THAI **J**OURNAL OF **M**ATHEMATICS VOLUME 10 (2012) NUMBER 2 : 289–303

http://thaijmath.in.cmu.ac.th ISSN 1686-0209

Schatten Class Operators on Weighted Bergman Spaces

Namita Das and Pabitra Kumar Jena

P.G. Department of Mathematics, Utkal University Vani Vihar, Bhubaneswar- 751004, Orissa, India e-mail : namitadas440@yahoo.co.in (N. Das) pabitramath@gmail.com (P.K. Jena)

Abstract: Let $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ and dA(z) be the normalized area measure on \mathbb{D} . For $\alpha > -1$, let $d\lambda_{\alpha}(z) = \frac{dA_{\alpha}(z)}{(1-|z|^2)^{2+\alpha}}$ where $dA_{\alpha}(z) = (\alpha + 1)(1 - |z|^2)^{\alpha} dA(z)$. In this paper we have shown that if the Toeplitz operator T_{ϕ} defined on the weighted Bergman space $L^2_a(dA_{\alpha})$ belongs to the Schatten class $S_p, 1 \leq p < \infty$, then $\tilde{\phi} \in L^p(\mathbb{D}, d\lambda_{\alpha})$ where $\tilde{\phi}$ is the Berezin transform of ϕ . Further, if $\phi \in L^p(\mathbb{D}, d\lambda_{\alpha})$ then $\tilde{\phi} \in L^p(\mathbb{D}, d\lambda_{\alpha})$ and $T_{\phi} \in S_p$. Also, we find conditions on bounded linear operator C defined from $L^2_a(dA_{\alpha})$ into itself such that $C \in S_p$ by comparing with or involving Toeplitz operators on weighted Bergman spaces. Applications of these results are also discussed.

Keywords : Schatten class operators; Little Hankel operators; Weighted Bergman spaces; Reproducing kernel; Berezin transform.

2010 Mathematics Subject Classification : 47B38; 47B33; 47B35.

1 Introduction

Let dA(z) denote the Lebesgue area measure on the open unit disk \mathbb{D} , normalized so that the measure of the disk \mathbb{D} equals 1. For $\alpha > -1$, the weighted Bergman space $L^2_a(dA_\alpha)$ is the Hilbert space consisting of analytic functions on \mathbb{D} that are also in $L^2(\mathbb{D}, dA_\alpha)$ with respect to the measure $dA_\alpha = (\alpha + 1)(1 - |z|^2)^{\alpha} dA(z)$.

Copyright C 2012 by the Mathematical Association of Thailand. All rights reserved.

The reproducing kernel in $L^2_a(dA_\alpha)$ is given by

$$K_w^{\alpha}(z) = \frac{1}{(1 - \overline{w}z)^{2 + \alpha}},$$

for $z, w \in \mathbb{D}$. If $\langle , \rangle_{\alpha}$ denotes the inner product in $L^2(\mathbb{D}, dA_{\alpha})$ then $\langle h, K_w^{\alpha} \rangle_{\alpha} = h(w)$, for every $h \in L^2_a(dA_{\alpha})$ and $w \in \mathbb{D}$. Using the reproducing property of K_w^{α} we have

$$\|K_{w}^{\alpha}\|_{\alpha}^{2} = \langle K_{w}^{\alpha}, K_{w}^{\alpha} \rangle_{\alpha} = K_{w}^{\alpha}(w) = \frac{1}{(1 - |w|^{2})^{2 + \alpha}},$$

thus the normalized reproducing kernel

$$k_w^{\alpha}(z) = \frac{(1 - |w|^2)^{\frac{(2 + \alpha)}{2}}}{(1 - \overline{w}z)^{2 + \alpha}},$$

for $z, w \in \mathbb{D}$. The sequence $\{e_n^{\alpha}(z)\}_{n=0}^{\infty} = \left\{\sqrt{\frac{\Gamma(n+2+\alpha)}{n!\Gamma(2+\alpha)}}z^n\right\}_{n=0}^{\infty}$ forms an orthonormal basis for the weighted Bergman space $L^2_a(dA_{\alpha})$. The orthogonal projection P_{α} of $L^2(\mathbb{D}, dA_{\alpha})$ onto $L^2_a(dA_{\alpha})$ is given by

$$(P_{\alpha}g)(w) = \langle g, K_w^{\alpha} \rangle_{\alpha} = \int_{\mathbb{D}} g(z) \frac{1}{(1 - \overline{z}w)^{2+\alpha}} dA_{\alpha}(z),$$

for $g \in L^2(\mathbb{D}, dA_\alpha)$ and $w \in \mathbb{D}$. Given $\phi \in L^\infty(\mathbb{D})$, the Toeplitz operator T_ϕ is defined on $L^2_a(dA_\alpha)$ by

$$T_{\phi}h = P_{\alpha}(\phi h)$$

Thus we have

$$(T_{\phi}h)(w) = \int_{\mathbb{D}} \frac{\phi(z)h(z)}{(1-\overline{z}w)^{2+\alpha}} dA_{\alpha}(z), \text{ for } h \in L^2_a(dA_{\alpha}) \text{ and } w \in \mathbb{D}.$$

We define the Berezin transform of a bounded linear operator S on $L^2_a(dA_\alpha)$ to be the function \widetilde{S} defined on \mathbb{D} by

$$S(w) = \langle Sk_w^{\alpha}, k_w^{\alpha} \rangle_{\alpha}, \text{ for } w \in \mathbb{D}.$$

Let $\widetilde{\phi}(w) = \langle T_{\phi}k_w^{\alpha}, k_w^{\alpha} \rangle_{\alpha}$ for $w \in \mathbb{D}$. That is, $\widetilde{\phi} = \widetilde{T_{\phi}}$. Let $d\lambda_{\alpha}(z) = K_z^{\alpha}(z) dA_{\alpha}(z) = \frac{dA_{\alpha}(z)}{(1-|z|^2)^{2+\alpha}}$, the Mobius invariant measure on \mathbb{D} . Let $H^{\infty}(\mathbb{D})$ be the space of bounded analytic functions on \mathbb{D} . Let $L_a^2(\mathbb{D})$ be the subspace of $L^2(\mathbb{D}, dA)$ consisting of analytic functions. The space $L_a^2(\mathbb{D})$ is called the Bergman space. The reproducing kernel of $L_a^2(\mathbb{D})$ is given by $K(z, \overline{w}) = \overline{K_z(w)} = \frac{1}{(1-z\overline{w})^2}$. Let $k_z(w) = \frac{(1-|z|^2)}{(1-\overline{z}w)^2}$. These functions k_z are called the normalized reproducing kernels of $L_a^2(\mathbb{D})$. Let $\phi : \mathbb{D} \to \mathbb{D}$ be analytic. Define the composition operator C_{ϕ} from $L_a^2(\mathbb{D})$. The little Hankel operator $S_{\phi} : L_a^2(\mathbb{D}) \to L_a^2(\mathbb{D})$ is defined

by $S_{\phi}f = PJ(\phi f)$ for $\phi \in L^{\infty}(\mathbb{D})$ where $J : L^{2}(\mathbb{D}, dA) \to L^{2}(\mathbb{D}, dA)$ is defined as $Jf(z) = f(\overline{z})$ and P is the orthogonal projection from $L^{2}(D, dA)$ onto $L^{2}_{a}(\mathbb{D})$. Similarly one can also define little Hankel operators on $L^{2}_{a}(\mathbb{D}, dA_{\alpha})$. For $\phi \in L^{\infty}(\mathbb{D})$, the little Hankel operator S_{ϕ} on $L^{2}_{a}(dA_{\alpha})$ with symbol ϕ is the operator defined by $S_{\phi}f = P_{\alpha}J_{\alpha}(\phi f)$ where $J_{\alpha}: L^{2}(\mathbb{D}, dA_{\alpha}) \longrightarrow L^{2}(\mathbb{D}, dA_{\alpha})$ is defined as $J_{\alpha}f(z) = f(\overline{z})$. We can define for each $a \in \mathbb{D}$, an automorphism ϕ_{a} in $Aut(\mathbb{D})$ such that

- (i) $(\phi_a \ o \ \phi_a)(z) \equiv z;$
- (ii) $\phi_a(0) = a, \phi_a(a) = 0;$
- (iii) ϕ_a has a unique fixed point in \mathbb{D} .

