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Abstract : In this paper, we study three-step iterative algorithm with errors for
four nonexpansive mappings in uniformly convex Banach spaces. Also we have
proved strong convergence theorem for above said algorithm and mappings by
using condition (GA) which is a generalization of condition (A) [1] and a weak
convergence theorem by using Opial’s condition [2]. The results presented in this
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1 Introduction

Let E be a normed space and K be a nonempty subset of E. A mapping
T : K → K is said to be nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ K.
Nonexpansive mappings have been widely and extensively studied by many authors
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in many aspects. One is to approximate a fixed point or a common fixed point of
nonexpansive mappings by means of an iteratively constructed sequence.

Let R, S, T, U : K → K be four mappings. Xu [6] introduced the following
iterative scheme,

(a) The sequence {xn} defined by

x1 ∈ K,

xn+1 = anxn + bnTxn + cnun, n ≥ 1 (1.1)

where {an}, {bn}, {cn} are sequences in [0, 1] such that an + bn + cn = 1 and {un}
is a bounded sequence in K, is known as Mann iterative scheme with errors. This
scheme reduces to Mann iterative scheme [7] if cn = 0, i.e.,

x1 ∈ K,

xn+1 = anxn + (1 − an)Txn, n ≥ 1 (1.2)

where {an} is a sequence in [0, 1].

(b) The sequence {xn} defined by

x1 ∈ K,

yn = a′
nxn + b′nTxn + c′nvn,

xn+1 = anxn + bnTyn + cnun, n ≥ 1 (1.3)

where {an}, {bn}, {cn}, {a′
n}, {b

′
n}, {c

′
n} are sequences in [0, 1] satisfying an +

bn +cn = 1 = a′
n +b′n +c′n and {un}, {vn} are bounded sequence in K, is called the

Ishikawa iterative scheme with errors. This scheme reduces to Ishikawa iterative
scheme [8] if cn ≡ 0 ≡ c′n, i.e.,

x1 ∈ K,

yn = a′
nxn + (1 − a′

n)Txn,

xn+1 = anxn + (1 − an)Tyn, n ≥ 1 (1.4)

where {an}, {a′
n} are sequences in [0, 1].

A generalization of Mann and Ishikawa iterative schemes was given by Das and
Debate [9] and Takahashi and Tamura [4]. This scheme dealt with two mappings:

x1 ∈ K,

yn = a′
nxn + (1 − a′

n)Txn,

xn+1 = anxn + (1 − an)Syn, n ≥ 1 (1.5)

where {an}, {a′
n} are sequences in [0, 1].

(c) The sequence {xn} defined by

x1 ∈ K,

yn = a′
nxn + b′nTxn + c′nvn,

xn+1 = anxn + bnSyn + cnun, n ≥ 1 (1.6)
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where {an}, {bn}, {cn}, {a′
n}, {b

′
n}, {c

′
n} are sequences in [0, 1] satisfying an +

bn + cn = 1 = a′
n + b′n + c′n and {un}, {vn} are bounded sequences in K, is studied

by Khan and Fukhar-ud-din [3].
Recently, Boonchari and Saejung [5] generalized the scheme (1.6) to three

nonexpansive mappings with errors as follows:

(d) The sequence {xn} defined by

x1 ∈ K,

yn = a′
nRxn + b′nTxn + c′nvn,

xn+1 = anRxn + bnSyn + cnun, n ≥ 1 (1.7)

where {an}, {bn}, {cn}, {a′
n}, {b

′
n}, {c

′
n} are sequences in [0, 1] satisfying an +

bn + cn = 1 = a′
n + b′n + c′n and {un}, {vn} are bounded sequences in K. Also they

have proved weak and strong convergence theorems for said scheme in uniformly
convex Banach spaces.

