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1 Introduction, Definitions and Results

In this paper by meromorphic functions we will always mean meromorphic
functions in the complex plane.

Let f and g be two non-constant meromorphic functions and let a be a finite
complex number. We say that f and g share a CM, provided that f − a and
g − a have the same zeros with the same multiplicities. Similarly, we say that f
and g share a IM, provided that f − a and g − a have the same zeros ignoring
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multiplicities. In addition we say that f and g share ∞ CM, if 1/f and 1/g share
0 CM, and we say that f and g share ∞ IM, if 1/f and 1/g share 0 IM.

We adopt the standard notations of value distribution theory (see [1]). We
denote by T (r) the maximum of T (r, f) and T (r, g). The notation S(r) denotes
any quantity satisfying S(r) = o(T (r)) as r → ∞, outside of a possible exceptional
set of finite linear measure.

During the last quarter of century or so a widely studied topic of the unique-
ness theory has been to considering the shared value problems of different nonlin-
ear differential polynomials and the uniqueness of their corresponding generating
meromorphic functions and naturally a substantial number of authors have worked
in this aspect (see [2–13]). In [14] Lahiri studied the problem of uniqueness of
meromorphic functions when two linear differential polynomials share the same 1-
points. In the same paper regarding the nonlinear differential polynomials Lahiri
[14] asked the following question.

What can be said if two nonlinear differential polynomials generated by two
meromorphic functions share 1 CM?

In 2001, Fang and Hong [6] proved the following result.

Theorem A. Let f and g be two transcendental entire functions and n(≥ 11) be
an integer. If fn(f − 1)f

′

and gn(g − 1)g
′

share 1 CM, then f ≡ g.

The above result created a lot of impulse among the researchers. In 2002, Fang
and Fang [5] improved the above theorem by proving the following theorem.

Theorem B. Let f and g be two non-constant entire functions and n(≥ 8) be an
integer . If fn(f − 1)f

′

and gn(g − 1)g
′

share 1 CM, then f ≡ g.

In 2004, Lin and Yi [12] further improved Theorem B as follows.

Theorem C. Let f and g be two transcendental entire functions and n(≥ 7) be
an integer. If fn(f − 1)f

′

and gn(g − 1)g
′

share 1 CM, then f ≡ g.

In the same paper to investigate the uniqueness of meromorphic functions
corresponding to the value sharing of their non linear differential polynomials Lin
and Yi [12] proved the following result.

Theorem D. Let f and g be two non-constant meromorphic functions and n(≥
13) be an integer. If fn(f − 1)2f

′

and gn(g − 1)2g
′

share 1 CM, then f ≡ g.

In 2001, an idea of gradation of sharing of values was introduced in [15, 16]
which measures how close a shared value is to being share CM or to being shared
IM. This notion is known as weighted sharing and is defined as follows.

Definition 1.1 ([15, 16]). Let k be a nonnegative integer or infinity. For a ∈
C ∪ {∞} we denote by Ek(a; f) the set of all a-points of f , where an a-point
of multiplicity m is counted m times if m ≤ k and k + 1 times if m > k. If
Ek(a; f) = Ek(a; g), we say that f , g share the value a with weight k.
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The definition implies that if f , g share a value a with weight k then z0 is
an a-point of f with multiplicity m (≤ k) if and only if it is an a-point of g with
multiplicity m (≤ k) and z0 is an a-point of f with multiplicity m (> k) if and
only if it is an a-point of g with multiplicity n (> k), where m is not necessarily
equal to n.

We write f , g share (a, k) to mean that f , g share the value a with weight k.
Clearly if f , g share (a, k), then f , g share (a, p) for any integer p, 0 ≤ p < k.
Also we note that f , g share a value a IM or CM if and only if f , g share (a, 0) or
(a,∞) respectively.

In the mean time to investigate the uniqueness of meromorphic functions,
Lahiri and Sarkar [9] considered two different types of nonlinear differential poly-
nomials than those discussed earlier and proved the following.

Theorem E. Let f and g be two non-constant meromorphic functions such that
fn(f2−1)f

′

and gn(g2−1)g
′

share (1, 2), where n(≥ 13) is an integer then either
f ≡ g or f ≡ −g. If n is an even integer then the possibility of f ≡ −g does not
arise.

