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1 Introduction

Let C be a closed convex subset of a real Hilbert space H with the inner
product 〈·, ·〉 and the norm ‖ · ‖. Let F be a bifunction of C × C into R, where R

is the set of a real numbers, A : C → H a mapping and ϕ : C → R a real-valued
function. The generalized mixed equilibrium problem is for finding x ∈ C such that

F (x, y) + 〈Ax, y − x〉 + ϕ(y) − ϕ(x) ≥ 0, ∀y ∈ C. (1.1)

The set of solutions of (1.1) is denoted by GMEP(F, ϕ, A), that is,

GMEP (F, ϕ, A) = {x ∈ C : F (x, y)+〈Ax, y−x〉+ϕ(y)−ϕ(x)≥0, ∀y ∈ C}. (1.2)
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If F ≡ 0, the problem (1.1) is reduced into the mixed variational inequality of
Browder type [1], for finding x ∈ C such that

〈Ax, y − x〉 + ϕ(y) − ϕ(x) ≥ 0, ∀y ∈ C. (1.3)

The set of solutions of (1.3) is denoted by MVI(C, ϕ, A).
If A ≡ 0 and ϕ ≡ 0, the problem (1.1) is reduced into the equilibrium problem

[2] for finding x ∈ C such that

F (x, y) ≥ 0, ∀y ∈ C. (1.4)

The set of solutions of (1.4) is denoted by EP(F ). This problem contains fixed
point problems and includes as special cases numerous problems in physics,
optimization, and economics. Some methods have been proposed to solve the
equilibrium problem; see [3–5].

If F ≡ 0 and ϕ ≡ 0, the problem (1.1) is reduced into the Harmann-Stampacchia
variational inequility [6] for finding x ∈ C such that

〈Ax, y − x〉 ≥ 0, ∀y ∈ C. (1.5)

The set of solutions of (1.5) is denoted by VI(C, A). The variational inequality
has been extensively studied in the literature [7].

If F ≡ 0 and A ≡ 0, the problem (1.1) is reduced into the minimize problem
for finding x ∈ C such that

ϕ(y) − ϕ(x) ≥ 0, ∀y ∈ C. (1.6)

The set of solutions of (1.6) is denoted by Arg min(ϕ).
Recall that a mapping A : C → H is called monotone if

〈Ax − Ay, x − y〉 ≥ 0, ∀x, y ∈ C. (1.7)

A mapping A of C into H is called α-inverse strongly monotone, see [8–10], if
there exists a positive real number α such that

〈x − y, Ax − Ay〉 ≥ α‖Ax − Ay‖2, ∀x, y ∈ C. (1.8)

It is obvious that any α-inverse strongly monotone mapping A is monotone and
Lipschitz continuous.

Let C be a nonempty closed convex subset of a real Hilbert space H , S :
C → C be a mapping. We denote F (S) to be the set of fixed points of S, i.e.
F (S) = {x ∈ C : x = Sx}. A mapping S is said to be

(i) nonexpansive, if ‖Sx − Sy‖ ≤ ‖x − y‖ ∀x, y ∈ C;

(ii) asymptotically nonexpansive, if there exist a sequence kn ≥ 1 such that
limn→∞ kn = 1 and

‖Snx − Sny‖ ≤ kn‖x − y‖, ∀x, y ∈ C, n ≥ 1; (1.9)
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(iii) uniformly L-Lipschitzian, if there exist a constant L > 0 such that

‖Snx − Sny‖ ≤ L‖x − y‖, ∀x, y ∈ C, n ≥ 1; (1.10)

In 2003, Nakajo and Takahashi [11] proposed the following modification of the
Mann iteration method for a nonexpansive mapping T in a Hilbert space H :

x0 ∈ C chosen arbitrarily,

yn = αnxn + (1 − αn)Txn,

Cn = {v ∈ C : ‖yn − v‖ ≤ ‖xn − v‖}, (1.11)

Qn = {v ∈ C : 〈xn − v, x0 − xn〉 ≥ 0},

xn+1 = PCn∩Qn
x0,

where PC is denoted the metric projection from H onto a closed and convex subset
C of H . They proved that if the sequence {αn} is bounded above from one, then
{xn} is defined by (1.11) converges strongly to PF (T )x0.