In fact, $\phi_a(z) = \frac{a-z}{1-\overline{a}z}$ for all a and z in \mathbb{D} . Given $w \in \mathbb{D}$, and h any measurable function on \mathbb{D} , we define

$$U_w^\alpha h = (ho\phi_w)k_w^\alpha$$

Using the identity

$$1 - \overline{\phi_w(z)}w = \frac{1 - |w|^2}{1 - \overline{z}w}$$

we have

$$k_w^{\alpha}(\phi_w(z)) = \frac{1}{k_w^{\alpha}(z)}.$$

Since $\phi_w o \phi_w(z) \equiv z$, we see that

$$(U_w^{\alpha}(U_w^{\alpha}h))(z) = h(z)$$

for all $z \in \mathbb{D}$ and $h \in L^2_a(dA_\alpha)$. Thus $(U^{\alpha}_w)^{-1} = U^{\alpha}_w$ and hence U^{α}_w is unitary on $L^2_a(dA_\alpha)$. Furthermore

$$T_{\phi o \phi_w} U_w^\alpha = U_w^\alpha T_\phi$$

Recall the following : Suppose A is a positive operator on a Hilbert space H and x is a unit vector in H. Then

- (i) $\langle A^p x, x \rangle \ge \langle Ax, x \rangle^p$ for all $p \ge 1$;
- (ii) $\langle A^p x, x \rangle \leq \langle Ax, x \rangle^p$ for all 0 .

For proof see [1]. If T is a compact operator on a separable Hilbert space H, then there exist orthonormal sets $\{u_n\}_{n=0}^{\infty}$ and $\{\sigma_n\}_{n=0}^{\infty}$ in H such that $Tx = \sum_{n=0}^{\infty} \lambda_n \langle x, u_n \rangle \sigma_n$; $x \in H$ where λ_n is the nth singular value of T. Given 0 , we define the Schatten*p*-class of <math>H, denoted by $S_p(H)$ or simply S_p , to be the space of all compact operators T on H with its singular value sequence $\{\lambda_n\}$ belonging to l^p (the p-summable sequence space). We will be mainly concerned with the range $1 \leq p < \infty$. In this case, S_p is a Banach space with the norm $||T||_p = [\sum_n |\lambda_n|^p]^{\frac{1}{p}}$. The class S_1 is also called the trace class of H and S_2 is usually called the Hilbert-Schmidt class. It is not difficult to verify that if T is a compact operator on H and $p \geq 1$, then $T \in S_p$ if and only if $|T|^p = (T^*T)^{\frac{p}{2}} \in S_1$ and $||T||_p^p = |||T|||_p^p = ||T|^p||_1$. Let $\mathcal{L}(L_a^2(dA_\alpha))$ be the set of all bounded linear operators from $L_a^2(dA_\alpha)$ into itself. Throughout we assume $p \ge 1$ and S_p is the Schatten p-ideal of $\mathcal{L}(L^2_a(dA_\alpha))$. In this paper we characterize bounded linear operators on $L^2_a(dA_\alpha)$ that belong to the class $S_p, 1 \leq p < \infty$. In section 2, we find conditions on ϕ such that the Toeplitz operators T_{ϕ} defined on the weighted Bergman spaces belong to the Schatten class $S_p, 1 \leq p < \infty$. In section 3, we find conditions on $C \in \mathcal{L}(L^2_a(dA_\alpha))$ such that $C \in S_p$, the Schatten *p*-class, $1 \leq p < \infty$ by comparing with positive Toeplitz operators defined on the weighted Bergman spaces $L^2_a(dA_\alpha)$ and applications of the result are also obtained. In section 4, we find necessary and sufficient conditions on $\phi \in L^2(\mathbb{D}, dA)$ such that the little Hankel operator $S_{\overline{\phi}}$ defined on $L^2_a(\mathbb{D})$ belong to the class $S_p, 2 \leq p < \infty$. In section 5, using the $p - C^*$ summing conditions, we obtain a characterization for bounded linear operators to belong to the class S_p . In fact, we have shown that if $A \in \mathcal{L}(L^2_a(dA_\alpha))$ then $T_{\overline{\phi}}AT_{\phi} \in S_p$ if $\phi \in H^{\infty}(\mathbb{D})$ and $|\phi|^2 \in L^p(\mathbb{D}, d\lambda_\alpha)$. Also using the concept of *m*-Berezin transform, we find conditions on ϕ such that the composition operators defined on $L^2_a(\mathbb{D})$ belong to the Schatten class $S_p, 1 \le p < \infty.$

2 Schatten Class Toeplitz Operators

In this section, we find conditions on ϕ such that the Toeplitz operators T_{ϕ} defined on the weighted Bergman spaces belong to the Schatten class $S_p, 1 \leq p < \infty$. Let

$$BT = \left\{ f \in L^1(\mathbb{D}, dA) : \|f\|_{BT} = \sup_{z \in \mathbb{D}} |\widetilde{f}|(z) < \infty \right\}.$$

The space L^{∞} is properly contained in BT (see [2]) and if $\phi \in BT$ then T_{ϕ} is bounded on $L^2_a(dA_{\alpha})$ and there is a constant C such that $||T_{\phi}|| \leq C ||\phi||_{BT}$.

Theorem 2.1. Suppose $1 \leq p < \infty$ and $d\lambda_{\alpha}(z) = \frac{dA_{\alpha}(z)}{(1-|z|^2)^{2+\alpha}}, \alpha > -1$ Then the following hold: (1) If $T_{\phi} \in S_p$, then $\tilde{\phi} \in L^p(\mathbb{D}, d\lambda_{\alpha})$. (2) If $\phi \in L^p(\mathbb{D}, d\lambda_{\alpha})$ then $\tilde{\phi} \in L^p(\mathbb{D}, d\lambda_{\alpha})$ and $T_{\phi} \in S_p$.

Proof. Suppose $T_{\phi} \in S_p$. Then

$$\int_{\mathbb{D}} \langle |T_{\phi}|^{p} k_{w}^{\alpha}, k_{w}^{\alpha} \rangle_{\alpha} \, d\lambda_{\alpha}(w) < \infty.$$

Hence, $\int_{\mathbb{D}} \left\langle (T_{\phi}^*T_{\phi})^{\frac{p}{2}} k_w^{\alpha}, k_w^{\alpha} \right\rangle_{\alpha} d\lambda_{\alpha}(w) < \infty$. If $2 \le p < \infty$, then

$$\int_{\mathbb{D}} \left\langle T_{\phi}^* T_{\phi} k_w^{\alpha}, k_w^{\alpha} \right\rangle_{\alpha}^{\frac{p}{2}} d\lambda_{\alpha}(w) \leq \int_{\mathbb{D}} \left\langle (T_{\phi}^* T_{\phi})^{\frac{p}{2}} k_w^{\alpha}, k_w^{\alpha} \right\rangle_{\alpha} d\lambda_{\alpha}(w) < \infty.$$

