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Abstract : In this paper, we give bounds in normal approximation of number of
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the Stein’s method.
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1 Introduction

A random graph is a graph generated by some random procedure. The study
of random graphs has a long history. A systematic study began with the influential
work of Erdös and Rényi in 1959-1961 ([2], [3], [4]) and has developed into one of
the mainstays of modern discrete mathematics.

Let G(n, p) be a random graph on n labeled vertices {1, 2, . . . , n} where each
possible edge {i, j} is present randomly and independently with the probabiity p,
0 < p < 1. Let

Xi =

{
1, if the i− th vertex is isolated;
0, otherwise,

and
Wn = X1 + X2 + · · ·+ Xn.

Note that Wn is the number of isolated vertices in G(n, p) and the expectation
of Wn is

λn := EWn = nqn−1,

σ2
n := VarWn = nqn−1(1 + nqn−2(p− 1

n
))

where q = 1− p (see [8], p. 137).
In [7], Teerapabolarn, Neammanee and Chongcharoen showed that X1, X2, . . . , Xn

are not independent and the distribution of Wn can be approximated by Poisson
with parameter λn. Here is their result.



2 Thai J. Math. 4(2006)/ Y. Punkla and N. Chaidee

Theorem 1.1

∣∣P (Wn = 0)− e−λn
∣∣ ≤ (λn + e−λn − 1)

(
(n− 2)p + 1

n(1− p)

)
.

In 1987, Kordecki solved the problem by using normal approximation. His
bound is as follows :

Theorem 1.2 If p = wn/n, log n − wn → ∞ and nwn → ∞, then there exists a
constant C ≡ C(z) such that

sup
z∈R

∣∣∣∣P
(

Wn − λn

σn
≤ z

)
− Φ(z)

∣∣∣∣ ≤
C

σn
(1.1)

where

Φ(z) =
1√
2π

∫ z

−∞
e−

t2
2 dt

is the standard normal distribution function.

Notice that the constant C in the above theorem is not good enough because
it depends on z which goes to infinity as z → ∞ (see [8], Lemma 2.1(3)). In this
work, we improve the upper bound in (1.1) to the case of non-uniform and uniform
bounds. The followings are our main results.

Theorem 1.3 (non-uniform) If p = wn/n, log n− wn →∞ and nwn →∞, then
there exists a constant C, independent of z, such that

∣∣∣∣P
(

Wn − λn

σn
≤ z

)
− Φ(z)

∣∣∣∣ ≤
C

(1 + |z|)σn
. (1.2)

Corollary 1.4 (uniform) If p = wn/n, log n − wn → ∞ and nwn → ∞, then
there exists a constant C, independent of z, such that

sup
z∈R

∣∣∣∣P
(

Wn − λn

σn
≤ z

)
− Φ(z)

∣∣∣∣ ≤
C

σn
.

Note that if np = c where c is a constant, then the Poisson convergence is impos-
sible since

lim
n→∞

(λn + e−λn − 1)
(

(n− 2)p + 1
n(1− p)

)
= (1 + c)e−c

and in this case the rate of convergence to the normal distribution has the order
1√
n

.
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2 Proof of Main Results

In this section, we give the proof of main results by using Stein’s method for
normal approximation and the idea from Kordecki [8].

Stein’s method was given by Stein [5] in 1972. His technique was relied on the
elementary differential equation

f ′(w)− wf(w) = I{w≤z} − Φ(z) (2.1)

where IA is defined by

IA(w) =

{
1, if w ∈ A;
0, if w /∈ A.

It is well-known that the unique solution ϕz of Stein’s equation (2.1) is of the form

ϕz(x) =





√
2πe

x2
2 Φ(x)[1− Φ(z)], if x ≤ z;

√
2πe

x2
2 Φ(z)[1− Φ(x)], if x ≥ z.

(2.2)

Lemma 2.1 For z > 0 and x 6= z, we have

(i) |ϕ′′z (x)| ≤ 4.32 for 0 < z < 1,

(ii) |ϕ′′z (x)| ≤ C

1 + z
for 0 < x <

z

2
and some constant C and

(iii) |ϕ′′z (x)| ≤ e−z2/2

√
2π

+ Φ(z)(
1
z

+ z) for 0 < x < z and z ≥ 1.