Inchan and Plubtieng [12] introduced the modified Ishikawa iteration process
by shrinking hybrid method [13] for two asymototically nonexpansive mappings S
and T , with a closed convex bounded subset C of a Hilbert space H . For C1 = C
and x1 = PC1

x0, {xn} is defined as follows:

yn = αnxn + (1 − αn)T nzn,

zn = βnxn + (1 − βn)Snxn,

Cn+1 = {v ∈ Cn : ‖yn − v‖2 ≤ ‖xn − v‖2 + θn}, (1.12)

xn+1 = PCn+1
x0, n ∈ N

where θn = (1 − αn)[(t2n − 1) + (1 − βn)t2n(s2
n − 1)](diamC)2 → 0, as n → ∞ and

0 ≤ αn ≤ α < 1 and 0 < b ≤ βn ≤ c < 1 for all n ∈ N. They proved that the
sequence {xn} is generated by (1.12) converges strongly to a common fixed point
of two asymptotically nonexpansive mappings S and T .

The purpose of this paper is to introduce the Mann iteration process for finding
a common element of the set of common fixed points of an infinite family of
asymptotically nonexpansive mappings and the set of solutions of a generalized
mixed equilibrium problem under some control conditions. We prove that the
strong convergence theorem which extends and improves the result of many others
[11, 12].

2 Preliminaries

In this section, we present some useful lemmas which will be used in our main
result and we will use the notation:

• ⇀ for weak convergence and → for strong convergence.

• ωω(xn) = {x : xni
⇀ x} denotes the weak ω-limit set of {xn}.
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• d(x, C) = infz∈C ‖x − z‖.

Let H be a real Hilbert space. Then

‖x − y‖2 = ‖x‖2 − ‖y‖2 − 2〈x − y, y〉 ∀ x, y ∈ H. (2.1)

For each x, y ∈ H and λ ∈ R, we known that

‖λx − (1 − λ)y‖2 = λ‖x‖2 − (1 − λ)‖y‖2 − λ(1 − λ)‖x − y‖. (2.2)

Let C be a nonempty closed convex subset of H and let PC be the metric projection
of H onto C, then

‖PCx − PCy‖2 ≤ ‖x − y‖2 − ‖(I − PC)x − (I − PC)y‖2, ∀x, y ∈ H, (2.3)

where I is the identity mapping.

Lemma 2.1 (Opial’s condition [14]). For any sequence {xn} in a Hilbert space H
with xn ⇀ x, the inequality

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖, (2.4)

holds for every y ∈ H with y 6= x.

Lemma 2.2 (The Kadec-Klee property [15]). For any sequence {xn} in a Hilbert
space H with xn ⇀ x and ‖xn‖ → ‖x‖ together imply ‖xn − x‖ → 0.

Lemma 2.3 (Demiclosedness Principle [16]). Suppose X is a Banach space satis-
fying the locally uniform Opial’s condition, C is a nonempty weakly compact convex
subset of X, and T : C → C is an asymptotically nonexpansive mapping. Then
I − T is demiclosed at zero, i.e. if {xn} is a sequence in C which converge weakly
to x and if the sequence {xn − Txn} converge strongly to zero, then x − Tx = 0.

Lemma 2.4 ([17]). Let C be a nonempty closed convex subset of H and also give
a real number a ∈ R. The set D = {v ∈ C : ‖y − v‖2 ≤ ‖x − v‖2 + 〈z, v〉 + a} is
convex and closed.

Lemma 2.5 ([18]). Assume that {an} is sequence of nonnegative real numbers
such that

an+1 ≤ (1 − γn)an + δn, ∀n ≥ 1, (2.5)

where {γn} ⊂ (0, 1) and {δn} is sequence in R such that

(i)
∑

∞

n=1 γn = ∞,

(ii) lim supn→∞
(δn/γn) ≤ 0 or

∑

∞

n=1 |δn| < ∞.

Then limn→∞ an = 0.