Recently, Zhang and Lin [17] considered the sharing value problem of more
generalised differential polynomials namely the kth derivative of a linear expression
but confined their investigation for entire functions only. Zhang and Lin [17]
obtained the following result.

Theorem F. Let f and g be two non-constant entire functions and n, m and k
be three positive integers with n > 2k +m+4. Suppose for two non zero constants

a and b [fn (afm + b)]
(k)

and [gn (agm + b)]
(k)

share (1,∞). Then f ≡ g.

Remark 1.2. The conclusion of the Theorem F is partially correct. Since in the
proof of the theorem the possibility f ≡ −g has not been considered.

In the paper we will consider the value sharing of differential polynomials of
the form given in Theorem F generated by a meromorphic functions and improve
Theorem F and we will show that Theorem E can be obtained as a corollary of
our result. Following theorem is the main result of the paper.

Theorem 1.3. Let f and g be two transcendental meromorphic functions and n,
k(≥ 1), m(≥ 2) be three positive integers with g.c.d. (n + m, n) = 2. Suppose

for two non zero constants a and b, [fn (afm + b)]
(k)

and [gn (agm + b)]
(k)

share
(1, l). Then f ≡ g or f ≡ − g or [fn(afm + b)](k)[gn(agm + b)](k) ≡ 1 provided
one of the following holds.

(i) l ≥ 2 and n > 3k+m+8−2{Θ(∞; f)+Θ(∞; g)}−kmin{Θ(∞; f), Θ(∞; g)};

(ii) l = 1 and n > 4k + 3m
2 + 9 −

(

k
2 + 5

2

)

{Θ(∞; f) + Θ(∞; g)};

(iii) l = 0 and n > 9k+4m+14−(2k+3){Θ(∞; f)+Θ(∞; g)}−min{Θ(∞; f), Θ(∞; g)}.

When k = 1 the possibility [fn(afm + b)](k)[gn(agm + b)](k) ≡ 1 does not occur.
Also the possibility f ≡ −g does not arise if n and m are both odd or if n is odd
and m is even or if n is even and m is odd.
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Putting n = s + 1, m = 2 a = 1
s+3 b = − 1

s+1 and k = 1 in the above theorem
we can immediately deduce the following corollary.

Corollary 1.4. Let f and g be two non-constant meromorphic functions and s be
a positive integer. Suppose fs(f2 − 1)f

′

and gs(g2 − 1)g
′

share (1, l). Then f ≡ g
or f ≡ − g provided one of the following holds.

(i) l ≥ 2 and s > 12 − 2{Θ(∞; f) + Θ(∞; g)} − min{Θ(∞; f), Θ(∞; g)};

(ii) l = 1 and s > 15 − 3 {Θ(∞; f) + Θ(∞; g)};

(iii) l = 0 and s > 30 − 5{Θ(∞; f) + Θ(∞; g)} − min{Θ(∞; f), Θ(∞; g)}.

If s is an even integer then the possibility of f ≡ −g does not arise.

Remark 1.5. Since Theorem E can be obtained as a special case of Theorem 1.3,
clearly Theorem 1.3 improves and supplements Theorem E.

Theorem 1.6. Let f and g be two non-constant entire functions and n, k(≥ 1),
m(≥ 2) be three positive integers with g.c.d. (m + n, n) = 2. Suppose for two non

zero constants a and b, [fn (afm + b)]
(k)

and [gn (agm + b)]
(k)

share (1, l). Then
f ≡ g or f ≡ − g provided one of the following holds.

(i) l ≥ 2 and n > 2k + m + 4;

(ii) l = 1 and n > 3k + 3m
2 + 4;

(iii) l = 0 and n > 5k + 4m + 7.

Also the possibility f ≡ −g does not arise if n and m are both odd or if n is odd
and m is even or if n is even and m is odd.

We now explain some definitions and notations which are used in the paper.

Definition 1.7 ([9]). Let p be a positive integer and a ∈ C ∪ {∞}.

(i) N(r, a; f |≥ p) (N(r, a; f |≥ p))denotes the counting function (reduced
counting function) of those a-points of f whose multiplicities are not less
than p.

(ii) N(r, a; f |≤ p) (N(r, a; f |≤ p)) denotes the counting function (reduced
counting function) of those a-points of f whose multiplicities are not greater
than p.

Definition 1.8 ([15, 18, 19]). For a ∈ C∪{∞} and a positive integer p we denote
by Np(r, a; f) the sum N(r, a; f) + N(r, a; f |≥ 2) + · · · + N(r, a; f |≥ p). Clearly
N1(r, a; f) = N(r, a; f).