It follows therefore that

$$\begin{split} \int_{\mathbb{D}} \|P_{\alpha}(\phi o \phi_{w})\|_{\alpha}^{p} d\lambda_{\alpha}(w) &= \int_{\mathbb{D}} \|P_{\alpha}(U_{w}^{\alpha}(\phi k_{w}^{\alpha}))\|_{\alpha}^{p} d\lambda_{\alpha}(w) \\ &= \int_{\mathbb{D}} \|U_{w}^{\alpha} T_{\phi} k_{w}^{\alpha}\|_{\alpha}^{p} d\lambda_{\alpha}(w) \\ &= \int_{\mathbb{D}} \|T_{\phi} k_{w}^{\alpha}\|_{\alpha}^{p} d\lambda_{\alpha}(w) \\ &= \int_{\mathbb{D}} \langle T_{\phi}^{*} T_{\phi} k_{w}^{\alpha}, k_{w}^{\alpha} \rangle_{\alpha}^{\frac{p}{2}} d\lambda_{\alpha}(w) < \infty. \end{split}$$

Now

$$|P_{\alpha}(\phi o \phi_{w})(0)| = |\langle P_{\alpha}(\phi o \phi_{w}), 1 \rangle_{\alpha}|$$

$$= |\langle U_{w}^{\alpha}(T_{\phi}k_{w}^{\alpha}), 1 \rangle_{\alpha}|$$

$$= |\langle T_{\phi}k_{w}^{\alpha}, U_{w}^{\alpha}1 \rangle_{\alpha}|$$

$$= |\langle T_{\phi}k_{w}^{\alpha}, k_{w}^{\alpha} \rangle_{\alpha}|$$

$$\leq ||T_{\phi}k_{w}^{\alpha}||_{\alpha}$$

$$= |P_{\alpha}(\phi o \phi_{w})||_{\alpha}.$$

Thus

$$\int_{\mathbb{D}} |P_{\alpha}(\phi o \phi_w)(0)|^p d\lambda_{\alpha}(w) < \infty.$$

That is, $\int_{\mathbb{D}} |\widetilde{\phi}(w)|^p d\lambda_{\alpha}(w) < \infty$ and $\widetilde{\phi} \in L^p(\mathbb{D}, d\lambda_{\alpha})$. Suppose $1 \le p < 2$. Then by Heinz inequality [3], it follows that

$$\begin{split} \infty > \int_{\mathbb{D}} \langle |T_{\phi}|^{p} k_{w}^{\alpha}, k_{w}^{\alpha} \rangle_{\alpha} d\lambda_{\alpha}(w) &= \int_{\mathbb{D}} \langle |T_{\phi}|^{2 \cdot \frac{p}{2}} k_{w}^{\alpha}, k_{w}^{\alpha} \rangle_{\alpha} d\lambda_{\alpha}(w) \\ &\geq \int_{\mathbb{D}} \frac{|\langle T_{\phi} k_{w}^{\alpha}, k_{w}^{\alpha} \rangle_{\alpha}|^{2}}{\langle |T_{\phi}^{*}|^{2(1-\frac{p}{2})} k_{w}^{\alpha}, k_{w}^{\alpha} \rangle_{\alpha}} d\lambda_{\alpha}(w) \\ &= \int_{\mathbb{D}} \frac{|\widetilde{\phi}(w)|^{2}}{\|P_{\alpha}(\overline{\phi} o\phi_{w})\|_{\alpha}^{2-p}} d\lambda_{\alpha}(w) \\ &= \int_{\mathbb{D}} |\widetilde{\phi}(w)|^{2} \|P_{\alpha}(\overline{\phi} o\phi_{w})\|_{\alpha}^{p-2} d\lambda_{\alpha}(w) \\ &\geq \int_{\mathbb{D}} \frac{|\widetilde{\phi}(w)|^{2}}{\|P_{\alpha}(\overline{\phi} o\phi_{w})\|_{\alpha}^{2}} \|P_{\alpha}(\overline{\phi} o\phi_{w})\|_{\alpha}^{p} d\lambda_{\alpha}(w) \\ &\geq \int_{\mathbb{D}} \frac{|\widetilde{\phi}(w)|^{2}}{C^{2} \|\phi\|_{BT}^{2}} |P_{\alpha}(\phi o\phi_{w})(0)|^{p} d\lambda_{\alpha}(w) \\ &= \int_{\mathbb{D}} \frac{|\widetilde{\phi}(w)|^{2}}{C^{2} \|\phi\|_{BT}^{2}} |\widetilde{\phi}(w)|^{p} d\lambda_{\alpha}(w) \end{split}$$

since

$$\begin{split} \left\langle |T_{\phi}^{*}|^{2-p}k_{w}^{\alpha},k_{w}^{\alpha}\right\rangle_{\alpha} &= \left\langle |T_{\phi}^{*}|^{2\cdot\frac{(2-p)}{2}}k_{w}^{\alpha},k_{w}^{\alpha}\right\rangle_{\alpha} \\ &\leq \left\langle |T_{\phi}^{*}|^{2}k_{w}^{\alpha},k_{w}^{\alpha}\right\rangle_{\alpha}^{\frac{(2-p)}{2}} \\ &= \left\langle T_{\phi}T_{\phi}^{*}k_{w}^{\alpha},k_{w}^{\alpha}\right\rangle_{\alpha}^{\frac{(2-p)}{2}} \\ &= \|T_{\phi}^{*}k_{w}^{\alpha}\|_{\alpha}^{2-p} \\ &= \|P_{\alpha}(\overline{\phi}o\phi_{w})\|_{\alpha}^{2-p}. \end{split}$$

Hence

$$\int_{\mathbb{D}} |\widetilde{\phi}(w)|^{p+2} d\lambda_{\alpha}(w) < \infty,$$

and therefore $\int_{\mathbb{D}} |\widetilde{\phi}(w)|^p d\lambda_{\alpha}(w) < \infty$. Thus $\widetilde{\phi} \in L^p(\mathbb{D}, d\lambda_{\alpha})$.

Now suppose $\phi \in L^1(\mathbb{D}, d\lambda_\alpha)$. Then

$$\begin{split} \int_{\mathbb{D}} |\widetilde{\phi}(w)| d\lambda_{\alpha}(w) &= \int_{\mathbb{D}} |\widetilde{\phi}(w)| \frac{dA_{\alpha}(w)}{(1-|w|^2)^{2+\alpha}} \\ &\leq \int_{\mathbb{D}} \left(\int_{\mathbb{D}} |\phi(z)| \frac{(1-|w|^2)^{(2+\alpha)}}{|1-\overline{w}z|^{4+2\alpha}} dA_{\alpha}(z) \right) \frac{dA_{\alpha}(w)}{(1-|w|^2)^{2+\alpha}} \\ &= \int_{\mathbb{D}} |\phi(z)| \int_{\mathbb{D}} \frac{dA_{\alpha}(w)}{|1-\overline{w}z|^{4+2\alpha}} dA_{\alpha}(z) \\ &= \int_{\mathbb{D}} |\phi(z)| \langle K_z^{\alpha}, K_z^{\alpha} \rangle_{\alpha} dA_{\alpha}(z) \\ &= \int_{\mathbb{D}} |\phi(z)| \frac{dA_{\alpha}(z)}{(1-|z|^2)^{2+\alpha}}, \end{split}$$

the change of the order of integration being justified by the positivity of the integrand. Hence $\tilde{\phi} \in L^1(\mathbb{D}, d\lambda_{\alpha})$. Similarly if $\phi \in L^{\infty}(\mathbb{D})$ then $\tilde{\phi} \in L^{\infty}(\mathbb{D})$ as $|\tilde{\phi}(w)| = |\langle \phi k_w^{\alpha}, k_w^{\alpha} \rangle_{\alpha}| \le \|\phi k_w^{\alpha}\|_2 \|k_w^{\alpha}\|_2 \le \|\phi\|_{\infty} \|k_w^{\alpha}\|_2^2 = \|\phi\|_{\infty}$. By Marcinkiewicz interpolation theorem it follows that if $\phi \in L^p(\mathbb{D}, d\lambda_{\alpha})$ then $\tilde{\phi} \in L^p(\mathbb{D}, d\lambda_{\alpha})$ for $1 \le p \le \infty$. Now suppose $\phi \in L^p(\mathbb{D}, d\lambda_{\alpha}), 1 \le p \le \infty$. We shall prove $T_{\phi} \in S_p$. The case $p = +\infty$ is trivial. By interpolation we need only to prove the result for p = 1. Suppose $\phi \in L^1(\mathbb{D}, d\lambda_{\alpha})$ and $\{e_n^{\alpha}\} = \left\{\sqrt{\frac{\Gamma(n+2+\alpha)}{n!\Gamma(2+\alpha)}}z^n\right\}_{n=0}^{\infty}$ is the standard orthonormal basis for $L^2_a(dA_{\alpha})$. Now $\langle T_\phi e_n^{\alpha}, e_n^{\alpha} \rangle_{\alpha} = \int_{\mathbb{D}} |e_n^{\alpha}(z)|^2 \phi(z) dA_{\alpha}(z)$ and