Proof. From (2.2), we note that

ϕ′z(x) =





√
2πe

x2
2 (1− Φ(x))Φ(z), if x ≥ z;

√
2πe

x2
2 (1− Φ(z))Φ(x), if x < z,

and

ϕ′′z (x) =





−Φ(z)[x−√2π(1− Φ(x))(1 + x2)ex2/2], if x > z;

(1− Φ(z))[x +
√

2π Φ(x)(1 + x2)ex2/2], if x < z.

(i) Let 0 < z < 1.
Case 1 0 < x < z.
Since

ϕ′′′z (x) =





−Φ(z)[2 + x2 −√2πxex2/2(1− Φ(x))(3 + x2)], if x > z;

(1− Φ(z))[2 + x2 +
√

2πxex2/2 Φ(x)(3 + x2)], if x < z,
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ϕ′′′z (x) > 0 for 0 < x < z, so that ϕ′′z is an increasing function on (0, z). Hence

0 ≤
√

π

2
(1− Φ(z)) = ϕ′′z (0) ≤ ϕ′′z (x) ≤ 1

2
[1 + 2

√
2π Φ(1)e1/2] ≤ 3.98. (2.3)

Case 2 x < −1.
Since

1
x3

< x +
√

2π Φ(x)(1 + x2)ex2/2 < − 1
x

if x ≤ 0, (2.4)

([8], p. 133), we have

∣∣∣x +
√

2π Φ(x)(1 + x2)ex2/2
∣∣∣ <

∣∣∣∣
1
x

∣∣∣∣ < 1.

Therefore,

|ϕ′′z (x)| ≤ 1. (2.5)

Case 3 −1 < x < 0.

|ϕ′′z (x)| ≤ 1
2
[|x|+

√
2π Φ(x)(1 + x2)e1/2]

≤ 1
2
(1 + 2

√
2π Φ(0)e1/2)

≤ 2.57. (2.6)

Case 4 x > z.
We note that

− 1
x

< x−
√

2π(1− Φ(x))(1 + x2)ex2/2 <
1
x3

if x > 0 (2.7)

([8], p. 133).
If x ≥ 1, then, by (2.7),

∣∣∣x−
√

2π(1− Φ(x))(1 + x2)ex2/2
∣∣∣ <

∣∣∣∣
1
x

∣∣∣∣ ≤ 1

which implies |ϕ′′z (x)| ≤ 1.
If x < 1, then

|ϕ′′z (x)| ≤ Φ(1)[|x|+ 2
√

2π(1− Φ(0))e1/2] ≤ Φ(1)[1 +
√

2πe1/2] ≤ 4.32. (2.8)

By (2.3), (2.5), (2.6) and (2.8), we completed the proof.
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(ii) For 0 < x ≤ z

2
, we have

|ϕ′′z (x)| ≤ |1− Φ(z)||x + Φ(x)
√

2π(1 + x2)ex2/2|

≤ e−z2/2

z
√

2π
(
z

2
+
√

2π(1 +
z2

4
)ez2/8)

≤ 0.2e−z2/2 +
1 + z2

4

z
e−3z2/8

≤ 0.2e−z2/2 + Ce−z/2

≤ Ce−z/2

≤ C

1 + z
.

(iii) If 0 < x < z and z ≥ 1, then

0 ≤ ϕ′′z (x) = (1− Φ(z))[x +
√

2πΦ(x)(1 + x2)e
x2
2 ]

≤ e−
z2
2√

2πz
[z +

√
2πΦ(z)(1 + z2)e

z2
2 ]

=
e−

z2
2√

2π
+ Φ(z)(

1
z

+ z)

where we have used the fact that 1 − Φ(z) ≤ e−
z2
2√

2πz
for z > 0 in the first

inequality. ¤

Lemma 2.2 If p =
wn

n
, log n− wn →∞ and nwn →∞, then

(i) E(Wn−1 −Wn + 1)2 = O(1) and

(ii) E(Wn−1 −Wn + 1)4 = O(1).

Proof. (i) See [8].
(ii) For i = 1, 2, . . . , n− 1, let

Yi =

{
1, if the i-th vertex has degree 1 and it is jointed with the n-th vertex;
0, otherwise.

Hence

E(Wn−1 −Wn + 1)4 = E(Y1 + Y2 + · · ·+ Yn−1 −Xn + 1)4

≤ C
{

E(Y1 + Y2 + · · ·+ Yn−1)4 + EX4
n + 1

}
. (2.9)
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Note that EX4
n = qn−1 ≤ 1 and

EY 4
i = P (Yi = 1) = pqn−2.