For solving the generalized mixed equilibrium problem, let us assume that the
bifunction F : C × C → R, a continuous monotone A : C → H , and ϕ : C → R

satisfies the following conditions:
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(A1) F (x, x) = 0 for all x ∈ C;

(A2) F is monotone, that is, F (x, y) + F (y, x) ≤ 0 for any x, y ∈ C;

(A3) For each fixed y ∈ C, x 7→ F (x, y) is weakly upper semicontinuous;

(A4) For each fixed x ∈ C, y 7→ F (x, y) is convex and lower semicontinuous;

(B1) For each x ∈ C and r > 0, there exists a bounded subset Dx ⊆ C and
yx ∈ C such that, for any z ∈ C \ Dx,

F (z, yx) + ϕ(yx) − ϕ(z) +
1

r
〈yx − z, z − x〉 < 0; (2.6)

(B2) C is a bounded set.

Lemma 2.6 ([19]). Let C be a nonempty closed convex subset of a Hilbert space
H. Let F : C × C → R be a bifunction satisfying (A1) − (A4), and let ϕ :
C → R

⋃

{+∞} be convex and proper lower semicontinuous function such that
C ∩ domϕ 6= ∅. For r > 0 and x ∈ H, define a mapping Kr : H → C as follows:

Kr(x) =

{

u ∈ C : F (u, y) + ϕ(y) − ϕ(u) +
1

r
〈y − u, u − x〉 ≥ 0, ∀y ∈ C

}

(2.7)

for all x ∈ H, Assume that either (B1) or (B2) holds. Then, the following hold:

(i) Kr is single valued;

(ii) Kr is firmly nonexpansive, that is, ‖Krx−Kry‖2 ≤ 〈Krx−Kry, x− y〉 for
any x, y ∈ H;

(iii) F (Kr) = MEP (F, ϕ);

(iv) MEP (F, ϕ) is closed and convex.

Definition 2.7 ([20]). Let C be a nonempty closed convex subset of a Hilbert space
H, let {Sn} be a family of asymptotically nonexpansive mappings of C into itself,
and let {βn,k : n, k ∈ N, 1 ≤ k ≤ n} be a real sequence of real numbers such that
0 ≤ βi,j ≤ 1 for every i, j ∈ N with i ≥ j. For any n ≥ 1, define a mapping
Wn : C → C as follows:

Un,n = βn,nSn
n + (1 − βn,n)I,

Un,n−1 = βn,n−1S
n
n−1Un,n + (1 − βn,n−1)I,

...

Un,k = βn,kSn
k Un,k+1 + (1 − βn,k)I, (2.8)

...

Un,2 = βn,2S
n
2 Un,3 + (1 − βn,2)I,

Wn = Un,1 = βn,1S
n
1 Un,2 + (1 − βn,1)I.

Such a mapping Wn is called the modified W -mapping generated by Sn, Sn−1, ..., S1

and βn,n, βn,n−1, . . . , βn,2, βn,1.
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Lemma 2.8 ([21]). Let C be a nonempty closed convex subset of a real Hilbert
space H. Let {Sm} be a family of asymptotically nonexpansive mappings of C
into itself with Lipschitz constants {tm,n}, that is, ‖Sn

mx − Sn
my‖ ≤ tm,n‖x −

y‖, (∀m, n ∈ N, ∀x, y ∈ C) such that F = ∩∞

i=1F (Si) 6= ∅, and let {βn,k : n, k ∈
N, 1 ≤ k ≤ n} be a sequence of real numbers with 0 < a ≤ βn,1 ≤ 1 for all n ∈ N

and 0 < b ≤ βn,i ≤ c < 1 for every n ∈ N and i = 2, . . . , n for some a, b, c ∈
(0, 1). Let Wn be the modified W -mappings generated by Sn, Sn−1, . . . , S1 and
βn,n, βn,n−1, . . . , βn,2, βn,1. Let rn,k = {βn,k(t2k,n−1)+βn,kβn,k+1t

2
k,n(t2k+1,n−1)+

· · ·+βn,kβn,k+1 . . . βn,n−1t
1
k,nt2k+1,n · · · t2k,nt2k+1,n · · · t2n−2,n(t2n−1,n−1)+βn,kβn,k+1