Definition 1.9. Let a, b ∈ C ∪ {∞}. Let p be a positive integer. We denote by
N(r, a; f | ≥ p | g = b) (N(r, a; f | ≥ p | g 6= b)) the reduced counting function
of those a-points of f with multiplicities ≥ p, which are the b-points (not the
b-points) of g.
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Definition 1.10 ([2, 20]). Let f and g be two non-constant meromorphic functions
such that f and g share the value 1 IM. Let z0 be a 1-point of f with multiplicity
p, a 1-point of g with multiplicity q. We denote by NL(r, 1; f) the counting

function of those 1-points of f and g where p > q, by N
1)
E (r, 1; f) the counting

function of those 1-points of f and g where p = q = 1 and by N
(2

E (r, 1; f) the
counting function of those 1-points of f and g where p = q ≥ 2, each point in
these counting functions is counted only once. In the same way we can define

NL(r, 1; g), N
1)
E (r, 1; g), N

(2

E (r, 1; g).

Definition 1.11 ([2, 20]). Let k be a positive integer. Let f and g be two non-
constant meromorphic functions such that f and g share the value 1 IM. Let z0

be a 1-point of f with multiplicity p, a 1-point of g with multiplicity q. We denote
by Nf>k (r, 1; g) the reduced counting function of those 1-points of f and g such
that p > q = k. Ng>k (r, 1; f) is defined analogously.

Definition 1.12 ([15, 16]). Let f , g share a value a IM. We denote by N∗(r, a; f, g)
the reduced counting function of those a-points of f whose multiplicities differ
from the multiplicities of the corresponding a-points of g. Clearly, N∗(r, a; f, g) ≡
N∗(r, a; g, f) and N∗(r, a; f, g) = NL(r, a; f) + NL(r, a; g).

2 Lemmas

In this section we present some lemmas which will be needed in the sequel.
Let F , G be two non-constant meromorphic functions. Henceforth we shall denote
by H the following function.

H =

(

F (k+2)

F (k+1)
−

2F (k+1)

F (k) − 1

)

−

(

G(k+2)

G(k+1)
−

2G(k+1)

G(k) − 1

)

. (2.1)

Lemma 2.1 ([1]). Let f be a non-constant meromorphic function, k a positive
integer and let c be a non-zero finite complex number. Then

T (r, f) ≤ N(r,∞; f) + N(r, 0; f) + N
(

r, c; f (k)
)

− N
(

r, 0; f (k+1)
)

+ S(r, f)

≤ N(r,∞; f) + Nk+1(r, 0; f) + N
(

r, c; f (k)
)

− N0

(

r, 0; f (k+1)
)

+ S(r, f),

where N0

(

r, 0; f (k+1)
)

is the counting function of the zeros of f (k+1) which are not

the zeros of f(f (k) − c)

Lemma 2.2 ([21]). Let f be a non-constant meromorphic function and p, k be
positive integers, then

Np(r, 0; f (k)) ≤ Np+k(r, 0; f) + kN(r,∞; f) + S(r, f).
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Lemma 2.3 ([20]). If f, g be two non-constant meromorphic functions such that
they share (1, 1). Then

2NL(r, 1; f) + 2NL(r, 1; g) + N
(2

E (r, 1; f) − Nf>2(r, 1; g) ≤ N(r, 1; g) − N(r, 1; g).

Lemma 2.4 ([2]). Let f , g share (1, 1). Then

Nf>2(r, 1; g) ≤
1

2
N(r, 0; f) +

1

2
N(r,∞; f) −

1

2
N⊘(r, 0; f

′

) + S(r, f),

where N⊘(r, 0; f
′

) is the counting function of those zeros of f
′

which are not the
zeros of f(f − 1).

Lemma 2.5 ([2]). Let f and g be two non-constant meromorphic functions sharing
(1, 0). Then

NL(r, 1; f) + 2NL(r, 1; g) + N
(2

E (r, 1; f)−Nf>1(r, 1; g) − Ng>1(r, 1; f)

≤ N(r, 1; g) − N(r, 1; g).