$$\begin{split} \sum_{n=0}^{\infty} |\langle T_{\phi} e_n^{\alpha}, e_n^{\alpha} \rangle_{\alpha}| &\leq \int_{\mathbb{D}} \sum_{n=0}^{\infty} |e_n^{\alpha}(z)|^2 |\phi(z)| dA_{\alpha}(z) \\ &\leq \int_{\mathbb{D}} K_z^{\alpha}(z) |\phi(z)| dA_{\alpha}(z) \\ &= \int_{\mathbb{D}} |\phi(z)| d\lambda_{\alpha}(z). \end{split}$$

Thus $T_{\phi} \in S_1$ and $||T_{\phi}||_{S_1} \leq \int_{\mathbb{D}} |\phi(z)| d\lambda_{\alpha}(z)$. This proves the claim.

3 Bounded Linear Operators on Weighted Bergman Spaces

In this section, we find conditions on $C \in \mathcal{L}(L^2_a(dA_\alpha))$ such that $C \in S_p$, the Schatten *p*-class, $1 \leq p < \infty$ by comparing with positive Toeplitz operators defined on the weighted Bergman spaces $L^2_a(dA_\alpha)$ and applications of the result are also obtained.

Theorem 3.1. Let $\phi \in L^p(\mathbb{D}, d\lambda_\alpha), \psi \in L^q(\mathbb{D}, d\lambda_\alpha)$ where $1 \leq p, q < \infty$. Let $C \in \mathcal{L}(L^2_a(dA_\alpha))$ is such that

$$|\langle CK_y^{\alpha}, K_x^{\alpha} \rangle_{\alpha}|^2 \le \langle T_{|\phi|} K_y^{\alpha}, K_y^{\alpha} \rangle_{\alpha} \langle T_{|\psi|} K_x^{\alpha}, K_x^{\alpha} \rangle_{\alpha}$$
(3.1)

for all $x, y \in \mathbb{D}$. Then $C \in S_{2r}$ and $\|C\|_{2r}^2 \le \|T_{|\phi|}\|_p \|T_{|\psi|}\|_q$ where $\frac{1}{p} + \frac{1}{q} = \frac{1}{r}$.

Proof. First we show that (3.1) implies

$$|\langle Cf,g\rangle_{\alpha}|^{2} \leq \langle T_{|\phi|}f,f\rangle_{\alpha}\langle T_{|\psi|}g,g\rangle_{\alpha}$$

for all $f,g \in L^2_a(dA_\alpha)$. Let $f = \sum_{j=1}^n c_j K^{\alpha}_{y_j}$ where c_j are constants, $y_j \in \mathbb{D}$ for j = 1, 2, ..., n and $g = \sum_{i=1}^m d_i K^{\alpha}_{x_i}$ where d_i are constants, $x_i \in \mathbb{D}$ for i = 1, 2, ..., m. Then

$$\begin{split} |\langle Cf,g\rangle_{\alpha}| &= \left| \left\langle C\left(\sum_{j=1}^{n} c_{j}K_{y_{j}}^{\alpha}\right), \sum_{i=1}^{m} d_{i}K_{x_{i}}^{\alpha}\right\rangle_{\alpha} \right| \\ &= \left| \sum_{i=1,j=1}^{m,n} c_{j}\overline{d_{i}} \left\langle CK_{y_{j}}^{\alpha}, K_{x_{i}}^{\alpha}\right\rangle_{\alpha} \right| \\ &\leq \sum_{i=1,j=1}^{m,n} |c_{j}||d_{i}| \left| \left\langle CK_{y_{j}}^{\alpha}, K_{x_{i}}^{\alpha}\right\rangle_{\alpha} \right| \\ &\leq \sum_{i=1,j=1}^{m,n} |c_{j}||d_{i}| \left\langle T_{|\phi|}K_{y_{j}}^{\alpha}, K_{y_{j}}^{\alpha}\right\rangle_{\alpha}^{\frac{1}{2}} \left\langle T_{|\psi|}K_{x_{i}}^{\alpha}, K_{x_{i}}^{\alpha}\right\rangle_{\alpha}^{\frac{1}{2}} \\ &= \left\langle T_{|\phi|}\left(\sum_{j=1}^{n} c_{j}K_{y_{j}}^{\alpha}\right), \sum_{j=1}^{n} c_{j}K_{y_{j}}^{\alpha}\right\rangle_{\alpha}^{\frac{1}{2}} \left\langle T_{|\psi|}\left(\sum_{i=1}^{m} d_{i}K_{x_{i}}^{\alpha}\right), \sum_{i=1}^{m} d_{i}K_{x_{i}}^{\alpha}\right\rangle_{\alpha}^{\frac{1}{2}} \\ &= \left\langle T_{|\phi|}f, f\right\rangle_{\alpha}^{\frac{1}{2}} \left\langle T_{|\psi|}g, g\right\rangle_{\alpha}^{\frac{1}{2}}. \end{split}$$

Since the set of vectors $\{\sum c_j K_{x_j}^{\alpha}, x_j \in \mathbb{D}, j = 1, 2, ..., n\}$ is dense in $L_a^2(dA_{\alpha})$, hence

$$\|\langle Cf, g \rangle_{\alpha}\|^{2} \leq \langle I_{|\phi|}f, f \rangle_{\alpha} \langle I_{|\psi|}g, g \rangle_{\alpha}$$

for all $f, g \in L^{2}_{a}(dA_{\alpha})$. If $\phi \in L^{p}(\mathbb{D}, d\lambda_{\alpha})$, then $T_{|\phi|} \in S_{p}$ and
 $\|T_{|\phi|}\|_{p} = (trace T^{p}_{|\phi|})^{\frac{1}{p}} < \infty.$

Similarly since $\psi \in L^q(\mathbb{D}, d\lambda_\alpha)$ then

$$||T_{|\psi|}||_q = (traceT^q_{|\psi|})^{\frac{1}{q}} < \infty.$$

Let $\{u_n\}_{n=0}^{\infty}$ and $\{\sigma_n\}_{n=0}^{\infty}$ be two orthonormal sequences in $L^2_a(dA_\alpha)$. Then using Holder's inequality, we obtain that

$$\begin{split} \sum_{n=0}^{\infty} |\langle Cu_n, \sigma_n \rangle_{\alpha}|^{2r} &\leq \sum_{n=0}^{\infty} \langle T_{|\phi|} u_n, u_n \rangle_{\alpha}^r \langle T_{|\psi|} \sigma_n, \sigma_n \rangle_{\alpha}^r \\ &\leq \left(\sum_{n=0}^{\infty} \langle T_{|\phi|} u_n, u_n \rangle_{\alpha}^p \right)^{\frac{r}{p}} \left(\sum_{n=0}^{\infty} \langle T_{|\psi|} \sigma_n, \sigma_n \rangle_{\alpha}^q \right)^{\frac{r}{q}} \\ &\leq \left(\sum_{n=0}^{\infty} \langle T_{|\phi|}^p u_n, u_n \rangle_{\alpha} \right)^{\frac{r}{p}} \left(\sum_{n=0}^{\infty} \langle T_{|\psi|}^q \sigma_n, \sigma_n \rangle_{\alpha} \right)^{\frac{r}{q}} \\ &\leq \left(trace T_{|\phi|}^p \right)^{\frac{r}{p}} \left(trace T_{|\psi|}^q \right)^{\frac{r}{q}} \\ &= \|T_{|\phi|}\|_p^r \|T_{|\psi|}\|_q^r \quad \text{if} \quad \frac{1}{r} = \frac{1}{p} + \frac{1}{q} \, . \end{split}$$