. . . βn,nt2k,nt2k+1,n · · · t2n−1,n(t2n,n)} for every n ∈ N and k = 1, 2, . . . , n. Then, the
followings hold:

(i) ‖Wnx − z‖2 ≤ (1 + rn,1)‖x − z‖2 for all n ∈ N, x ∈ C and z ∈ ∩n
i=1F (Si);

(ii) if C is bounded and limn→∞ rn,1 = 0 for every sequence {zn} in C,

lim
n→∞

‖zn+1 − zn‖ = 0, lim
n→∞

‖zn − Wnzn‖ = 0 imply ωω(zn) ⊂ F ; (2.9)

(iii) if limn→∞ rn,1 = 0, F = ∩∞

n=1F (Wn) and F is closed convex.

3 Main Results

In this section, we prove a strong convergence for the set of common fixed
points of an infinite family of asymptotically nonexpansive mappings and the set
of solutions of a generalized mixed equilibrium problem in Hilbert space.

Theorem 3.1. Let C be a nonempty bounded closed convex subset of a real
Hilbert space H, let F : C × C → R be a bifunction, A : C → H be an
α−inverse strongly monotone, and ϕ : C → R be a convex and lower semicon-
tinuous function, satisfying the conditions (A1) − (A4), (B1) or (B2), let {Sm}
be a family of asymptotically nonexpansive mappings of C into itself with Lip-
schitz constants {tm,n}, that is, ‖Sn

mx− Sn
my‖ ≤ tm,n‖x− y‖, ∀m, n ∈ N, ∀x, y ∈

C such that F ∩ GMEP 6= ∅, where F = ∩∞

i=1F (Si), and let {βn,k : n, k ∈
N, 1 ≤ k ≤ n} be a sequence of real numbers with 0 < a ≤ βn,1 ≤ 1 for
all n ∈ N and 0 < b ≤ βn,i ≤ c < 1 for every n ∈ N and 2 ≤ i ≤ n
for some a, b, c ∈ (0, 1). Let Wn be the modified W -mapping is generated by
Sn, Sn−1, . . . , S1 and βn,n, βn,n−1, . . . , βn,2, βn,1. Assume that rn,k = {βn,k(t2k,n −

1)+βn,kβn,k+1t
2
k,n(t2k+1,n−1)+· · ·+βn,kβn,k+1 · · ·βn,n−1t

2
k,nt2k+1,n · · · t2k,nt2k+1,n · · ·

t2n−2,n(t2n−1,n − 1) + βn,kβn,k+1 · · ·βn,nt2k,nt2k+1,n · · · t2n−1,n(t2n,n)}, ∀n ∈ N and
k = 1, 2, . . . , n, such that limn→∞ rn,1 = 0. Let {xn} and {un} be sequences is
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generated by the following algorithm:

x1 ∈ C chosen arbitrarily,

un ∈ C,

F (un, y) + ϕ(y) − ϕ(un) + 〈Axn, y − un〉 + 1
rn

〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

yn = αnun + (1 − αn)Wnun, (3.1)

Cn+1 = {v ∈ Cn : ‖yn − v‖2 ≤ ‖xn − v‖2 + θn},

xn+1 = PCn+1
x1, n ∈ N,

where C1 = C and θn = (1 − αn)rn,1(diamC)2 and 0 ≤ αn ≤ d < 1 and 0 < e ≤
rn ≤ f < 2α. Then {xn} and {un} converge strongly to PF∩GMEP (x1).

Proof. We split the proof into 4 steps.
Step 1. Show that the sequences {xn} and {yn} are well defined.

By Lemma 2.4, we have that Cn is closed and convex. Let x, y ∈ C. Since A
is α−inverse strongly monotone and rn < 2α, ∀ ∈ N, we have

‖(I − rnA)x − (I − rnA)y‖2 = ‖x − y − rn(Ax − Ay)‖2

= ‖x − y‖2 − 2rn〈x − y, Ax − Ay〉 + r2
n‖Ax − Ay‖2

≤ ‖x − y‖2 − 2αrn‖Ax − Ay‖2 + r2
n‖Ax − Ay‖2

= ‖x − y‖2 + rn(rn − 2α)‖Ax − Ay‖2 (3.2)

≤ ‖x − y‖2.

