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Abstract : In this paper, we give bounds in normal approximation of number of
isolated vertices in a random graph on n vertices. The technique we used here is
the Stein’s method.
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1 Introduction

A random graph is a graph generated by some random procedure. The study
of random graphs has a long history. A systematic study began with the influential
work of Erdés and Rényi in 1959-1961 ([2], [3], [4]) and has developed into one of
the mainstays of modern discrete mathematics.

Let G(n,p) be a random graph on n labeled vertices {1,2,...,n} where each
possible edge {i,j} is present randomly and independently with the probabiity p,
0<p<1l. Let
, if the ¢ — th vertex is isolated;

Xi = .
0, otherwise,

and
W,=X1+Xo+ -+ X,.

Note that W, is the number of isolated vertices in G(n,p) and the expectation
of W, is

A\p := EW,, = ng" 1,

1
o2 :=VarW, = ng" (1 +ng" %(p — -))
n

where ¢ =1 — p (see [8], p. 137).

In [7], Teerapabolarn, Neammanee and Chongcharoen showed that X7, Xo,..., X,

are not independent and the distribution of W,, can be approximated by Poisson
with parameter \,,. Here is their result.
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Theorem 1.1

|P(W,, =0)—e ™

<(Ante 1) ((”—2)1’“) _

n(1—p)

In 1987, Kordecki solved the problem by using normal approximation. His
bound is as follows :

Theorem 1.2 If p = w,/n,logn — w, — co and nw, — oo, then there exists a
constant C = C(z) such that

p(Wn=2 o\ g
( ) -0

On

<

On

<

(1.1)

sup
z€R

where

1 z t2
(p(Z) = \/72?/ e 2 dt

18 the standard normal distribution function.

Notice that the constant C' in the above theorem is not good enough because
it depends on z which goes to infinity as z — oo (see [8], Lemma 2.1(3)). In this
work, we improve the upper bound in (1.1) to the case of non-uniform and uniform
bounds. The followings are our main results.

Theorem 1.3 (non-uniform) If p = w,/n,logn — w, — co and nw, — oo, then
there exists a constant C, independent of z, such that

‘P<M§z>@(z)< ¢
Tn

= T+Teon 12

Corollary 1.4 (uniform) If p = w,/n,logn — w, — oo and nw, — oo, then
there exists a constant C, independent of z, such that

p(Wn=r o\ g
( ) -2

On

<

On

sup
z€R

Note that if np = ¢ where ¢ is a constant, then the Poisson convergence is impos-
sible since

nlLII;O(An +e M —1) <(nn_(12)pp—~)_1) =14c)e*

and in this case the rate of convergence to the normal distribution has the order

Bl
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2 Proof of Main Results

In this section, we give the proof of main results by using Stein’s method for
normal approximation and the idea from Kordecki [8].

Stein’s method was given by Stein [5] in 1972. His technique was relied on the
elementary differential equation

where 14 is defined by
1, if we A
I =<7 '
alw) {o, it w ¢ A

Tt is well-known that the unique solution ¢, of Stein’s equation (2.1) is of the form

Veres ®(x)[l — ()], if z < 2
OE 2 22)
V2reT ®(2)[1 — ®(x)], if x> 2.

Lemma 2.1 For z >0 and x # z, we have
(i) |p%(z)] <4.32 for0< z <1,
C
33 " <
(i) 1¢2(2)] < 75—
—22/2
Var

Proof. From (2.2), we note that

z
forO<a< 5 and some constant C' and

e

1
(iii) |%(z)] < +®(2)(=+2) for0<z <z andz>1.
z

ores (1— ®(x) ®(2), if ©> 2

¢l(z) = .
V2meT (1 — ®(2)) @(z), if =<z,
and
—B(2)[z — V2r(1 — ®(x))(1 + 22)e* /2], if x>z
¢ (z) =

(1—®(2))[z + V2r ®(z)(1 + 22)e* /2],  if 2 < 2

(i) Let 0 < z < 1.
Casel 0<z <z
Since

—D(2)[2 + 22 — V2rze® 2(1 — ®(2))(3+ 22)], if z > 2
o7 () =
(1—®(2)[2+ 22 + V2rze® 2 ®(2)(3+ 2%)], if z <z,
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@Y (z) > 0 for 0 < x < z, so that ¢’ is an increasing function on (0, z). Hence

1
0[5 01— 0() = £20) < o) < 1 +2VER )N <395 (23)
Case 2 =z < —1.
Since
1 1
=5 <+ V2 d()(1+ 22)e”’/? < —— if 2<0, (2.4)

([8], p- 133), we have

2+ V21 B(x)(1 + 22)e” /2‘ <

<1

Therefore,
P2 ()] < 1. (2.5)

Case 3 —1<z<0O.