Thus

$$\|C\|_{2r} \le \|T_{|\phi|}\|_p^{\frac{1}{2}} \|T_{|\psi|}\|_q^{\frac{1}{2}}$$

Corollary 3.2. If $\phi, \psi \in L^p(\mathbb{D}, d\lambda_\alpha)$ and $C \in \mathcal{L}(L^2_a(dA_\alpha))$ is such that

$$|\langle CK_y^{\alpha}, K_x^{\alpha} \rangle_{\alpha}|^2 \le \langle T_{|\phi|}K_y^{\alpha}, K_y^{\alpha} \rangle_{\alpha} \langle T_{|\psi|}K_x^{\alpha}, K_x^{\alpha} \rangle_{\alpha}$$

for all $x, y \in \mathbb{D}$ then $||C||_p^2 \le ||T_{|\phi|}||_p ||T_{|\psi|}||_p$.

Proof. The proof follows from the Theorem 3.1 if we assume p = q.

Corollary 3.3. If A, B are two positive operators in $\mathcal{L}(L^2_a(dA_\alpha))$ and $A \in S_p, B \in S_q, 1 \leq p, q < \infty$ and $C \in \mathcal{L}(L^2_a(dA_\alpha))$ is such that

$$|\langle CK_y^{\alpha}, K_x^{\alpha} \rangle_{\alpha}|^2 \leq \langle AK_y^{\alpha}, K_y^{\alpha} \rangle_{\alpha} \langle BK_x^{\alpha}, K_x^{\alpha} \rangle_{\alpha}$$

for all $x, y \in \mathbb{D}$ then $||C||_{2r}^2 \leq ||A||_p ||B||_q$ if $\frac{1}{p} + \frac{1}{q} = \frac{1}{r}$. If p = q, then $||C||_p^2 \leq ||A||_p ||B||_p$.

Proof. Proceeding similarly as in Theorem 3.1 and Corollary 3.2 by replacing $T_{|\phi|}$ by A and $T_{|\psi|}$ by B, the corollary follows.

Corollary 3.4. If $A, B \in \mathcal{L}(L^2_a(dA_\alpha)), 0 \leq A \in S_p, 1 \leq p < \infty$ and (3.1) holds for $x, y \in \mathbb{D}$, then

$$||C||_{2p}^2 \le ||A||_p ||B||.$$

Schatten Class Operators on Weighted Bergman Spaces

Proof. Let $\{u_n\}_{n=0}^{\infty}$ and $\{\sigma_n\}_{n=0}^{\infty}$ be two orthonormal bases for $L^2_a(dA_\alpha)$, then

$$\begin{split} |\langle Cu_n, \sigma_n \rangle_{\alpha}|^2 &\leq \langle Au_n, u_n \rangle_{\alpha} \langle B\sigma_n, \sigma_n \rangle_{\alpha} \\ &\leq \langle Au_n, u_n \rangle_{\alpha} ||B||. \end{split}$$

Then $|\langle Cu_n, \sigma_n \rangle_{\alpha}|^{2p} \leq ||B||^p \langle Au_n, u_n \rangle_{\alpha}^p$. Hence

$$\sum_{n=0}^{\infty} |\langle Cu_n, \sigma_n \rangle_{\alpha}|^{2p} \le ||B||^p \sum_{n=0}^{\infty} \langle Au_n, u_n \rangle_{\alpha}^p$$

and $||C||_{2p}^2 \le ||B|| ||A||_p$.

If $\phi \in L^p(\mathbb{D}, d\lambda_\alpha)$ then $T_\phi \in S_p$. Hence $|T_\phi| \in S_p$. Thus if $B \in \mathcal{L}(L^2_a(dA_\alpha)), C \in \mathcal{L}(L^2_a(dA_\alpha))$ are such that $|\langle CK^{\alpha}_y, K^{\alpha}_x \rangle_{\alpha}|^2 \leq \langle |T_\phi|K^{\alpha}_y, K^{\alpha}_y \rangle_{\alpha} \langle BK^{\alpha}_x, K^{\alpha}_x \rangle_{\alpha}$ for all $x, y \in \mathbb{D}$ then $C \in S_{2p}$ and $||C||^2_{2p} \leq ||B|| ||T_\phi||_p$.

Corollary 3.5. Let $\phi \in L^p(\mathbb{D}, d\lambda_\alpha), 1 and <math>\phi = \phi^+$ where $\phi^+(z) = \phi(\overline{z})$. Then there exists an operator $S \in \mathcal{L}(L^2_a(dA_\alpha))$ such that $T_{|\phi|}S = ST_{|\phi|}$ and $\|T_{|\phi|}S\|_p \leq r(S)\|T_{|\phi|}\|_p$ where r(S) is the spectral radius of S.

Proof. Since $\phi \in L^p(\mathbb{D}, d\lambda_\alpha)$ and $\phi^+ = \phi$, hence $T_{|\phi|}$ and S_{ϕ} are self- adjoint operators, $T_{|\phi|} \in S_p$ and $S_{\phi} \in S_p$. For details see [1]. Let \mathcal{U} be the group of unitary operators on $L^2_a(\mathbb{D})$. Let $\mathcal{U}_A = \{UAU^* : U \in \mathcal{U}\}$, the unitary orbit of an operator $A \in \mathcal{L}(L^2_a(\mathbb{D}))$.

Define $f(X) = ||T_{|\phi|} - X||_p$ for all $X \in S_p$. Then f attains its minimum at some $S \in S_p$ on $\mathcal{U}_{S_{\phi}} = \{US_{\phi}U^* : U \in \mathcal{U}\}$ and $T_{|\phi|}S = ST_{|\phi|}$. This follows from [4]. The operator S is self-adjoint. To prove the corollary we have to show that for any two orthonormal sequences $\{u_n\}_{n=0}^{\infty}$ and $\{\sigma_n\}_{n=0}^{\infty}$ in $L^2_a(dA_{\alpha})$,

$$\sum_{n=0}^{\infty} |\langle T_{|\phi|} S u_n, \sigma_n \rangle_{\alpha}|^p \le r(S)^p ||T_{|\phi|}||_p^p.$$

Notice that since $T_{|\phi|}S = ST_{|\phi|}$ and $S = S^*$ we obtain

$$\begin{split} |\langle T_{|\phi|}Su_n, \sigma_n \rangle_{\alpha}|^2 &= |\langle T_{|\phi|}(Su_n), \sigma_n \rangle_{\alpha}|^2 \\ &\leq \langle T_{|\phi|}(Su_n), Su_n \rangle_{\alpha} \langle T_{|\phi|}\sigma_n, \sigma_n \rangle_{\alpha} \\ &= \langle S^*T_{|\phi|}Su_n, u_n \rangle_{\alpha} \langle T_{|\phi|}\sigma_n, \sigma_n \rangle_{\alpha} \\ &= \langle T_{|\phi|}S^2u_n, u_n \rangle_{\alpha} \langle T_{|\phi|}\sigma_n, \sigma_n \rangle_{\alpha} \;. \end{split}$$

