orlicz function B which is globally equivalent to ¢ such that B(x,1) + (z,1) =
1, where 1 is the Musielak-Orlicz function complementary to @ (see [14], §2.4).
Hence by (1.1) we may assume without loss of generality that the condition (2.3)
is always satisfied.
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Theorem 2.3. Let ¢ and K(x) satisfy the assumptions of Theorem 1 and

K(y) dy = 1. (2.5)
Br

Then (2.1) is an identity approximation in L,(Q), that is,

A >0 lim 0 (%) =0, f€L,Q). (2.6)

Corollary 2.4. Under the assumptions of Theorem 2.1, D(Q) is dense in L,(Q)
with respect to the modular topology.

Theorem 2.5. Let ¢ be a Musielak-Orlicz function which satisfies the assumptions
of Theorem 2.1 and let f € W{"L,(Q2). Then there exist A > 0 and a sequence
fn € D(Q) such that for |a| < m,

for (= (F557))
plx, | ———— —0 asn— oo.
Q A

Theorem 2.6. Let ¢ be a Musielak-Orlicz function which satisfies the assumptions
of Theorem 2.1 and let f € W™L,(Q). Then there exist A > 0 and a sequence
fn € D(Q) such that for |a| < m,

for = (F557)
plx, | ———— —0 asn— oo.
Q A

Example 2.7. Let p: Q — [1,00) be a measurable function such that there exist
a constant ¢ > 0 such that for all points x,y € Q with |z —y| < 5 , we have the

inequality
c

p(z) = p(Y)l £ —F——-
p Py log(lw yl)

Then the following Musielak-Orlicz functions satisfy the conditions of Theorem
2.1:

(1) @(%t) = tP(®) such that Supmeﬂp( ) 00;
(2) o(z,t) = tP@ log(1 +t);
(3) @(x,t) = t(log(t + 1))P);
(4) la,t) = (e —1.
3 Proofs

Proof of Theorem 2.1. We can assume that (2 is a starlike domain relative to
some ball B, = {|z| < ro}. This means that the segment joining a point in
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with a point in B,, is contained in Q. Setting t = 7 ! for the starlike domain we
can write

(1-te)Q+eBCQ, (3.1)

where B = {|z| < 1} is the unit ball. It is not difficult to pass from a starlike
domain to a Lipschitz domain because of the localization property.
We extend f € L,(£2) by zero to R™, so we have

K. f(z) = rZ! | Koz —y)f(rey) dy.
where k! =1 — te. Then (3.1) implies that K. f € D(Q2). We also assume that
[ flle.0 < 1. (3.2)
It suffices to show that
oralKef) = [ pla |Kef(@))do < c 33)
Q
for some € such that 0 < e <% <1 and ¢ > 0 independent of f. Let
Q=Ul "
be any partition of € into small parts w* comparable with the given e:
diam w* < e, k=1,2,3,...,N = N(e).

We represent the integral in (3.3) as

N
= x, |k (x — Ke xT. .
oaief) =3 [ o (o}t [ Koo Sten) o)) ar. G
We put
or(t) = inf{p(z,t), 2z € Q¥ < inf{p(z,t),z € W*} (3.5)

where some larger partition Q% O w* comparable with ¢ will be chosen later:

diam QF < me,m > 1. (3.6)
Hence
N
bk =Y [ oo (|t [ Keta=isinn o)) a6
k=1""
where

o) o Ke(w = y) f(sey) dy))
Alme) = m e e Bl



Some Approximation Properties in Musielak-Orlicz-Sobolev Spaces 377

We shall prove the uniform estimate
Ap(z,e) < ¢, x€wh, (3.8)

where ¢ > 0 does not depend on = € w*, k and ¢ € (0,£°) with some € > 0. By
(1.6) we have

n;l/QKa(x —y)f(Key) dy' < (17;% /Q XBr (y)f (5y)ldy

(1+t)M
< 7 Wflle lllxBerlllw,

a(z,e) =

where M = supp, |K(y)|. By (1.3) and condition (2.3) we obtain
IxB.rllly < c2lBerl +1 <2 +1 (3.9)

for 0 < e < |B(0,1)| % := 9. Hence

a(z,€) < j—i (3.10)