Inspired by [3, 5, 10], we extend the scheme (1.7) to the three-step iteration
scheme for four nonexpansive mappings with errors. The scheme is as follows:

(e) The sequence {xn} defined by

x1 ∈ K,

zn = a′′
nRxn + b′′nUxn + c′′nwn,

yn = a′
nRxn + b′nTzn + c′nvn,

xn+1 = anRxn + bnSyn + cnun, n ≥ 1 (1.8)

where {an}, {bn}, {cn}, {a′
n}, {b

′
n}, {c

′
n}, {a

′′
n}, {b

′′
n}, {c

′′
n} are sequences in [0, 1]

satisfying an + bn + cn = a′
n + b′n + c′n = a′′

n + b′′n + c′′n = 1 and {un}, {vn}, {wn}
are bounded sequences in K.

2 Preliminaries

Let E be a Banach space and let K be a nonempty closed convex subset of E.
When {xn} is a sequence in E, we denote strong convergence of {xn} to x ∈ E by
xn → x and weak convergence by xn ⇀ x.

A Banach space E is said to satisfy Opial’s condition [2] if for any sequence
{xn} in E, xn ⇀ x it follows that lim supn→∞ ‖xn − x‖ < lim supn→∞ ‖xn − y‖
for all y ∈ E with y 6= x. For every ε with 0 ≤ ε ≤ 2, we define the modulus δE(ε)
of convexity of E by

δE(ε) = inf

{

1 −
‖x + y‖

2
: ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x − y‖ ≥ ε

}

.

A mapping T : K → E is said to be demiclosed with respect to y ∈ E if for
each sequence {xn} in K and each x ∈ E, xn ⇀ x and Txn → y it follows that
x ∈ K and Tx = y.

Next, we state the following useful lemmas to prove our main results.
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Lemma 2.1 ([11]). Let E be a uniformly convex Banach space and 0 < α ≤ tn ≤
β < 1 for all n ∈ N. Suppose further that {xn} and {yn} are sequences of E such
that

lim sup
n→∞

‖xn‖ ≤ a, lim sup
n→∞

‖yn‖ ≤ a

and

lim
n→∞

‖tnxn + (1 − tn)yn‖ = a

hold for some a ≥ 0, then limn→∞ ‖xn − yn‖ = 0.

Lemma 2.2 ([12, Lemma 1]). Let {αn}∞n=1, {βn}∞n=1 be two sequences of nonneg-
ative real numbers satisfying the inequality

αn+1 ≤ αn + βn, ∀n ≥ 1.

If
∑∞

n=1
βn < ∞, then limn→∞ αn exists.

Lemma 2.3 ([13]). Let E be a uniformly convex Banach space satisfying Opial’s
condition and let K be a nonempty closed convex subset of E. Let T be a non-
expansive mapping of K into itself. Then I − T is demiclosed with respect to
zero.

The purpose of this paper is to study the three-step iteration scheme (1.8) for
four nonexpansive mappings with errors and prove weak and strong convergence
theorems for said scheme. The results presented in this paper extend and improve
the corresponding results of Khan and Fukhar-ud-din [3], Takahashi and Tamura
[4], Boonchari and Saejung [5] and many others.

3 Main Results

In this section, we shall prove weak and strong convergence theorems of the
iteration scheme defined by (1.8) to a common fixed point of the nonexpansive
mappings R, S, T and U . Let F denote the set of all common fixed points of R,
S, T and U .

Lemma 3.1. Let E be a uniformly convex Banach space and K be its nonempty
closed convex subset. Let R, S, T, U : K → K be nonexpansive mappings and
{xn} be the sequence as defined in (1.8) with the restrictions

∑∞

n=1
cn < ∞,

∑∞

n=1
c′n < ∞ and

∑∞

n=1
c′′n < ∞. If F = F (R) ∩ F (S) ∩ F (T ) ∩ F (U) 6= ∅,

then limn→∞ ‖xn − p‖ exists for all p ∈ F = F (R) ∩ F (S) ∩ F (T ) ∩ F (U).