Lemma 2.6 ([2]). Let f , g share (1, 0). Then

NL(r, 1; f) ≤ N(r, 0; f) + N(r,∞; f) + S(r, f)

Lemma 2.7 ([2]). Let f , g share (1, 0). Then

(i) Nf>1(r, 1; g) ≤ N(r, 0; f) + N(r,∞; f) − N⊘(r, 0; f
′

) + S(r, f)

(ii) Ng>1(r, 1; f) ≤ N(r, 0; g) + N(r,∞; g) − N⊘(r, 0; g
′

) + S(r, g).

Lemma 2.8 ([22]). Let f be a non-constant meromorphic function and P (f) =
a0 + a1f + a2f

2 + · · · + anfn, where a0, a1, a2, . . . , an are constants and an 6= 0.
Then T (r, P (f)) = nT (r, f) + O(1).

Lemma 2.9. Let f and g be two non-constant meromorphic functions and a, b
be two non zero constants. Then

[fn(afm + b)](k)[gn(agm + b)](k) 6≡ 1,

where n, m ≥ 2, k = 1 be three positive integers and n(≥ m + 3).

Proof. We note that when k = 1, according to the statement of the lemma we
have to prove

[fn−1 (a(n + m)fm + bn) f
′

] [gn−1 (a(n + m)gm + bn) g
′

] 6≡ 1.

If possible let us suppose that

[fn−1 (a(n + m)fm + bn) f
′

] [gn−1 (a(n + m)gm + bn) g
′

] ≡ 1. (2.2)
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Let z0 be a zero of f with multiplicity p(≥ 1). So from (2.2) we get z0 be a pole
of g with multiplicity q(≥ 1) such that

np − 1 = (n + m)q + 1, (2.3)

i.e.,
mq = n(p − q) − 2 ≥ n − 2.

Again from (2.3) we get

np = (n + m)q + 2 ≥ (n + m)
n − 2

m
+ 2,

i.e.,

p ≥
n + m − 2

m
.

Therefore
Θ(0; f) ≥ 1 −

m

n + m − 2
.

Suppose a(n + m)fm + bn = a(n + m) (f − α1)(f − α2) · · · (f − αm). Let z1

be a zero of (f −αi), i = 1, 2, . . . , m with multiplicity p. Then from (2.2) we have
z1 be a pole of g with multiplicity q(≥ 1) such that

2p− 1 = (n + m)q + 1

i.e.,

p ≥
n + m + 2

2
.

Hence

Θ(αi; f) ≥ 1 −
2

n + m + 2
.

Since

Θ(0; f) +
m

∑

i=1

Θ(αi; f) ≤ 2,

it follows that
2m

n + m + 2
+

m

n + m − 2
≥ m − 1,

which is a contradiction.

Lemma 2.10. Let f and g be two non-constant entire functions. Then

[fn(afm + b)](k)[gn(agm + b)](k) 6≡ 1,

where a and b are nonzero complex numbers; n, m, k be three positive integers and
n(> 2k + m + 4).

Proof. We omit the proof since the proof can be found in the proof of Theorem 1
in [17].
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Lemma 2.11. Let f and g be two non-constant meromorphic functions such that
F = fn (afm + b) and G = gn (agm + b), where m ≥ 2 and n + m ≥ 9 is an
integer with g.c.d. (n + m, n) = 2 and a, b are non-zero constants. Then

F ≡ G

implies either f ≡ g or f ≡ −g. Also if n and m are both odd or if n is odd and
m is even or if n is even and m is odd then the possibility f ≡ −g does not arise.

Proof. Clearly if n and m are both odd or if n is odd and m is even or if n is even
and m is odd then f ≡ −g contradicts F ≡ G. Let neither f ≡ g nor f ≡ −g. We
put h = g

f
. Then h 6≡ 1 and h 6≡ −1. Also F ≡ G implies

fm = −
b

a

hn − 1

hn+m − 1
.

If n and m are both even then the numerator and the denominator has two com-
mon factors namely h + 1 and h − 1. Also we observe that since a non-constant
meromorphic function can not have more than two Picard exceptional values h can
take at least n+m−4 values among uj = exp( 2jπi

n+m
), where j = 1, 2, . . . , n+m−1.

Since f is non-constant it follows that h is non constant. Again since fm has no
simple pole h − uj has no simple zero for at least n + m − 4 values of uj, for
j = 1, 2, . . . , n+m− 1 and for these values of j we have Θ(uj; h) ≥ 1

2 , which leads
to a contradiction. Therefore either f ≡ g or f ≡ − g. This proves the lemma.