Repeating this process we obtain

$$\begin{split} |\langle T_{|\phi|}Su_n, \sigma_n \rangle_{\alpha}|^{2^{m+1}} &= \left(|\langle T_{|\phi|}Su_n, \sigma_n \rangle_{\alpha}|^{2^m} \right)^2 \\ &\leq \left[\langle T_{|\phi|}S^{2^m}u_n, u_n \rangle_{\alpha} \langle T_{|\phi|}u_n, u_n \rangle_{\alpha}^{2^{m-1}-1} \langle T_{|\phi|}\sigma_n, \sigma_n \rangle_{\alpha}^{2^{m-1}} \right]^2 \\ &\leq \langle T_{|\phi|}S^{2^m}u_n, S^{2^m}u_n \rangle_{\alpha} \langle T_{|\phi|}u_n, u_n \rangle_{\alpha} \langle T_{|\phi|}u_n, u_n \rangle_{\alpha}^{2^m-2} \langle T_{|\phi|}\sigma_n, \sigma_n \rangle_{\alpha}^{2^m} \\ &= \langle S^{*^{2^m}}T_{|\phi|}S^{2^m}u_n, u_n \rangle_{\alpha} \langle T_{|\phi|}u_n, u_n \rangle_{\alpha}^{2^m-1} \langle T_{|\phi|}\sigma_n, \sigma_n \rangle_{\alpha}^{2^m} \\ &= \langle T_{|\phi|}S^{2^{m+1}}u_n, u_n \rangle_{\alpha} \langle T_{|\phi|}u_n, u_n \rangle_{\alpha}^{2^m-1} \langle T_{|\phi|}\sigma_n, \sigma_n \rangle_{\alpha}^{2^m}. \end{split}$$

297

Thus

$$|\langle T_{|\phi|}Su_n, \sigma_n \rangle_{\alpha}|^{2^m} \le ||T_{|\phi|}|| ||S^{2^m}|||u_n||^2 \langle T_{|\phi|}u_n, u_n \rangle_{\alpha}^{2^{m-1}-1} \langle T_{|\phi|}\sigma_n, \sigma_n \rangle_{\alpha}^{2^{m-1}-$$

and

$$|\langle T_{|\phi|}Su_n, \sigma_n \rangle_{\alpha}| \le ||T_{|\phi|}||^{\frac{1}{2m}} ||S^{2^m}||^{\frac{1}{2m}} ||u_n||^{\frac{2}{2m}} \langle T_{|\phi|}u_n, u_n \rangle_{\alpha}^{\frac{1}{2} - \frac{1}{2m}} \langle T_{|\phi|}\sigma_n, \sigma_n \rangle_{\alpha}^{\frac{1}{2}}.$$

Letting $m \to \infty$, we obtain

$$\langle T_{|\phi|}Su_n, \sigma_n \rangle_{\alpha} |^2 \leq [r(S)]^2 \langle T_{|\phi|}u_n, u_n \rangle_{\alpha} \langle T_{|\phi|}\sigma_n, \sigma_n \rangle_{\alpha}$$

Hence proceeding as in Theorem 3.1 and Corollary 3.2, one can show that $||T_{|\phi|}S||_p \le r(S)||T_{|\phi|}||_p$.

4 Schatten Class Little Hankel Operators

In this section, we find necessary and sufficient conditions on $\phi \in L^2(\mathbb{D}, dA)$ such that the little Hankel operator $S_{\overline{\phi}}$ defined on $L^2_a(\mathbb{D})$ belong to the class $S_p, 2 \leq p < \infty$. For $\phi \in L^2(\mathbb{D}, dA)$, define

$$(V\phi)(z) = 3(1-|z|^2)^2 \int_{\mathbb{D}} \frac{\phi(w)}{(1-z\overline{w})^4} dA(w).$$

Under the complex integral paring with respect to dA, we have $V = P_2^*$, where $P_2 f(z) = 3 \int_{\mathbb{D}} \frac{(1-|w|^2)^2}{(1-z\overline{w})^4} f(w) dA(w)$ is a projection from $L^1(\mathbb{D}, dA)$ onto $L^1_a(\mathbb{D})$. These operators V play crucial role in obtaining the Schatten class characterization for $S_{\overline{\phi}}$.

The little Hankel operator S_{ϕ} can also be defined for $\phi \in L^2(\mathbb{D}, dA)$ as $S_{\phi}f = PJ(\phi f)$ for $f \in L^2_a(\mathbb{D})$. Notice that if $\phi \in L^2(\mathbb{D}, dA)$, then $S_{\overline{\phi}} = S_{\overline{P\phi}}$ in the sense that $S_{\overline{\phi}}g = S_{\overline{P\phi}}g$ for all $g \in H^{\infty}(\mathbb{D})$ (which is dense in $L^2_a(\mathbb{D})$), where P is the Bergman projection. The operator V has the following property: VP=V, PV=P and $V^2 = V$ on $L^2(\mathbb{D}, dA)$. We verify now that if $\phi \in L^2(\mathbb{D}, dA)$, then $S_{\overline{\phi}}$ is bounded if and only if $V\phi(z)$ is bounded in \mathbb{D} . Since each k_z is a unit vector in $L^2(\mathbb{D}, dA)$, we have

$$|V\phi(z)| = 3|\langle S_{\overline{\phi}}k_z, k_{\overline{z}}\rangle| \le 3||S_{\overline{\phi}}k_z||.$$

Hence $\|V\phi\|_{\infty} \leq 3\|S_{\overline{\phi}}\|$. On the other hand, $S_{\overline{\phi}} = S_{\overline{P\phi}} = S_{\overline{PV\phi}} = S_{\overline{V\phi}}$. Thus $V\phi \in L^{\infty}(\mathbb{D}, dA)$ implies that $S_{\overline{\phi}}$ is bounded with $\|S_{\overline{\phi}}\| \leq \|V\phi\|_{\infty}$.

Theorem 4.1. Suppose $2 \le p < \infty$. Then $S_{\overline{\phi}} \in S_p$ if and only if $V\phi \in L^p(\mathbb{D}, d\lambda)$, where $d\lambda(z) = \frac{dA(z)}{(1-|z|^2)^2}$.

Proof. Suppose $2 \leq p < \infty$ and $S_{\overline{\phi}} \in S_p$. Then

$$\begin{split} \int_{\mathbb{D}} |(V\phi)(z)|^{p} d\lambda(z) &\leq 3^{p} \int_{\mathbb{D}} \|S_{\overline{\phi}}k_{z}\|^{p} d\lambda(z) \\ &= 3^{p} \int_{\mathbb{D}} \langle S_{\overline{\phi}}k_{z}, S_{\overline{\phi}}k_{z} \rangle^{\frac{p}{2}} d\lambda(z) \\ &= 3^{p} \int_{\mathbb{D}} \langle S_{\overline{\phi}}^{*}S_{\overline{\phi}}k_{z}, k_{z} \rangle^{\frac{p}{2}} d\lambda(z) \\ &\leq 3^{p} \int_{\mathbb{D}} \langle (S_{\overline{\phi}}^{*}S_{\overline{\phi}})^{\frac{p}{2}}k_{z}, k_{z} \rangle d\lambda(z) \\ &= 3^{p} \int_{\mathbb{D}} \langle |S_{\overline{\phi}}|^{p}k_{z}, k_{z} \rangle d\lambda(z) < \infty \end{split}$$

Hence $V\phi \in L^p(\mathbb{D}, d\lambda)$.