Proof. Let p ∈ F = F (R)∩F (S)∩F (T )∩F (U). Since R, S, T, U are nonexpansive
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mappings, from (1.8) we have

‖zn − p‖ = ‖a′′
nRxn + b′′nUxn + c′′nwn − p‖

≤ a′′
n ‖Rxn − p‖ + b′′n ‖Uxn − p‖ + c′′n ‖wn − p‖

≤ a′′
n ‖xn − p‖ + b′′n ‖xn − p‖ + c′′n ‖wn − p‖

≤ (a′′
n + b′′n) ‖xn − p‖ + c′′n ‖wn − p‖

= (1 − c′′n) ‖xn − p‖ + c′′n ‖wn − p‖

≤ ‖xn − p‖ + An (3.1)

where An = c′′n ‖wn − p‖. Since
∑∞

n=1
c′′n < ∞, it follows that

∑∞

n=1
An < ∞.

Again from (1.8) and (3.1), we have

‖yn − p‖ = ‖a′
nRxn + b′nTzn + c′nvn − p‖

≤ a′
n ‖Rxn − p‖ + b′n ‖Tzn − p‖ + c′n ‖vn − p‖

≤ a′
n ‖xn − p‖ + b′n ‖zn − p‖ + c′n ‖vn − p‖

≤ a′
n ‖xn − p‖ + b′n[‖xn − p‖ + An] + c′n ‖vn − p‖

≤ (a′
n + b′n) ‖xn − p‖ + b′nAn + c′n ‖vn − p‖

= (1 − c′n) ‖xn − p‖ + b′nAn + c′n ‖vn − p‖

≤ ‖xn − p‖ + Bn (3.2)

where Bn = b′nAn+c′n ‖vn − p‖. Since
∑∞

n=1
c′n < ∞ and

∑∞

n=1
An < ∞ it follows

that
∑∞

n=1
Bn < ∞. From (1.8) and (3.2), we have

‖xn+1 − p‖ = ‖anRxn + bnSyn + cnun − p‖

≤ an ‖Rxn − p‖ + bn ‖Syn − p‖ + cn ‖un − p‖

≤ an ‖xn − p‖ + bn ‖yn − p‖ + cn ‖un − p‖

≤ an ‖xn − p‖ + bn[‖xn − p‖ + Bn] + cn ‖un − p‖

≤ (an + bn) ‖xn − p‖ + bnBn + cn ‖un − p‖

= (1 − cn) ‖xn − p‖ + bnBn + cn ‖un − p‖

≤ ‖xn − p‖ + Dn (3.3)

where Dn = bnBn + cn ‖un − p‖. Since
∑∞

n=1
cn < ∞ and

∑∞

n=1
Bn < ∞ it

follows that
∑∞

n=1
Dn < ∞. Hence by Lemma 2.2, limn→∞ ‖xn − p‖ exists. This

completes the proof.

Lemma 3.2. Let E be a uniformly convex Banach space and K be its nonempty
closed convex subset. Let R, S, T, U : K → K be nonexpansive mappings and
{xn} be the sequence as defined in (1.8) with the restrictions

∑∞

n=1
cn < ∞,

∑∞

n=1
c′n < ∞,

∑∞

n=1
c′′n < ∞ and 0 < α ≤ bn, b′n, b′′n ≤ β < 1 for some

α, β ∈ (0, 1). If F = F (R) ∩ F (S) ∩ F (T ) ∩ F (U) 6= ∅ and

‖x − Sy‖ ≤ ‖Rx − Sy‖ , ∀x, y ∈ K, (3.4)
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and

‖x − Rx‖ ≤ ‖Ux − Rx‖ , ∀x ∈ K, (3.5)

then

lim
n→∞

‖Rxn − xn‖ = lim
n→∞

‖Sxn − xn‖ = lim
n→∞

‖Txn − xn‖ = lim
n→∞

‖Uxn − xn‖ = 0,

for all p ∈ F = F (R) ∩ F (S) ∩ F (T ) ∩ F (U).

Proof. From Lemma 3.1 we get limn→∞ ‖xn − p‖ exists. Let limn→∞ ‖xn − p‖ =
r. Then if r = 0, we are done. Assume that r > 0. Next, we want to show that
limn→∞ ‖Rxn − Syn‖ = 0. We note that {un − Rxn − p} is a bounded sequence,
so limn→∞ cn ‖un − Rxn − p‖ = 0. From (3.2) we have

‖yn − p‖ ≤ ‖xn − p‖ + Bn, n ≥ 1,

where Bn = b′nAn + c′n ‖vn − p‖ such that
∑∞

n=1
Bn < ∞.