3 Proofs of the Theorems

Proof of Theorem 1.3. Let F = fn(afm + b) and G = gn(agm + b). It follows
that F (k) and G(k) share (1, l).
Case 1 Let H 6≡ 0.
Subcase 1.1 l ≥ 1
From (2.1) we get

N(r,∞; H) ≤ N(r,∞; F ) + N(r,∞; G) + N∗

(

r, 1; F (k), G(k)
)

(3.1)

+ N
(

r, 0; F (k) |≥ 2
)

+ N
(

r, 0; G(k) |≥ 2
)

+ N⊗

(

r, 0; F (k+1)
)

+ N⊗

(

r, 0; G(k+1)
)

,

where N⊗

(

r, 0; F (k+1)
)

is the reduced counting function of those zeros of F (k+1)

which are not the zeros of F (k)
(

F (k) − 1
)

and N⊗

(

r, 0; G(k+1)
)

is similarly defined.

Let z0 be a simple zero of F (k) − 1. Then z0 is a simple zero of G(k) − 1 and
a zero of H . So

N
(

r, 1; F (k) |= 1
)

≤ N(r, 0; H) ≤ N(r,∞; H) + S(r, F ) + S(r, G). (3.2)
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While l ≥ 2, using (3.1) and (3.2) we get

N
(

r, 1; F (k)
)

≤ N
(

r, 1; F (k) |= 1
)

+ N
(

r, 1; F (k) |≥ 2
)

(3.3)

≤ N(r,∞; F ) + N(r,∞; G) + N(r, 0; F (k) |≥ 2) + N
(

r, 0; G(k) |≥ 2
)

+ N∗

(

r, 1; F (k), G(k)
)

+ N
(

r, 1; F (k) |≥ 2
)

+ N⊗(r, 0; F (k+1))

+ N⊗

(

r, 0; G(k+1)
)

+ S(r, F ) + S(r, G).

So from Lemmas 2.1 and 2.8 we have

T (r, F ) + T (r, G) ≤ 2N(r,∞; F ) + 2N(r,∞; G) + Nk+1(r, 0; F ) + Nk+1(r, 0; G)

+ N
(

r, 0; F (k) |≥ 2
)

+ N
(

r, 0; G(k) |≥ 2
)

+ N⊗

(

r, 0; F (k+1)
)

+ N⊗

(

r, 0; G(k+1)
)

+ N
(

r, 1; G(k)
)

+ N
(

r, 1; F (k) |≥ 2
)

+ N∗

(

r, 1; F (k), G(k)
)

− N0

(

r, 0; F (k+1)
)

− N0

(

r, 0; G(k+1)
)

+ S(r, F ) + S(r, G). (3.4)

We note that

Nk+1(r, 0; F ) + N
(

r, 0; F (k) |≥ 2
)

+ N⊗

(

r, 0; F (k+1)
)

(3.5)

≤ Nk+1(r, 0; F ) + N
(

r, 0; F (k) |≥ 2 | F = 0
)

+ N
(

r, 0; F (k) |≥ 2 | F 6= 0
)

+ N⊗

(

r, 0; F (k+1)
)

≤ Nk+1(r, 0; F ) + N (r, 0; F |≥ k + 2) + N0

(

r, 0; F (k+1)
)

≤ Nk+2(r, 0; F ) + N0

(

r, 0; F (k+1)
)

.

Clearly similar expression holds for G. Also

N
(

r, 1; F (k) |≥ 2
)

+ N∗

(

r, 1; F (k), G(k)
)

+ N
(

r, 1; G(k)
)

(3.6)

≤ N
(

r, 1; G(k) |= 2
)

+ 2NL

(

r, 1; F (k)
)

+ 2NL

(

r, 1; G(k)
)

+ N
(3

E

(

r, 1; G(k)
)

+ N
(

r, 1; G(k)
)

≤ N
(

r, 1; G(k)
)

≤ T
(

r, G(k)
)

+ O(1)

≤ T (r, G) + kN(r,∞; G) + S(r, G).
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Using Lemma 2.8, (3.5) and (3.6) in (3.4) we obtain for ε > 0

(n + m)T (r, f) = T (r, F ) + O(1) (3.7)

≤ Nk+2(r, 0; F ) + Nk+2(r, 0; G) + 2N(r,∞; F )