Thus I − rnA is nonexpansive. Since

F (un, y)+ϕ(y)−ϕ(un)+ 〈Axn, y−un〉+
1

rn

〈y−un, un−xn〉 ≥ 0, ∀y ∈ C, (3.3)

we obtain

F (un, y) + ϕ(y) − ϕ(un) +
1

rn

〈y − un, un − (I − rnA)xn〉 ≥ 0, ∀y ∈ C. (3.4)

It follows from Lemma 2.6 that un = Krn
(xn − rnAxn), for all n ∈ N.

Let p ∈ F ∪GMEP, by Lemma 2.6, we have p = Krn
(p− rnAp), for all n ∈ N.

Since I − rnA and Krn
are nonexpansive, we have

‖un − p‖ ≤ ‖Krn
(xn − rnAxn) − Krn

(p − rnAp)‖ ≤ ‖xn − p‖, ∀n ∈ N. (3.5)

By Lemma 2.8 and the convexity of ‖ · ‖2, we have

‖yn − p‖2 = ‖αn(un − p) + (1 − αn)(Wnun − p)‖2

≤ αn‖un − p‖2 + (1 − αn)‖Wnun − p‖2

≤ αn‖un − p‖2 + (1 − αn)(1 + rn,1)‖un − p‖2 (3.6)

= ‖un − p‖2 + (1 − αn)rn,1‖un − p‖2

≤ ‖un − p‖2 + θn

≤ ‖xn − p‖2 + θn.
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So, p ∈ Cn for all n and F ∪GMEP ⊂ Cn for all n. This implies that {xn} is well
defined and by Lemma 2.6, we have that {un} is also well defined.

Step 2. We show that ‖xn+1 −xn‖ → 0, ‖xn −un‖ → 0, ‖un+1−un‖ → 0, ‖un −
Wnun‖ → 0. as n → ∞. From xn = PCn

x1, we have that

〈x1 − xn, xn − v〉 ≥ 0, for each v ∈ F ∩ GMEP ⊂ Cn, n ∈ N. (3.7)

So, for p ∈ F ∩ GMEP, we have

0 ≤ 〈x1 − xn, xn − p〉 = −〈xn − x1, xn − x1〉 + 〈x1 − xn, x1 − p〉

≤ ‖xn − x1‖
2 + ‖xn − x1‖‖x1 − p‖. (3.8)

This implies that

‖xn − x1‖
2 ≤ ‖xn − x1‖‖x1 − p‖, (3.9)

and hence

‖xn − x1‖ ≤ ‖x1 − p‖. (3.10)

Since C is bounded, then {xn} and {un} are bounded. From xn = PCn
x0 and

xn+1 = PCn+1
x1 ∈ Cn+1 ⊂ Cn, we have

〈x1 − xn, xn − xn+1〉 ≥ 0, ∀n ∈ N. (3.11)

So,

0 ≤ 〈x1 − xn, xn − xn+1〉 = −〈xn − x1, xn − x1〉 + 〈x1 − xn, x1 − xn+1〉

≤ −‖xn − x1‖
2 + ‖xn − x1‖‖x1 − xn+1‖. (3.12)

This implies that

‖xn − x1‖ ≤ ‖x1 − xn+1‖, ∀n ∈ N. (3.13)

Hence, {‖xn − x1‖} is nondecreasing, it follows that limn→∞ ‖xn − x1‖ exists.
From (2.1) and (3.11), we have

‖xn+1 − xn‖
2 = ‖(xn+1 − x1) − (xn − x1)‖

2

= ‖(xn+1−x1)‖
2 − ‖xn−x1‖

2 − 2〈xn+1−xn, xn−x1〉 (3.14)

≤ ‖xn+1 − x1‖
2 − ‖xn − x1‖

2.