Taking lim supn→∞ in both sides, we obtain

lim sup
n→∞

‖yn − p‖ ≤ lim sup
n→∞

‖xn − p‖ = lim
n→∞

‖xn − p‖ = r. (3.6)

Note that

lim sup
n→∞

‖Tyn − p‖ ≤ lim sup
n→∞

‖yn − p‖ = r. (3.7)

Also,

lim sup
n→∞

‖Rxn − p‖ ≤ lim sup
n→∞

‖xn − p‖ = r. (3.8)

Next, consider

r = lim
n→∞

‖xn+1 − p‖

= lim
n→∞

‖anRxn + bnSyn + cnun − p‖

= lim
n→∞

‖(1 − bn)Rxn + bnSyn + cnun − cnRxn − p‖

= lim
n→∞

‖(1 − bn)(Rxn − p) + bn(Syn − p) + cn(un − Rxn − p)‖

= lim
n→∞

‖(1 − bn)(Rxn − p) + bn(Syn − p)‖ . (3.9)

From (3.7), (3.8) and (3.9), using Lemma 2.1 we have

lim
n→∞

‖Rxn − Syn‖ = 0. (3.10)

Using (3.4), it follows then that

‖Rxn − xn‖ ≤ ‖Rxn − Syn‖ + ‖Syn − xn‖

≤ 2 ‖Rxn − Syn‖ → 0 as n → ∞, (3.11)
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and hence

‖Syn − xn‖ ≤ ‖Syn − Rxn‖ + ‖Rxn − xn‖ → 0 as n → ∞. (3.12)

Again, we observe that for each n ≥ 1,

‖xn − p‖ ≤ ‖xn − Syn‖ + ‖Syn − p‖

≤ ‖xn − Syn‖ + ‖yn − p‖ , (3.13)

using (3.12), we obtain

r = lim
n→∞

‖xn − p‖ ≤ lim inf
n→∞

‖yn − p‖ .

This together with (3.6) gives

lim
n→∞

‖yn − p‖ = r. (3.14)

Now from (3.1) we have

‖zn − p‖ ≤ ‖xn − p‖ + An, n ≥ 1,

where An = c′′n ‖wn − p‖ such that
∑∞

n=1
An < ∞.

Taking lim supn→∞ in both sides, we obtain

lim sup
n→∞

‖zn − p‖ ≤ lim sup
n→∞

‖xn − p‖ = lim
n→∞

‖xn − p‖ = r. (3.15)

Also,

lim sup
n→∞

‖Tzn − p‖ ≤ lim sup
n→∞

‖zn − p‖ = r, (3.16)

and

lim sup
n→∞

‖Rxn − p‖ ≤ lim sup
n→∞

‖xn − p‖ = r. (3.17)

Now from (3.14) and the boundedness of the sequence {vn − Rxn − p}, we have

r = lim
n→∞

‖yn − p‖

= lim
n→∞

‖a′
nRxn + b′nTzn + c′nvn − p‖

= lim
n→∞

‖(1 − b′n)Rxn + b′nTzn + c′nvn − c′nRxn − p‖

= lim
n→∞

‖(1 − b′n)(Rxn − p) + b′n(Tzn − p) + c′n(vn − Rxn − p)‖

= lim
n→∞

‖(1 − b′n)(Rxn − p) + b′n(Tzn − p)‖ . (3.18)

From (3.16), (3.17) and (3.18), using Lemma 2.1 we have

lim
n→∞

‖Rxn − Tzn‖ = 0. (3.19)
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and hence

‖Tzn − xn‖ ≤ ‖Tzn − Rxn‖ + ‖Rxn − xn‖ → 0 as n → ∞. (3.20)

Again note that

lim sup
n→∞

‖Uxn − p‖ ≤ lim sup
n→∞

‖xn − p‖ = r, (3.21)

and

lim sup
n→∞

‖Rxn − p‖ ≤ lim sup
n→∞

‖xn − p‖ = r, (3.22)

also,

‖xn − p‖ ≤ ‖xn − Tzn‖ + ‖Tzn − p‖

≤ ‖xn − Tzn‖ + ‖zn − p‖ ,

using (3.20), we obtain

r = lim
n→∞

‖xn − p‖ ≤ lim inf
n→∞

‖zn − p‖ .