+ (k + 2)N(r,∞; G) + S(r, F ) + S(r, G)

≤ Nk+2 (r, 0; fn) + Nk+2(r, 0; afm + b) + Nk+2 (r, 0; gn)

+ Nk+2(r, 0; agm + b) + 2N(r,∞; f) + (k + 2)N(r,∞; g)

+ S(r, f) + S(r, g)

≤ (4 + m + k − 2Θ(∞; f) + ε)T (r, f)

+ (4 + m + 2k − (2 + k)Θ(∞; g) + ε)T (r, g) + S(r, f) + S(r, g)

≤ (8 + 2m + 3k − 2Θ(∞; f) − 2Θ(∞; g)

− k min{Θ(∞; f), Θ(∞; g)} + 2ε)T (r) + S(r, f) + S(r, g).

In a similar way we can obtain

(n + m)T (r, g) (3.8)

≤ (8 + 2m + 3k − 2Θ(∞; f)− 2Θ(∞; g) − k min{Θ(∞; f), Θ(∞; g)}

+2ε)T (r) + S(r, f) + S(r, g).

So from (3.7) and (3.8) we get

(n − m − 3k − 8 + 2Θ(∞; f) + 2Θ(∞; g) (3.9)

+k min{Θ(∞; f), Θ(∞; g)} − 2ε)T (r) ≤ S(r).

Since ε > 0 be arbitrary, (3.9) gives a contradiction.

While l = 1, using Lemmas 2.2, 2.3 and 2.4, (3.1) and (3.2) we get

N
(

r, 1; F (k)
)

+ N
(

r, 1; G(k)
)

(3.10)

≤ N
(

r, 1; F (k) |= 1
)

+ NL

(

r, 1; F (k)
)

+ NL

(

r, 1; G(k)
)

+ N
(2

E

(

r, 1; G(k)
)

+ N
(

r, 1; G(k)
)

≤ N
(

r, 1; F (k) |= 1
)

+ N
(

r, 1; G(k)
)

− NL

(

r, 1; F (k)
)

− NL

(

r, 1; G(k)
)

+ NF (k)>2

(

r, 1; G(k)
)
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≤ N(r,∞; F ) + N(r,∞; G) + N
(

r, 0; F (k) |≥ 2
)

+ N
(

r, 0; G(k) |≥ 2
)

+ N∗

(

r, 1; F (k), G(k)
)

− NL

(

r, 1; F (k)
)

− NL

(

r, 1; G(k)
)

+
1

2
N

(

r, 0; F (k)
)

+
1

2
N

(

r,∞; F (k)
)

+ T
(

r, G(k)
)

+ N⊗

(

r, 0; F (k+1)
)

+ N⊗

(

r, 0; G(k+1)
)

+ S(r, F ) + S(r, G)

≤

(

k

2
+

3

2

)

N(r,∞; F ) + (k + 1)N(r,∞; G) + N
(

r, 0; F (k) |≥ 2
)

+ N
(

r, 0; G(k) |≥ 2
)

+
1

2
Nk+1(r, 0; F ) + T (r, G) + N⊗

(

r, 0; F (k+1)
)

+ N⊗

(

r, 0; G(k+1)
)

+ S(r, F ) + S(r, G).

So in view of Lemmas 2.1, 2.8, (3.5) and (3.10) we get for ε > 0

(n + m)T (r, f) = T (r, F ) + O(1) (3.11)

≤

(

k

2
+

5

2

)

N(r,∞; F ) + (k + 2)N(r,∞; G) +
1

2
Nk+1(r, 0; F )

+ Nk+2(r, 0; F ) + Nk+2(r, 0; G) + S(r, F ) + S(r, G)

≤

(

2k + 5 +
3m

2
−

(

k

2
+ 2

)

Θ(∞; f) −
1

2
Θ(∞; f) + ε

)

T (r, f)

+

(

2k + 4 + m −

(

k

2
+ 2

)

Θ(∞; g) −
k

2
Θ(∞; g) + ε

)

T (r, g)

+ S(r, f) + S(r, g)

≤

(

4k + 9 +
5m

2
−

(

k

2
+

5

2

)

(Θ(∞; f) + Θ(∞; g)) + 2ε

)

T (r)

+ S(r).

In a similar manner we can get

(n+m)T (r, g) ≤

(

4k + 9 +
5m

2
−

(

k

2
+

5

2

)

(Θ(∞; f) + Θ(∞; g)) + 2ε

)

T (r)+S(r).