Since limn→∞ ‖xn − x1‖ exists, we have

lim
n→∞

‖xn − xn+1‖ = 0. (3.15)

On the other hand, it follows from xn+1 ∈ Cn+1 that

‖yn − xn+1‖
2 ≤ ‖xn − xn+1‖

2 + θn → 0, as n → ∞. (3.16)
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It follows that

‖yn − xn‖ ≤ ‖yn − xn+1‖ + ‖xn+1 − xn‖ → 0, as n → ∞. (3.17)

Next, we claim that limn→∞ ‖xn − un‖ = 0. Let p ∈ F ∩ GMEP, it follows from
(3.6) that

‖yn − p‖2 ≤ ‖un − p‖2 + θn

= ‖Krn
(I − rnA)xn − Krn

(I − rnA)p‖2 + θn (3.18)

≤ ‖xn − p‖2 + rn(rn − 2α)‖Axn − Ap‖2 + θn.

This implies that

e(2α − f)‖Axn − Ap‖2 ≤ ‖xn − p‖2 − ‖yn − p‖2 + θn

≤ ‖xn − yn‖(‖xn − p‖ + ‖yn − p‖) + θn. (3.19)

It follows from (3.17) that

lim
n→∞

‖Axn − Ap‖ = 0. (3.20)

From Lemma 2.6, we have

‖un − p‖2 = ‖Krn
(I − rnA)xn − Krn

(I − rnA)p‖2

≤ 〈(xn − rnAxn) − (p − rnAp), un − p〉

=
1

2
{‖xn − rnAxn − (p − rnAp)‖2 + ‖un − p‖2

− ‖xn − rnAxn − (p − rnAp) − (un − p)‖2}

≤
1

2
{‖xn − p‖2 + ‖un − p‖2 − ‖xn − un − rn(Axn − Ap)‖2}

=
1

2
{‖xn − p‖2 + ‖un − p‖2 − ‖xn − un‖

2

+ 2rn〈xn − un, Axn − Ap〉 − r2
n‖Axn − Ap‖2}. (3.21)

This implies that

‖un − p‖2 ≤ ‖xn − p‖2 − ‖xn − un‖
2 + 2rn〈xn − un, Axn − Ap〉 − r2

n‖Axn − Ap‖2

≤ ‖xn − p‖2 − ‖xn − un‖
2 + 2rn〈xn − un, Axn − Ap〉 (3.22)

≤ ‖xn − p‖2 − ‖xn − un‖
2 + 2rn‖xn − un‖‖Axn − Ap‖.

By (3.21) and (3.22), we obtain

‖yn − p‖2 ≤ ‖xn − p‖2 − ‖xn − un‖
2 + 2rn‖xn − un‖‖Axn − Ap‖ + θn, (3.23)

which implies that

‖xn − un‖
2 ≤ ‖xn − p‖2 − ‖yn − p‖2 + 2rn‖xn − un‖‖Axn − Ap‖ + θn

≤ ‖xn − yn‖(‖xn − p‖ + ‖yn − p‖) + 2rn‖xn − un‖‖Axn − Ap‖ + θn.
(3.24)
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This implies by (3.17) and (3.24) that

lim
n→∞

‖un − xn‖ = 0. (3.25)

From (3.15) and (3.25), we have

‖un − un+1‖ ≤ ‖un − xn‖ + ‖xn − xn+1‖ + ‖xn+1 − un+1‖ → 0, as n → ∞.
(3.26)

Similarly, from (3.17) and (3.25), we have

‖yn − un‖ ≤ ‖yn − xn‖ + ‖xn − un‖ → 0, as n → ∞. (3.27)

Since

(1 − αn)‖wnun − un‖ = ‖yn − un‖, (3.28)

it implies by 0 ≤ αn ≤ d < 1 that

‖Wnun − un‖ =
‖yn − un‖

1 − αn

<
‖yn − un‖

1 − d
→ 0, as n → ∞. (3.29)

Step 3. We show that there exists a subsequence {xni
} of {xn} which converge

weakly to z, where z ∈ F ∩ GMEP.
Since {xn} is bounded and C is closed, there exists a subsequence {xni

} of
{xn} which converges weakly to z ∈ C. From (3.25), It follows by (3.26), (3.29)
and Lemma 2.8 that z ∈ F. Next, we prove that z ∈ GMEP . Indeed, we observe
that un = Krn

(xn − rnAxn) and

F (un, y) + ϕ(y) − ϕ(un) + 〈Axn, y − un〉 +
1

rn

〈y − un, un − xn〉 ≥ 0, ∀y ∈ C.