If i 6= j, then

EY 3
i Yj = P (Yi = 1, Yj = 1) = p2qn−2qn−3 = p2q2n−5 = EY 2

i Y 2
j .

If i 6= j 6= k, then

EY 2
i YjYk = P (Yi = 1, Yj = 1, Yk = 1) = p3qn−2qn−3qn−4 = p3q3n−9.

If i 6= j 6= k 6= l, then

EYiYjYkYl = P (Yi = 1, Yj = 1, Yk = 1, Yl = 1) = p4qn−2qn−3qn−4qn−5 = p4q4n−14.

Therefore,

E(Y1 + Y2 + · · ·+ Yn−1)4 =
n−1∑

i=1

EY 4
i +

n−1∑

i=1

n−1∑

j=1
j 6=i

{
EY 3

i Yj + EY 2
i Y 2

j

}

+
n−1∑

i=1

n−1∑

j=1
j 6=i

n−1∑

k=1
k 6=i,j

EY 2
i YjYk +

n−1∑

i=1

n−1∑

j=1
i 6=j

n−1∑

k=16=k 6=l

n−1∑

l=1

EYiYjYkYl

= (n− 1)pqn−2 + (n− 1)(n− 2)(p2q2n−5 + p2q2n−5)

+ (n− 1)(n− 2)(n− 3)p3q3n−9

+ (n− 1)(n− 2)(n− 3)(n− 4)p4q4n−14

= (n− 1)pqn−2
{

1 + 2(n− 2)pqn−3 + (n− 2)(n− 3)p2q2n−7

+ (n− 2)(n− 3)(n− 4)p3q3n−10
}

.

Let p =
wn

n
. Then qn = (1− wn

n
)n ≈ e−wn = e−np. Therefore,

(n− 1)pqn−2 =
(n− 1)p

q2
e−np ≤ 1

q2
=

1
(1− p)2

and

(n− 2)pqn−3 =
(n− 2)p

q3
e−np ≤ 1

q3
=

1
(1− p)3

.

Similarly,

(n− 2)(n− 3)p2q2n−7 ≤ 1
(1− p)7

and (n− 2)pqn−3 ≤ 1
(1− p)10

.
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Hence
E(Y1 + Y2 + · · ·+ Yn−1)4 ≤ 1

(1− p)12
. (2.10)

Therefore, by (2.9) and (2.10),

E(Wn−1 −Wn + 1)4 = O(1).

¤

Proof of Theorem 1.3.
To prove Theorem 1.3, we let

Un =
Wn − λn

σn
.

It suffices to consider z ≥ 0 as we can apply the result to −Un when z < 0. Let
z > 0. By Stein equation (2.1),

E(ϕ′(Un)− Unϕ(Un)) = P (Un ≤ z)− Φ(z).

In [8], Kordecki showed that

|E(ϕ′z(Un)− Unϕz(Un))| ≤
∣∣∣∣E

(
ϕ′z(Un)

(
1− λn

σ2
n

(Wn−1 −Wn + 1)
))∣∣∣∣

+
λn

2σ3
n

E

(∣∣∣∣ϕ′′z
(

Un + ν
Wn−1 −Wn + 1

σn

)∣∣∣∣ (Wn−1 −Wn + 1)2
)

:= A1 + A2

where 0 < ν < 1 and

E (ϕ′z(Un)(Wn−1 −Wn + 1)) = E (ϕ′z(Un)E(Wn−1 −Wn + 1|Wn)) .

By Chen and Shao [1], we have

E|ϕ′z(Un)| ≤ C

(1 + z)2

for some constant C. Therefore
∣∣∣∣E

(
ϕ′z(Un)E(1− λn

σ2
n

(Wn−1 −Wn + 1|Wn))− ϕ′z(Un)E(1− λn

σ2
n

(Wn−1 −Wn + 1))
)∣∣∣∣

≤ E|ϕ′z(Un)|E|E(1− λn

σ2
n

(Wn−1 −Wn + 1|Wn))− E(1− λn

σ2
n

(Wn−1 −Wn + 1))|

≤ C

(1 + z)2
{

Var(E(1− λn

σ2
n

(Wn−1 −Wn + 1|Wn)))
}1/2

=
C

(1 + z)2
λn

σ2
n

{
Var(E((Wn−1 −Wn + 1|Wn)))

}1/2

=
C

(1 + z)2
λn

σ2
n

d′n
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where
d′n = {Var(E((Wn−1 −Wn + 1|Wn)))}1/2

.