(3.12)
Combining (3.11) and (3.12) we get

(

n − 4k − 9 −
3m

2
+

(

k

2
+

5

2

)

(Θ(∞; f) + Θ(∞; g)) − 2ε

)

T (r) ≤ S(r). (3.13)

Since ε > 0 be arbitrary, (3.13) implies a contradiction.

Subcase 1.2 l = 0. Here (3.2) changes to

N
1)
E

(

r, 1; F (k) |= 1
)

≤ N(r, 0; H) ≤ N(r,∞; H) + S(r, F ) + S(r, G) (3.14)
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Using Lemmas 2.2, 2.5, 2.6, 2.7 and (3.1) and (3.14) we get

N
(

r, 1; F (k)
)

+ N
(

r, 1; G(k)
)

(3.15)

≤ N
1)
E

(

r, 1; F (k)
)

+ NL

(

r, 1; F (k)
)

+ NL

(

r, 1; G(k)
)

+ N
(2

E

(

r, 1; F (k)
)

+ N
(

r, 1; G(k)
)

≤ N
1)
E

(

r, 1; F (k)
)

+ N
(

r, 1; G(k)
)

− NL

(

r, 1; G(k)
)

+ NF (k)>1

(

r, 1; G(k)
)

+ NG(k)>1

(

r, 1; F (k)
)

≤ N(r,∞; F ) + N(r,∞; G) + N
(

r, 0; F (k) |≥ 2
)

+ N
(

r, 0; G(k) |≥ 2
)

+ N∗

(

r, 1; F (k), G(k)
)

+ T
(

r, G(k)
)

− NL

(

r, 1; G(k)
)

+ NF (k)>1

(

r, 1; G(k)
)

+ NG(k)>1

(

r, 1; F (k)
)

+ N⊗

(

r, 0; F (k+1)
)

+ N⊗

(

r, 0; G(k+1)
)

+ S(r, F ) + S(r, G)

≤ (2k + 3)N(r,∞; F ) + (2k + 2)N(r,∞; G) + N
(

r, 0; F (k) |≥ 2
)

+ N
(

r, 0; G(k) |≥ 2
)

+ 2Nk+1(r, 0; F ) + Nk+1(r, 0; G) + T (r, G)

+ N⊗

(

r, 0; F (k+1)
)

+ N⊗

(

r, 0; G(k+1)
)

+ S(r, F ) + S(r, G).

So in view of Lemmas 2.1, 2.8, (3.5) and (3.15) we get for ε > 0

(n + m)T (r, f) = T (r, F ) + O(1) (3.16)

≤ (2k + 4)N(r,∞; f) + (2k + 3)N(r,∞; g) + 2Nk+1(r, 0; F )

+ Nk+1(r, 0; G) + Nk+2(r, 0; F ) + Nk+2(r, 0; G) + S(r, f) + S(r, g)

≤ (9k + 14 + 5m− (2k + 3)Θ(∞; f)− (2k + 3)Θ(∞; g)

−min{Θ(∞; f), Θ(∞; g)} + 2ε)T (r) + S(r).

Similarly we can obtain

(n + m)T (r, g) = T (r, G) + O(1) (3.17)

≤ (9k + 14 + 5m − (2k + 3)Θ(∞; f) − (2k + 3)Θ(∞; g)

−min{Θ(∞; f), Θ(∞; g)} + 2ε)T (r) + S(r).

Combining (3.16) and (3.17) we get

(n − 9k − 14 + 4m + (2k + 3)Θ(∞; f) + (2k + 3)Θ(∞; g) (3.18)

+ min{Θ(∞; f), Θ(∞; g)} − 2ε)T (r) ≤ S(r).

(3.18) implies a contradiction for ε > 0.
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Case 2 Next we suppose that H ≡ 0. Then by integration we get from (2.1)

1

F (k) − 1
≡

bG(k) + a − b

G(k) − 1
, (3.19)

where a, b are constants and a 6= 0. From (3.19) it is clear that F (k) and G(k)

share (1,∞) and hence they share (1, 2). So in this case always n > 3k + m + 8−
2{Θ(∞; f)+Θ(∞; g)}−kmin{Θ(∞; f), Θ(∞; g)}. We now consider the following
subcases.