Conversely, suppose $V\phi \in L^p(\mathbb{D}, d\lambda)$. We shall show that $S_{\overline{\phi}} \in S_p$. Since $S_{\overline{\phi}} = S_{\overline{V\phi}}$, it suffices to show that $S_{\overline{\phi}}$ is in S_p whenever $\phi \in L^p(\mathbb{D}, d\lambda)$. In the following we prove that if $\phi \in L^p(\mathbb{D}, d\lambda)$ then $S_{\overline{\phi}} \in S_p, 1 \leq p < \infty$. From Heinz inequality [3], it follows that

$$\begin{split} |\langle S_{\overline{\phi}}k_{z},k_{w}\rangle|^{2} &\leq \langle |S_{\overline{\phi}}|k_{z},k_{z}\rangle\langle |S_{\overline{\phi}}^{*}|k_{w},k_{w}\rangle \\ &= \langle (S_{\overline{\phi}}^{*}S_{\overline{\phi}})^{\frac{1}{2}}k_{z},k_{z}\rangle\langle (S_{\overline{\phi}}S_{\overline{\phi}}^{*})^{\frac{1}{2}}k_{w},k_{w}\rangle \\ &\leq \langle (S_{\overline{\phi}}^{*}S_{\overline{\phi}})k_{z},k_{z}\rangle^{\frac{1}{2}}\langle (S_{\overline{\phi}}S_{\overline{\phi}}^{*})k_{w},k_{w}\rangle^{\frac{1}{2}} \\ &= \|S_{\overline{\phi}}k_{z}\|_{2}\|S_{\overline{\phi}}^{+}k_{w}\|_{2} \\ &= \|PJ(\overline{\phi}k_{z})\|_{2}\|PJ(\overline{\phi}^{+}k_{w})\|_{2} \\ &\leq \|\overline{\phi}k_{z}\|_{2}\|\overline{\phi}^{+}k_{w}\|_{2} \\ &= \left(\int_{\mathbb{D}}|\phi(u)|^{2}|k_{z}(u)|^{2}dA(u)\right)^{\frac{1}{2}}\left(\int_{\mathbb{D}}|\overline{\phi}^{+}(v)|^{2}|k_{w}(v)|^{2}dA(v)\right)^{\frac{1}{2}} \\ &\leq d\langle T_{|\phi|}k_{z},k_{z}\rangle\langle T_{|\phi^{+}|}k_{w},k_{w}\rangle \text{ for some constant } d>0. \end{split}$$

Thus

$$|\langle S_{\overline{\phi}}K_z, K_w \rangle|^2 \le d \langle T_{|\phi|}K_z, K_z \rangle \langle T_{|\phi^+|}K_w, K_w \rangle.$$

Now $\phi \in L^p(\mathbb{D}, d\lambda)$ implies $|\phi|, |\phi^+| \in L^p(\mathbb{D}, d\lambda)$. Hence $T_{|\phi|}, T_{|\phi^+|} \in S_p$. Hence by Theorem 3.1, $S_{\overline{\phi}} \in S_p$.

5 $p - C^*$ Summing Operators and m-Berezin Transform

In this section, using the $p-C^*$ summing conditions, we obtain a characterization for bounded linear operators to belong to the class S_p . In fact, we have shown

.

that if $A \in \mathcal{L}(L^2_a(dA_\alpha))$ then $T_{\overline{\phi}}AT_{\phi} \in S_p$ if $\phi \in H^{\infty}(\mathbb{D})$ and $|\phi|^2 \in L^p(\mathbb{D}, d\lambda_\alpha)$. Also using the concept of *m*-Berezin transform, we find conditions on ϕ such that the composition operators defined on $L^2_a(\mathbb{D})$ belong to the Schatten class $S_p, 1 \leq p < \infty$.

A linear map T from a C^* algebra \mathcal{A} into a Banach space X is $p - C^*$ summing (we assume $p \geq 1$) if there is a constant C such that, for any finite sequence $\{w_i\}_{i=1}^N \subset \mathcal{A}^h = \{w \in \mathcal{A} : w^* = w\}$, the following condition holds:

$$\left(\sum_{i=1}^{N} \|Tw_i\|^p\right)^{\frac{1}{p}} \le C \|\sum_{i=1}^{N} |w_i|^p\|^{\frac{1}{p}},$$

where $|w| = (w^*w)^{\frac{1}{2}}$. The least constant C for which this condition is satisfied is denoted by $C_p(T)$. It is shown in [5] that T is p- C^* summing if and only if there is a constant C and state ϕ on \mathcal{A} such that, for all x in \mathcal{A}^h , $||Tx|| \leq C\phi(|x|^p)^{\frac{1}{p}}$. The least of these constants is equal to $C_p(T)$. For example, $\mathcal{L}(L^2_a(dA_\alpha))$ is a C^* - algebra with the unit I. Define $\mathcal{T}_B : \mathcal{L}(L^2_a(dA_\alpha)) \to \mathcal{L}(L^2_a(dA_\alpha))$ by $\mathcal{T}_B(\mathcal{A}) = BAB^*$. If $A \geq 0$ then $\mathcal{T}_B(\mathcal{A}) \geq 0$. If A=I and $BB^* \in S_p, p \geq 1$, then $\mathcal{T}_B(I) = \mathcal{T}_B(\mathcal{A}) = BB^* \in S_p$. In [5], Nowak has shown that \mathcal{T}_B is $p - C^*$ summing and $C_p(\mathcal{T}_B) \leq ||\mathcal{T}_B(\mathcal{I})||_p$ and $\mathcal{T}_B(\mathcal{L}(L^2_a(dA_\alpha))) \subset S_p$ and \mathcal{T}_B is bounded as the map from $\mathcal{L}(L^2_a(dA_\alpha))$ into S_p with the norm $||\mathcal{T}_B(I)||_p$.

Theorem 5.1. Let $p \ge 1$. Let $\phi \in H^{\infty}(\mathbb{D})$ be such that $|\phi|^2 \in L^p(\mathbb{D}, d\lambda_{\alpha})$. Then $T_{\overline{\phi}}AT_{\phi} \in S_p$ for all $A \in \mathcal{L}(L^2_a(dA_{\alpha}))$.

Proof. Let $\phi \in H^{\infty}(\mathbb{D})$ be such that $|\phi|^2 \in L^p(\mathbb{D}, d\lambda_{\alpha})$ for some $p \in [1, \infty)$. Then from [1], it follows that

$$T_{\phi}^*T_{\phi} = T_{\overline{\phi}}T_{\phi} = T_{|\phi|^2} \in S_p.$$

Define $\mathcal{T} : \mathcal{L}(L^2_a(dA_\alpha)) \longrightarrow \mathcal{L}(L^2_a(dA_\alpha))$ as $\mathcal{T}(A) = T_\phi A T_\phi^* = T_\phi A T_{\overline{\phi}}$. Then $\mathcal{T}(A) \ge 0$ if $A \ge 0$ and since $T_\phi^* T_\phi \in S_p$ we have $\mathcal{T}(I) = T_\phi T_\phi^* \in S_p$. Hence \mathcal{T} is $p - C^*$ summing and $\mathcal{T}(A) = T_\phi A T_\phi^* \in S_p$ for all $A \in \mathcal{L}(L^2_a(dA_\alpha))$.

Lemma 5.2. Let $p \ge 1, T \in \mathcal{L}(L^2_a(dA_\alpha))$ and $T_n \in S_p$ for all $n \in \mathbb{N}$. If $T_n \to T$ in weak operator topology and $||T_n||_p \le C < \infty$ for all $n \in \mathbb{N}$ and for some constant C > 0 then $T \in S_p$ and $||T||_p \le C$.

Proof. For each $n \in \mathbb{N}$, define

$$\zeta_n(K) = tr(T_n K).$$

Then $\zeta_n \in S_q^*$ where $\frac{1}{p} + \frac{1}{q} = 1$ and $\|\zeta_n\| = \|T_n\|_p \leq C < \infty$. By Banach-Alaoglu's theorem [6], there exists a subsequence $\{\zeta_{n_k}\}$ such that $\zeta_{n_k} \longrightarrow \zeta$ in w^* -topology and $\zeta \in S_q^*$. Therefore $tr(T_{n_k}K) = \zeta_{n_k}(K) \longrightarrow \zeta(K)$, for all $K \in S_q$ and $|\zeta(K)| \leq M \|K\|_q$, for some constant M > 0. On the other hand, since Schatten Class Operators on Weighted Bergman Spaces

 $T_n \longrightarrow T$ in weak operator topology, $tr(T_n K) \longrightarrow tr(TK)$ for all operators K of finite rank. The lemma follows since

$$||T||_p = \sup\{|tr(TK)| : rank(K) < \infty \text{ and } ||K||_q \le 1\} < \infty.$$

Theorem 5.3. Let $T \in \mathcal{L}(L^2_a(dA_\alpha))$ and let T = V|T| be the polar decomposition of T. If $T \in S_p$, then $V \in S_p$, if $1 \le p < \infty$.