(2@ < gllal + VaR B(z)(1 + %)

< %(1 +2v27 ®(0)e'/?)
< 2.57. (2.6)

Case 4 z > 2.
We note that

! <z —V2r(l—o(x))(1+ 172)612/2 < i?) if >0 (2.7)
x x

(8], p. 133).
If © > 1, then, by (2.7),

<1

z —V2r(1 — 3(2))(1 + 22)e” /2) <

which implies |7 (x)] < 1.
If x < 1, then

(@) < @[] +2v2r(1 — @(0))e/?] < @(1)[1+ V2me'/?] < 4.32. (2.8)

By (2.3), (2.5), (2.6) and (2.8), we completed the proof.
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(ii) For 0 < x < %, we have

0" (2)] < 1 = B(2)|] + () V2 (1 + 22)e” 2|

2

< 0.26—22/2 + HJB—?)Zz/S

(iii) If 0 < < z and z > 1, then

z 22 22/8
(§+v27r(1+z)e )

2

0<¢(z)=(1—®(2)[z+V2r®(z)(1 4 2)e7]

n
N‘M

e~

<
Tz

0 ﬁ
[V

e 1

o

where we have used the fact that 1 — ®(z) <

inequality.

N

2

[z 4+ V271 ®(2)(1 4 2%)e ™ ]

for z > 0 in the first
O

Lemma 2.2 Ifp= &Jogn — w, — 00 and nw, — oo, then
n

(i) EWpo1 — W, +1)2=0(1) and
(i) BE(Wp_1 — W, +1)*=0(1).

Proof. (i) See [3].
(ii) For i = 1,2,...,n— 1, let

Y = .
0, otherwise.

if the -th vertex has degree 1 and it is jointed with the n-th vertex;

EWp 1 W+ D) =EY1 +Yo+ - +Y,_ 1 — X, +1)*
gC{E(Yl+1@+..-+Yn_1)4+EX3+1}. (2.9)
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Note that EX;‘L = q"_1 <1 and

If i # j, then
BYPY; = P(Y; = 1Y; =1) = p’¢"2¢" 7> = p°¢"""° = EY?Y}.
If i # j # k, then
EY?Y;Y, =P(Y; =1,Y; = 1,Y, = 1) = p¢" 2¢" 3¢ = pP¢*°.
If i # j # k # 1, then

EK}ZJYk}/l:P(Y—IY—l Yk—lyl—l) 4n 2qn dqn 4qn 5 p4q4n714'

Therefore,
n—1n—1
BE(Yi+ Yo+ ZEY‘*+ZZ {EY3Y +EY2Y2}
i=1 1
T
n—1ln—1 n—1 — — — —
S5 S s 5 S e
=1 j=1 k=1 =1 j=1 k=1 I=1
J;éz k#%] ;ﬁﬁék?é
= (n— Dpa" + (n— Dln— 2% + 4" )
+(n—1)(n —2)(n - 3)p’¢>"*
+(n—1)(n —2)(n - 3)(n - 4)p'g™
=(n—1)pg" 2 {1 +2(n —2)pg" 3 + (n — 2)(n — 3)p*¢*" "
+(n=2)(n—3)(n — )p’g ).
Let p = Yn  Then q"=(1- &)" ~ e " = e ™. Therefore,
n n
_ (n—=1)p _ 1 1
n—1pg" = ——Te "< =
(=1 4 @ (1-p)
and ( )
_ n—2)p _ 1 1
n_2pqn 3 _ np -~
(-2 q ¢  (1-p)®
Similarly,
(n—2)(n— "7 < —— and (n—2pg" :
S S
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Hence
EWVi+Yo+---+Y, )" < ﬁ. (2.10)
Therefore, by (2.9) and (2.10),
EW,_1 —W, +1)*=0(1).
0

Proof of Theorem 1.3.