This together with (3.15) gives

lim
n→∞

‖zn − p‖ = r. (3.23)

Now from (3.23) and the boundedness of the sequence {wn − Rxn − p}, we have

r = lim
n→∞

‖zn − p‖

= lim
n→∞

‖a′′
nRxn + b′′nUxn + c′′nwn − p‖

= lim
n→∞

‖(1 − b′′n)Rxn + b′′nUxn + c′′nwn − c′′nRxn − p‖

= lim
n→∞

‖(1 − b′′n)(Rxn − p) + b′′n(Uxn − p) + c′′n(wn − Rxn − p)‖

= lim
n→∞

‖(1 − b′′n)(Rxn − p) + b′′n(Uxn − p)‖ . (3.24)

From (3.21), (3.22) and (3.24), using Lemma 2.1 we have

lim
n→∞

‖Rxn − Uxn‖ = 0. (3.25)

Using (3.5), it follows then that

‖Uxn − xn‖ ≤ ‖Uxn − Rxn‖ + ‖Rxn − xn‖

≤ 2 ‖Uxn − Rxn‖ → 0 as n → ∞. (3.26)
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Consequently, we have

‖xn − Txn‖ ≤ ‖xn − Tzn‖ + ‖Tzn − Txn‖

≤ ‖xn − Tzn‖ + ‖zn − xn‖

≤ ‖xn − Tzn‖ + ‖a′′
nRxn + b′′nUxn + c′′nwn − xn‖

≤ ‖xn − Tzn‖ + a′′
n ‖Rxn − xn‖ + b′′n ‖Uxn − xn‖

+ c′′n ‖wn − xn‖ , (3.27)

using (3.11), (3.20) and (3.26) in (3.27), we have

lim
n→∞

‖xn − Txn‖ = 0. (3.28)

And

‖xn − Sxn‖ ≤ ‖xn − Syn‖ + ‖Syn − Sxn‖

≤ ‖xn − Syn‖ + ‖yn − xn‖

≤ ‖xn − Syn‖ + ‖a′
nRxn + b′nTzn + c′nvn − xn‖

≤ ‖xn − Syn‖ + a′
n ‖Rxn − xn‖ + b′n ‖Tzn − xn‖

+ c′n ‖vn − xn‖ , (3.29)

using (3.11), (3.12) and (3.20) in (3.29), we have

lim
n→∞

‖Sxn − xn‖ = 0. (3.30)

Thus from (3.11), (3.30), (3.28) and (3.26), we have

lim
n→∞

‖Rxn − xn‖ = lim
n→∞

‖Sxn − xn‖ = lim
n→∞

‖Txn − xn‖ = lim
n→∞

‖Uxn − xn‖ = 0.

This completes the proof.

We first establish the weak convergence theorem for the iteration scheme (1.8).

Theorem 3.3. Let E be a uniformly convex Banach space satisfies the Opial’s
condition and K, R, S, T , U and {xn} be as in Lemma 3.2. If F = F (R) ∩
F (S) ∩ F (T ) ∩ F (U) 6= ∅, 0 < α ≤ bn, b′n, b′′n ≤ β < 1 for some α, β ∈ (0, 1) and
R, S, U satisfy the conditions (3.4) and (3.5), then {xn} converges weakly to a
common fixed point of the mappings R, S, T and U .