Proof. Let $T_n = T(|T| + \frac{1}{n})^{-1}$. We shall first prove that $T_n \longrightarrow V$ strongly as $n \to \infty$. Let $\{E_\lambda\}$ be the spectral family for |T|. Then T_n strongly converges to $I - E_0$ as $n \to \infty$. The reason is as follows: Notice that $|T| = \int_0^\infty \lambda dE_\lambda$ is the spectral decomposition of |T|. Let $S_n = |T|(|T| + \frac{1}{n})^{-1}$. Then $S_n E_0 f = (|T| + \frac{1}{n})^{-1}|T|E_0 f = 0$ for $f \in L^2_a(dA_\alpha)$ and

$$\begin{split} |S_n f - (I - E_0) f||^2 &= \|(S_n - I)(I - E_0) f\|^2 \\ &= \int_0^\infty \left| \frac{\lambda}{\lambda + \frac{1}{n}} - 1 \right|^2 d\|E_\lambda (I - E_0) f\|^2 \\ &= \int_0^\infty \left| \frac{\frac{1}{n}}{\lambda + \frac{1}{n}} \right|^2 d\|E_\lambda (I - E_0) f\|^2. \end{split}$$

From Lebesgue's dominated convergence theorem, it follows that S_n strongly converges to $I - E_0$ as $n \to \infty$. Thus we have $T_n \to V(I - E_0)$ strongly as $n \to \infty$. Since E_0 is the projection onto the eigenspace $\{f \in L^2_a(dA_\alpha) : Tf = 0\}$, we get $VE_0 = 0$. Consequently, $T_n \longrightarrow V$ strongly as $n \to \infty$. Now suppose $T \in S_p$. Then $T_n \in S_p, ||T_n||_p \leq C < \infty$ for some constant C > 0 and $T_n \longrightarrow V$ strongly as $n \to \infty$. By Lemma 5.2, $V \in S_p$.

If m is a nonnegative integer and $z \in \mathbb{D}$, the function $K_z^{(m)}(w) = \frac{1}{(1-\overline{z}w)^{2+m}}, w \in \mathbb{D}$ is the reproducing kernel of z in the weighted Bergman space $L_a^2(dA_m)$, where

$$dA_m(w) = (m+1)(1-|w|^2)^m dA(w).$$

The *m*-Berezin transform of an operator $S \in \mathcal{L}(L^2_a(\mathbb{D}))$ is defined as

$$(B_m S)(z) = (m+1)(1-|z|^2)^{2+m} \sum_{j=0}^m {m \choose j} (-1)^j \left\langle S(w^j K_z^{(m)}), w^j K_z^{(m)} \right\rangle$$

It is clear that $B_m S \in L^{\infty}(\mathbb{D})$ for every $S \in \mathcal{L}(L^2_a(\mathbb{D}))$. Using the fact that

$$\sum_{j=0} {m \choose j} (-1)^j |w|^{2j} = (1 - |w|^2)^m,$$

we see that if $S = T_{\phi}$ with $\phi \in L^{\infty}(\mathbb{D})$, then $(B_m \phi)(z) = (B_m T_{\phi})(z)$

$$= (m+1)(1-|z|^2)^{2+m} \sum_{j=0}^m {m \choose j} (-1)^j \int_{\mathbb{D}} \frac{\phi(w)|w|^{2j}}{|1-\overline{z}w|^{2(2+m)}} dA(w)$$

$$= \int_{\mathbb{D}} \phi(w) \frac{(1-|z|^2)^{2+m}}{|1-\bar{z}w|^{2(2+m)}} (m+1)(1-|w|^2)^m dA(w)$$

=
$$\int_{\mathbb{D}} \phi(\phi_z(\rho))(m+1)(1-|\rho|^2)^m dA(\rho),$$

where the last equality comes from the change of variables $w = \phi_z(\rho)$. Notice that $||B_m(\phi)||_{\infty} \leq ||\phi||_{\infty}$ for all $\phi \in L^{\infty}(\mathbb{D})$. The 0-Berezin transform of an operator is the usual Berezin transform. The *m*-Berezin transforms of functions (not necessarily bounded) were introduced by Berezin in [7]. It is not difficult to verify that for $S \in \mathcal{L}(L^2_{\alpha}(\mathbb{D}))$ and $m \geq 0$;

$$(m+2)(1-|z|^2)B_m\left(S-T_{\bar{w}}ST_w\right)(z) = (m+1)B_{m+1}\left(T_{1-\bar{w}z}ST_{1-w\bar{z}}\right)(z)$$

for every $z \in \mathbb{D}$ and $||B_m S||_{\infty} \leq (m+2)2^m ||S||$.

Corollary 5.4. Let $\phi : \mathbb{D} \longrightarrow \mathbb{D}$ be analytic. Suppose there is p > 3 such that

$$\sup_{z \in \mathbb{D}} \|T_{(B_m C_\phi) o \phi_z} 1\|_p < C \quad and \quad \sup_{z \in \mathbb{D}} \|T^*_{(B_m C_\phi) o \phi_z} 1\|_p < C \tag{5.1}$$

where C > 0 is independent of m and $B_m C_{\phi} \in L^p(\mathbb{D}, d\lambda)$ for all nonnegative integer m. If further $||T_{B_m C_{\phi}}||_p < K$ for some constant K > 0 independent of mthen $C_{\phi} \in S_p$.

Proof. Let $C_{\phi} \in \mathcal{L}(L^2_a(\mathbb{D}))$ and satisfies the condition (5.1). It follows from [8] that $T_{B_m C_{\phi}} \longrightarrow C_{\phi}$ in $\mathcal{L}(L^2_a(\mathbb{D}))$ norm as $m \longrightarrow \infty$. Hence $T_{B_m C_{\phi}} \xrightarrow{w} C_{\phi}$. By Lemma 5.2 and Theorem 2.1, $C_{\phi} \in S_p$ as $B_m C_{\phi} \in L^p(\mathbb{D}, d\lambda)$.

References

- K. Zhu, Operator theory in fuction spaces, Monographs and textbooks in pure and applied Mathematics, 139, Marcel Dekker, New York, 1990.
- [2] J. Miao, D. Zheng, Compact operators on Bergman spaces, Integral equations and operator theory 48 (1) (2004) 61–79.
- [3] E. Heinz, On an inequality for linear operators in Hilbert space, Report on operator theory and group representations, Publ. No. 387, Nat. Acad. Sci-Nat. Res. Council, Washington, D.C. (1955) 27–29.
- [4] R. Bhatia, P. Semrl, Distance between hermitian operators in Schatten classes, Proc. of the Edinburgh Math. Soc. 39 (1996) 377–380.
- [5] K. Nowak, On p- C^* summing operators, Proc. Amer. Math. Soc. 111 (3) 1991 657–662.
- [6] R.G. Douglas, Banach algebra techniques in operator theory, Academic Press, New York, 1972.
- [7] F.A. Berezin, Covariant and contravariant symbols of operators, Math. USS-RIzv 6 (1972) 1117–1151.

Schatten Class Operators on Weighted Bergman Spaces

[8] K. Nam, D. Zheng, C. Zhong, m-Berezin transform and compact operators, Rev. Math. Iberoamericana 22 (3) (2006) 867–892.

(Received 18 November 2010) (Accepted 25 December 2011)

 $T_{\rm HAI}~J.~M_{\rm ATH}.$ Online @ http://thaijmath.in.cmu.ac.th