(3.30)

By (A2), we get

ϕ(y) − ϕ(un) + 〈Axn, y − un〉 +
1

rn

〈y − un, un − xn〉 ≥ F (y, un). (3.31)

Replacing n by ni, we obtain

ϕ(y) − ϕ(uni
) + 〈Axn, y − un〉 + 〈y − uni

,
uni

− xni

rni

〉 ≥ F (y, uni
). (3.32)

Put zt = ty + (1 − t)z for all t ∈ (0, 1] and y ∈ C. Then, we have zt ∈ C. So, we
have

〈zt − uni
, Azt〉 ≥ 〈zt − uni

, Azt〉 − 〈Axn, zt − uni
〉 −

〈

zt − uni
,
uni

− xni

rni

〉

+ F (zt, uni
) − ϕ(zt) + ϕ(uni

)

= 〈zt − uni
, Azt − Auni

〉 + 〈zt − uni
, Auni

− Axni
〉 (3.33)

−

〈

zt − uni
,
uni

− xni

rin

〉

+ F (zt, uni
) − ϕ(zt) + ϕ(uni

).
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Since ‖uni
− xni

‖ → 0, we have ‖Auni
− Axni

‖ → 0. Further, from monotonicity
of A, we have 〈zt − uni

, Azt − Auni
〉 ≥ 0. So, by (A4) and the weakly lower

semicontinuity of ϕ, we have

〈zt − z, Azt〉 ≥ F (zt, z) − ϕ(zt) + ϕ(z). (3.34)

It follows by (A1) and (A4) that

0 = F (zt, zt) − ϕ(zt) + ϕ(zt)

≤ tF (zt, y) + (1 − t)F (zt, z) + tϕ(y) + (1 − t)ϕ(z) − ϕ(zt)

= t
(

F (zt, y) + ϕ(y) − ϕ(zt)
)

+ (1 − t)
(

F (zt, z) + ϕ(z) − ϕ(zt)
)

≤ t
(

F (zt, y) + ϕ(y) − ϕ(zt)
)

+ (1 − t)〈zt − z, Azt〉

= t
(

F (zt, y) + ϕ(y) − ϕ(zt)
)

+ (1 − t)t〈y − z, Azt〉 (3.35)

and hence

0 ≤ F (zt, y) + ϕ(y) − ϕ(zt) + (1 − t)〈y − z, Azt〉. (3.36)

Letting t → 0, we have, for each y ∈ C, that

0 ≤ F (z, y) + ϕ(y) − ϕ(z) + 〈y − z, Az〉. (3.37)

This implies that z ∈ GMEP.

Step 4. We prove that xn → z, un → z, where z = PF∩GMEP x1.
Putting z′ = PF∩GMEP x1 and consider the sequence {x1 − xni

}. Then we
have x1 − xni

⇀ x1 − z and by the weak lower semicontinuity of the norm and
‖x1 − xn+1‖ ≤ ‖x1 − z′‖ for all n ∈ N which is implied by the fact that xn+1 =
PCn+1

x1, we have

‖x1 − z′‖ ≤ ‖x1 − z‖

≤ lim inf
n→∞

‖x1 − xni
‖

≤ lim sup
n→∞

‖x1 − xni
‖ (3.38)

≤ ‖x1 − z′‖.

This implies that ‖x1 − z′‖ = ‖x1 − z‖. By the uniqueness of the nearest point
projection of x1 onto F ∩ GMEP that

‖x1 − xni
‖ → ‖x1 − z′‖. (3.39)

This implies that xni
→ z′. Since {xn} is an arbitrary sequence of C, we can

conclude that xn → z′. By (3.25), we have that un → z′ also. This proof is
completed.
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