Proof. Let p ∈ F = F (R) ∩ F (S) ∩ F (T ) ∩ F (U), then as proved in Lemma
3.1, we get limn→∞ ‖xn − p‖ exists. Now we prove that {xn} has a unique weak
subsequential limit in F = F (R) ∩ F (S)∩ F (T )∩ F (U). To prove this, let q1 and
q2 be weak limits of the subsequences {xni

} and {xnj
} of {xn} respectively. By

Lemma 3.2, limn→∞ ‖xn − Rxn‖ = 0 and I −R is demiclosed with respect to zero
by Lemma 2.3, therefore we obtain Rq1 = q1. Similarly, Sq1 = q1, Tq1 = q1 and
Uq1 = q1. Again in the same way as above, we can prove that q2 ∈ F (R)∩F (S)∩
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F (T ) ∩ F (U). Next, we prove the uniqueness. For this we suppose that q1 6= q2,
then by the Opial’s condition

lim
n→∞

‖xn − q1‖ = lim
i→∞

‖xni
− q1‖

< lim
i→∞

‖xni
− q2‖

= lim
n→∞

‖xn − q2‖

= lim
j→∞

∥

∥xnj
− q2

∥

∥

< lim
j→∞

∥

∥xnj
− q1

∥

∥

= lim
n→∞

‖xn − q1‖ .

This is a contradiction. Hence {xn} converges weakly to a common fixed point in
F = F (R) ∩ F (S) ∩ F (T ) ∩ F (U). This completes the proof.

Our next aim to prove strong convergence theorems. Recall that the following:
A mapping T : K → K where K is a subset of E, is said to satisfy condition (A)
[1] if there exists a nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0,
f(r) > 0 for all r ∈ (0,∞) such that ‖x − Tx‖ ≥ f(d(x, F (T ))) for all x ∈ K

where d(x, F (T )) = inf{‖x − x∗‖ : x∗ ∈ F (T )} and F (T ) denote the set of all
fixed points of T .

Senter and Dotson [1] approximated fixed points of nonexpansive mapping T

by Mann iterates. Later on, Maiti and Ghosh [14] and Tan and Xu [12] studied the
approximation of fixed points of a nonexpansive mapping T by Ishikawa iterates
under the same condition (A) which is weaker than the requirement that T is
demicompact.

We modify the condition (A) for four mappings R, S, T, U : K → K as follows:
Four mappings R, S, T, U : K → K where K is a subset of E, are said to satisfy

condition (GA) if there exists a nondecreasing function f : [0,∞) → [0,∞) with
f(0) = 0, f(r) > 0 for all r ∈ (0,∞) such that

1

4

(

‖x − Rx‖ + ‖x − Sx‖ + ‖x − Tx‖ + ‖x − Ux‖
)

≥ f(d(x,F))

for all x ∈ K where d(x,F) = inf{‖x − x∗‖ : x∗ ∈ F = F (R) ∩ F (S) ∩ F (T ) ∩
F (U)}.

Note that condition (GA) reduces to condition (A) when R = S = T = U .
We shall use condition (GA) instead of the compactness of K to study the strong
convergence of {xn} defined as in (1.8).

Theorem 3.4. Let E be a uniformly convex Banach space and K, {xn} be as
in Lemma 3.2. Let R, S, T, U : K → K be four nonexpansive mappings satisfying
condition (GA). If F = F (R)∩F (S)∩F (T )∩F (U) 6= ∅, 0 < α ≤ bn, b′n, b′′n ≤ β < 1
for some α, β ∈ (0, 1) and R, S, U satisfy the conditions (3.4) and (3.5), then {xn}
converges strongly to a common fixed point of the mappings R, S, T and U .
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Proof. By Lemma 3.1, we know that limn→∞ ‖xn − p‖ exists for all p ∈ F . Let
limn→∞ ‖xn − p‖ = r for some r ≥ 0. If r = 0, we are done. Suppose that r > 0.
By Lemma 3.2 we know that

lim
n→∞

‖Rxn − xn‖ = lim
n→∞

‖Sxn − xn‖ = lim
n→∞

‖Txn − xn‖ = lim
n→∞

‖Uxn − xn‖ = 0.