We observe now that by (1.7) and (3.5) we have

A
(p(.’II,t) _ (p(.’II,t) <t10g(ﬁ)

= < ) 3.11
o® ol (40
where z € WF, & € QF. Evidently |z — &| < diam QF < me. Therefore,
ol 0(z,2)) e
A(z,e) = ———5 < (afz,e)) #\me
@)= pleate) = @)
A A A
< (cre™) 5 (me) < (e1) () (e=my os(5=) (3.12)
under the assumption that 0 < e < ﬁ := 9. Then from (3.12)
A
Ap(@,e) < c4 1= e, c5 = (er) () (3.13)
for z € w* and
1
0<es — = €3 (3.14)

Therefore, we have the uniform estimate (3.8) with ¢ = c3e?"4 and 0 < ¢ <

€%, €% = minj<x<3 Y, €% being given above. Using estimate (3.8) we obtain from

(3.7)

N

0p.0(K:f) = CZ/

k=17 @k

Pk (’/Q Ke(z —y)f(key) dyD da. (3.15)



378 Thai J. Math. 10 (2012)/ A. Benkirane and M. Ould Mohamedhen Val

So by the Jensen integral inequality we obtain

N

op.0(K-f) < ;;/y<8R K (y)ldy /wk or(f (ke(z — y)))dz
N
= c; /y<R (K (y)ldy /stlyewk ok(f(x))dz. (3.16)

Obviously, the domain of the integration in z in the last integral is embedded
into the domain

U {24+ rly €W} (3.17)

YEBer

which does not depend on y. Now, we choose in (3.5) the sets Q¥ which were not
determined until now, as the sets (3.17). Then, evidently, Q% D w¥, and it is easily
seen that

diam QF < (14 2R)e, (3.18)

so the requirement (3.6) is satisfied with m =1+ 2R.
From (3.17) we have

N
cealn) < [ KWl [ ol
N
<c K(y)|d x))dz. 3.19
<cf KW y;/g on(f (@) (319)
Therefore,
Qap,Q(st) S 05/ (Z)(.I,f({E)) dCC, (320)
Q

where ¢(x,t) = max; ¢;(t), the maximum being taken with respect to all the sets
Q. Evidently, ¢(z,t) < ¢(z,t) Va € Q. Then from (3.20) and (3.2) we arrive to
the final estimate

vonl(Kef) < s [ ol @) do <. (3:21)
Q

O
Proof of Theorem 2.3. To prove (2.6), we use Theorem 2.1, which provides the

uniform boundedness of the operators K. from L, () into L, (). Then by the
Banach-Steinhaus theorem it suffices to verify that (2.6) holds for some dense set
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in L,(£2). So, it is sufficient to prove (2.6) for the characteristic functions xg(x)
of all bounded measurable sets E C §2 [1]. We have

K. (x) () — xp(@) = /B k(y)[rs (@ — ehey) — x(@)]dy,

whence for A > 0,

20,0 (M) = /Q @ (iv % /BR k(y)les ez — erey) — xE(w)]dy) dx

< [k ([ o (352 el = onen) = xto)) o) a

by the Fubini theorem and the Jensen inequality. Hence by condition (2.2) and
the Lebesgue dominated convergence theorem we obtain (2.6) for some A > 0.
O

Proof of Corollary 2.4. The proof is immediate from the Theorem 2.3. O

Proof of Theorem 2.5. Let f(x) € WJ"L,(Q2) and let us extend f by zero to
R™ and apply the same smoothing procedure as above, obtaining

- K, DI - K, Di
@%Q(f / f) _ Z@w( fo Kl f>>,
[71<m

Then it suffices to apply Theorem 2.3. [l

Proof of Theorem 2.6. 1t is essentially the same as that above except that one
takes k. = 1 — te and we put

71 .
| kSlu(kez) ifxeQ
“8(””)_{0 if z € R™\ Q.
This definition has meaning since (3.1) implies that x.Q C . Hence v, x K. €
D(R™) and we also put

() = vex Ko () ifxeQ
=10 if z € R\ Q.
Therefore u. € D(Q2) and the remaining arguments remain the same. O
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