Hence we obtain that

A1 ≤
∣∣∣∣Eϕ′z(Un)E(1− λn

σ2
n

(Wn−1 −Wn + 1))
∣∣∣∣ +

C

(1 + z)2
λn

σ2
n

d′n

≤ C

(1 + z)2

∣∣∣∣1−
λn(λn−1 − λn + 1)

σ2
n

∣∣∣∣ +
C

(1 + z)2
λn

σ2
n

d′n

=
C

(1 + z)2σn

where we have used the fact that |E(1− λn

σ2
n

(Wn−1 −Wn + 1))| = 0 and

λn

σ2
n

d′n = O(σ−1
n ) (see [8], p. 139) in the last inequality.

Consider A2: if 0 < z < 1, then by Lemma 2.1(i) and Lemma 2.2(i),

A2 ≤ λn

2σ3
n

E(Wn−1 −Wn + 1)2 =
λn

2σ3
n

C

1 + z
.

If z ≥ 1, then

A2 =
λn

2σ3
n

E
(|ϕ′′z (Un + ν

Wn−1 −Wn + 1
σn

)|

× (Wn−1 −Wn + 1)2I(Un + ν
Wn−1 −Wn + 1

σn
< 0)

)

+
λn

2σ3
n

E
(|ϕ′′z (Un + ν

Wn−1 −Wn + 1
σn

)|

× (Wn−1 −Wn + 1)2I(0 ≤ Un + ν
Wn−1 −Wn + 1

σn
≤ z

2
)
)

+
λn

2σ3
n

E
(|ϕ′′z (Un + ν

Wn−1 −Wn + 1
σn

)|

× (Wn−1 −Wn + 1)2I(Un + ν
Wn−1 −Wn + 1

σn
>

z

2
)
)

:= A21 + A22 + A23.

First we estimate A21. If −1 < x < 0, then

|ϕ′′z (x)| ≤ C(1− Φ(z)) ≤ Ce−z2/2

√
2πz

.

Suppose that x < −1. By (2.4), we have

|ϕ′′z (x)| ≤ (1− Φ(z)) ≤ e−z2/2

√
2πz
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which implies that,

A21 ≤ λn

2σ3

Ce−z2/2

√
2πz

.

By Lemma 2.1(ii) and Lemma 2.2(i),

A22 ≤ λn

2σ3
n

· C

1 + z
E(Wn−1 −Wn + 1)2 =

λn

2σ3
n

· C

1 + z
.

By (2.7), we have |ϕ′′z (x)| ≤ 2 for x >
z

2
and z ≥ 1, so

A23 ≤ λn

σ3
n

|E(Wn−1 −Wn + 1)2I(Un + ν
Wn−1 −Wn + 1

σn
>

z

2
)|

≤ λn

σ3
n

{E(Wn−1 −Wn + 1)4}1/2{P (Un + ν
Wn−1 −Wn + 1

σn
>

z

2
))}1/2

≤ λn

σ3
n

{E(Wn−1 −Wn + 1)4}1/2{E(Un + ν Wn−1−Wn+1
σn

)2

z2

4

}1/2

≤ 2
√

2λn

σ3
nz

{E(Wn−1 −Wn + 1)4}1/2{E(U2
n) + E(ν

Wn−1 −Wn + 1
σn

)2}1/2

≤ Cλn

σ3
n

1
1 + z

{E(Wn−1 −Wn + 1)4}1/2{1 +
O(1)
σ2

n

}1/2.

Since σ2
n →∞(see [8], p.137) and by Lemma 2.2(2),

A23 ≤ Cλn

2σ3
n

1
1 + z

{1 +
O(1)
σ2

n

}1/2 =
Cλn

2σ3
n

1
1 + z

.

Since λn/σ2
n = O(1)(see [8], p. 137),

A2 ≤ Cλn

2σ3
n

1
1 + z

=
C

(1 + z)σn
.

The comparison of A1 and A2 gives that

|P (
Wn − λn

σn
≤ z)− Φ(z)| ≤ C

(1 + |z|)σn
.

2
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