Let M = supn≥1{‖un − xn‖}. Moreover, from (3.3), we have

‖xn+1 − p‖ ≤ ‖xn − p‖ + Dn

= ‖xn − p‖ + bnBn + cn ‖un − p‖

≤ ‖xn − p‖ + Bn + cn(‖un − xn‖ + ‖xn − p‖)

≤ (1 + cn) ‖xn − p‖ + Bn + cnM

≤ (1 + cn) ‖xn − p‖ + (Bn + cn)M (3.31)

where Dn = bnBn + cn ‖un − p‖ with
∑∞

n=1
Bn < ∞ and

∑∞

n=1
Dn < ∞.

This implies that d(xn+1,F) ≤ (1 + cn)d(xn,F) + (Bn + cn)M and hence
limn→∞ d(xn,F) exists by virtue of Lemma 2.2. By condition (GA), we have

lim
n→∞

f(d(xn,F)) = 0.

Since f is a nondecreasing function and f(0) = 0, therefore limn→∞ d(xn,F) = 0.
Next, we show that {xn} is a Cauchy sequence in E.

Let ε > 0. We choose a positive integer N1 such that

d(xN1
,F) <

ε

4
. (3.32)

We next choose p∗ ∈ F such that

‖xN1
− p∗‖ <

ε

4
. (3.33)

By limn→∞ ‖xn − p‖ exists, the sequence {‖xn − p‖} is bounded. Let M∗ =
supn≥1{‖xn − p‖ , M}. Then from (3.31), we have

‖xn+1 − p‖ ≤ ‖xn − p‖ + (Bn + cn)M∗. (3.34)

Since
∑∞

n=1
cn < ∞ and

∑∞

n=1
Bn < ∞, there exists a positive integer N2 such

that

∞
∑

k=N2

θk <
ε

4
, (3.35)

where θk = (Bk + ck)M∗. We take N = max{N1, N2}. Let n ≥ N and m ≥ 1. It
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follows from (3.33), (3.34) and (3.35) that

‖xn+m − xn‖ ≤ ‖xn+m − p∗‖ + ‖p∗ − xn‖

≤ ‖xn − p∗‖ +

n+m−1
∑

k=n

θk + ‖p∗ − xn‖

= 2 ‖xn − p∗‖ +

n+m−1
∑

k=n

θk

≤ 2 ‖xN − p∗‖ + 2

{

n−1
∑

k=N

θk +

n+m−1
∑

k=n

θk

}

≤ 2 ‖xN − p∗‖ + 2

n+m−1
∑

k=N

θk

≤ 2
ε

4
+ 2

ε

4
= ε.

Hence {xn} is a Cauchy sequence in E. Since K is closed, xn → x ∈ K. By the
continuities of R, S, T , U and (3.11), (3.30), (3.28), (3.26), we get Rx = Sx =
Tx = Ux = x. So x ∈ F = F (R) ∩ F (S) ∩ F (T ) ∩ F (U). This shows that {xn}
converges strongly to a common fixed point of the mappings R, S, T and U . This
completes the proof.

For our next result, we shall need the following definition.

Definition 3.5. Let K be a nonempty closed subset of a Banach space E. A
mapping T : K → K is said to be semi-compact, if for any bounded sequence {xn}
in K such that limn→∞ ‖xn − Txn‖ = 0, there exists a subsequence {xnj

} ⊂ {xn}
such that limn→∞ xnj

= x ∈ K.

Theorem 3.6. Let E be a uniformly convex Banach space and K, {xn} be as
in Lemma 3.2. Let R, S, T, U : K → K be four nonexpansive mappings. If F =
F (R)∩F (S)∩F (T )∩F (U) 6= ∅, 0 < α ≤ bn, b′n, b′′n ≤ β < 1 for some α, β ∈ (0, 1)
and R, S, U satisfy the conditions (3.4) and (3.5). Suppose one of the mappings
in {R, S, T, U} is semi-compact. Then {xn} converges strongly to a common fixed
of the mappings R, S, T and U .

Proof. Suppose R is semi-compact. By Lemma 3.2, we have

lim
n→∞

‖xn − Rxn‖ = 0.