To prove Theorem 1.3, we let
Wy — An

On

U, =

It suffices to consider z > 0 as we can apply the result to —U,, when z < 0. Let
z > 0. By Stein equation (2.1),

E(¢"(Un) = Unp(Un)) = P(Uy < 2) — ®(2).
In [8], Kordecki showed that

An
B ~ U 0 <[ (010 (1= 2200w, 1)) )|
An Wpor =W, +1
v g (|t (v Mot Y w07
= A1 + AQ

where 0 < v < 1 and
E (L (Un)(Wnoy = Wi + 1)) = E (L (Un) E(Wy—1 — Wy + 1[Wy)) -
By Chen and Shao [1], we have

C
Bl U] < e
for some constant C. Therefore
An An
B (0B = 22 0Wos = W 10W2) = LU = 22 Wos = Wi 1))

A’ﬂ A’H/
< E“plz(Un)‘E|E(1 - ?(Wn—l - Wn + 1‘Wn)) - E(l - ;(Wn—l - Wn + 1))|

n

C An 1/2
< m{ Var(B(1 = 73 (W1 = Wn + 1|Wn)))}

(G W 1/2
- ma{vaw((wﬂ,1 — W +1IW2)) }

C A,

(=P
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where
dl, = {Var(E((Wn—1 — W, + 1[W,))} /2.

Hence we obtain that

A cC A
A < |Ey! E(l-= 1 - 1 —
1—‘ ‘pz(Un) ( gz(Wn 1—Wn+ ))’+(1+2)2 0721 n
C Aot — Ap + 1) C A,
< — n
=2l = Tararat
B C
- (14 2)20,

A"L
where we have used the fact that [E(1 — — (W,,—1 — W), +1))| = 0 and
1%

A . A
U—zd;L = 0O(o,, 1) (see [8], p. 139) in the last inequality.
Consider As: if 0 < z < 1, then by Lemma 2.1(i) and Lemma 2.2(i),

A A C
Ay < 2 BEWp 1 — W, +1)2 = 2 .
2_202 (Wor = Wa +1) 203 1+ 2
If z > 1, then
An Whpo1 —W, +1
Ap = (| (U + v ")
o3 on
Whoa =Wy +1
x (W = Wi 4+ 1)21(Up 4 vt =W 0 0))
A Who1 — Wi +1
n B 1" n n
+ 3 (U, +y )
Who1 =Wy +1
X (Wit — Wi + 1)21(0 < Uy 4 pont —n L o )
on
A Who1 — Wi +1
L EB(|" (U, _n-r n -
+ g Ee(Un +v . )
Who1 =Wy +1
X (Wnoy =W+ 121U, +v— 1 o " > g))
= Ag1 + Ago + Aos.
First we estimate Ao;. If —1 < z < 0, then
06722/2
") <Ol —®(2)) < ———.
[e@)] < C(1 = 0(2) < “—
Suppose that z < —1. By (2.4), we have
—22/2

(@) < (1-@(2) <
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which implies that,
Ao Ce=*' /2
Apy < 22—
=208 ons
By Lemma 2.1(ii) and Lemma 2.2(i),

A C A C
Agg < i ——BE(Wpq =W, +1)2 = 2. :
22 =953 ( ! +1) 208 142

By (2.7), we have |¢”(x)| < 2 for x > % and z > 1, so

An Wop_1—W,+1
Ass < 2N E(Wyy — Wy + 121Uy + pont =Wt L 2y
On Onp 2
A Wyt — Wi +1
DB (Wt = Wa + D JHP(U, 4y

IN

> 2Ny

An E(U, + pWno1=Wntlyo
F{E(Wn,—l - W, + 1)4}1/2{ ( On ) }1/2

g
24/2 n n—1 n 1

A W,y = W + ) P2 + B2t W ey
Ox, 1 0(1)

n E 1 — n 14 1/2 1 1/2.

S B0 = W e )2 2

IN

IA

3
On

Since 02 — oco(see [8], p.137) and by Lemma 2.2(2),

n

Chn 1) O)y1p _ Chn 1

Agz < .
=003 142 o2 203 142
Since A, /02 = O(1)(see [8], p. 137),
Ay < Ch, 1 _ C .
203 142z (14 2)o,
The comparison of A; and Ay gives that
Wy — A C
P(——< - < —.
P20 <) = 8(2)| € 7o
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