Subcase 2.1 Let b 6= 0 and a 6= b. If b = −1, then from (3.19) we have

F (k) =
−a

G(k) − a − 1
.

Therefore
N

(

r, a + 1; G(k)
)

= N
(

r,∞; F (k)
)

= N(r,∞; f).

Since a 6= b = −1, from Lemma 2.1 we have

(n + m)T (r, g) = T (r, G) + O(1)

≤ N(r,∞; G) + Nk+1(r, 0; G) + N(r, a + 1; G(k)) + S(r, G)

≤ N(r,∞; f) + N(r,∞; g) + Nk+1(r, 0; G) + S(r, G)

≤ (1 − Θ(∞; f) + ε)T (r, f) + (k + 2 + m − Θ(∞; g) + ε)T (r, g)

+ S(r, g).

Without loss of generality, we suppose that there exists a set I with infinite measure
such that T (r, f) ≤ T (r, g) for r ∈ I. So for r ∈ I we have

(n − k − 3 + Θ(∞; f) + Θ(∞; g) − 2ε)T (r, g) ≤ S(r, g),

which is a contradiction for arbitrary ε > 0.
If b 6= −1, from (3.19) we obtain that

F (k) −

(

1 +
1

b

)

=
−a

b2[G(k) + (a − b)/b]
.

Therefore

N
(

r, (b − a)/b; G(k)
)

= N
(

r,∞; F (k) − (1 + 1/b)
)

= N(r,∞; f).

Using Lemma 2.1 and the same argument as used in the case when b = −1 we can
get a contradiction.

Subcase 2.2 Let b 6= 0 and a = b. If b = −1, then from (3.19) we have

F (k)G(k) ≡ 1,
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that is

[fn(afm + b)](k)[gn(agm + b)](k) ≡ 1,

which is impossible by Lemma 2.9 when k = 1.
If b 6= −1, from (3.19) we have

1

F (k)
=

bG(k)

(1 + b)G(k) − 1
.

Hence from Lemma 2.2 we have

N
(

r, 1/(1 + b); G(k)
)

= N
(

r, 0; F (k)
)

≤ Nk+1(r, 0; F ) + kN(r,∞; f).

From Lemma 2.1 we have

(n + m)T (r, g) + O(1) = T (r, G)

≤ N(r,∞; G) + Nk+1(r, 0; G) + N

(

r,
1

b + 1
; G(k)

)

+ S(r, G)

≤ kN(r,∞; f) + N(r,∞; g) + Nk+1(r, 0; F ) + Nk+1(r, 0; G)

+ S(r, G)

≤ (2k + 1 + m − kΘ(∞; f) + ǫ)T (r, f)

+ (k + 2 + m − Θ(∞; g) + ǫ)T (r, g) + S(r, g).

For r ∈ I we have

(n − 3k − 3 − m + kΘ(∞; f) + Θ(∞; g) − 2ǫ)T (r, g) ≤ S(r, g),

which is a contradiction for n ≥ 3k + 9.

Subcase 2.3 Let b = 0. From (3.19) we obtain

F (k) =
G(k) + a − 1

a
. (3.20)

If a − 1 6= 0 then From (3.20) we obtain

N
(

r, 1 − a; G(k)
)

= N
(

r, 0; F (k)
)

.

We can similarly deduce a contradiction as in Subcase 2.2. Therefore a = 1 and
from (3.20) we obtain

F = G + p(z), (3.21)

where p(z) is a polynomial of degree at most k − 1. We claim that p(z) ≡ 0.
Otherwise noting that f is transcendental when k ≥ 2, in view of Lemma 2.8 we
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have

(n + m)T (r, f) = T (r, F ) + O(1) (3.22)

≤ N(r, 0; F ) + N(r,∞; f) + N(r, p; F ) + S(r, F )

≤ N(r, 0; F ) + N(r,∞; f) + N(r, 0; G) + S(r, F )

≤ 3T (r, f) + 2T (r, g) + S(r, f).

Also from (3.21) we get

T (r, f) = T (r, g) + S(r, f),

which together with (3.22) implies a contradiction. So

F ≡ G.

So from Lemma 2.11 we get the conclusion of the theorem.

Proof of Theorem 1.6. We omit the proof since instead of Lemma 2.9 using
Lemma 2.10 and proceeding in the same way the proof of the theorem can be
carried out in the line of proof of Theorem 1.3 and Theorem 1 of [17].
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