So there exists a subsequence {xnj
} of {xn} such that limj→∞ xnj

= x∗ ∈ K. Now
Lemma 3.2 guarantees that limnj→∞

∥

∥xnj
− Rxnj

∥

∥ = 0, limnj→∞

∥

∥xnj
− Sxnj

∥

∥

= 0, limnj→∞

∥

∥xnj
− Txnj

∥

∥ = 0, limnj→∞

∥

∥xnj
− Uxnj

∥

∥ = 0 and so ‖x∗ − Rx∗‖ =
0, ‖x∗ − Sx∗‖ = 0, ‖x∗ − Tx∗‖ = 0, ‖x∗ − Ux∗‖ = 0. This implies that x∗ ∈ F =
F (R) ∩ F (S) ∩ F (T ) ∩ F (U). Since limn→∞ d(xn,F) = 0, it follows, as in the
proof of Theorem 3.4, that {xn} converges strongly to a common fixed point of
the mappings R, S, T and U . This completes the proof.



Weak and Strong Convergence Theorems for Four Nonexpansive Mappings ... 317

If b′′n = c′′n = 0 and R = U = I (the identity map), then (3.4) and (3.5) are
automatically satisfied and we have the following.

Corollary 3.7 ([3, Theorem 1, Theorem 2]). Let E be a uniformly convex Banach
space and K, S, T and {xn} be as in Theorem 3.4. Suppose F (S) ∩ F (T ) 6= ∅.
Then

1. If E has the Opial’s condition, then {xn} converges weakly to a common
fixed point of the mappings S and T .

2. If the mappings S and T satisfy condition (A′), then {xn} converges strongly
to a common fixed point of the mappings S and T .

Remark 3.8.

(i) Theorem 3.3 and 3.4 extend Theorem 6 and 7 of Boonchari and Saejung [5]
to the case of three-step iteration scheme with errors for four nonexpansive
mappings considered in this paper.

(ii) Theorem 3.3 and 3.4 also extend and improve the corresponding results of
Khan and Fukhar-ud-din [3] in the following ways:

(a) We remove the boundedness of K.

(b) The identity mapping in [3] is replaced by the more general nonexpan-
sive mapping.

(c) The two-step iteration scheme with errors in [3] for two nonexpansive
mappings are extended to the three-step iteration scheme with errors
for four nonexpansive mappings.

(iii) Our results also extend and improve the corresponding results of Takahashi
and Tamura [4] to the case of three-step iteration scheme with errors for
four nonexpansive mappings considered in this paper.

The following example shows that our results extend substantially the results
in [3].

Example 3.9 ([10]). Let E be the real line with the usual norm | · | and let
K = [−1, 1]. Define R, S, T, U : K → K by

R(x) =







x, if x ∈ [0, 1],

−x, if x ∈ [−1, 0).
, S(x) =







−sinx, if x ∈ [0, 1],

sinx, if x ∈ [−1, 0).

T (x) =







x
2
, if x ∈ [0, 1],

−x
2
, if x ∈ [−1, 0).

and U(x) =







x
3
, if x ∈ [0, 1],

−x
3
, if x ∈ [−1, 0).

for x ∈ K. Obviously, F (R) ∩ F (S) ∩ F (T ) ∩ F (U) = {0}. Now we check that
S is nonexpansive. In fact, if x and y ∈ [0, 1] or if x and y ∈ [−1, 0), then
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|Sx−Sy| = |sinx− siny| = 2|cos x+y

2
sin x−y

2
| = 2|sin x−y

2
| ≤ 2|x−y

2
| = |x− y|; if

x ∈ [0, 1] and y ∈ [−1, 0) or x ∈ [−1, 0) and y ∈ [0, 1], then

|Sx − Sy| = |sinx + siny| = 2
∣

∣

∣
sin

x + y

2
cos

x − y

2

∣

∣

∣
≤ |x + y| ≤ |x − y|.

That is, S is nonexpansive. Similarly, we can verify that R, T and U are nonex-
pansive. Moreover, it is not difficult to see that nonexpansive mappings R, S, T

and U satisfy condition (GA).
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