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1 Introduction

Let f be a 2π−periodic function and Lebesgue integrable. The Fourier series
associated with f at a point x is defined by

f (x) ∼
1

2
a0 +

∞
∑

n=1

(an cosnx+ bn sinnx) ≡

∞
∑

n=1

An (x) (1.1)

Copyright c© 2012 by the Mathematical Association of Thailand.

All rights reserved.



276 Thai J. Math. 10 (2012)/ H.K. Nigam

with nth partial sums sn (f ;x). The conjugate series of the Fourier series (1.1) is
given by

∞
∑

n=1

(an sinnx− bn cosnx) ≡

∞
∑

n=1

Bn (x) (1.2)

with nth partial sums sn (f ;x). We call (1.2) as conjugate Fourier series of function
f throughout this paper.

L∞− norm of a function f : R → R is defined by

‖f‖∞ = sup {|f (x)| : x ∈ R} .

Lr− norm is defined by

‖f‖r =





2π
∫

0

|f (x)|rdx





1
r

, r ≥ 1. (1.3)

The degree of approximation of a function f : R → R by a trigonometric
polynomial tn of degree n under sup norm ‖ ·‖∞ is defined by

‖tn − f‖∞ = sup { |tn (x) − f (x)| : x ∈ R} (Zygmund [1]) (1.4)

and the degree of approximation En(f) of a function f ∈ Lr is given by

En(f) = min ‖tn − f‖r. (1.5)

This method of approximation is called trigonometric Fourier approximation (TFA).
A function f ∈ Lipα if

f (x+ t) − f (x) = O ( |t|α) for 0 < α ≤ 1 (1.6)

f ∈ Lip(α, r), for 0 ≤ x ≤ 2π if





2π
∫

0

|f (x+ t) − f (x)|
r
dx





1
r

= O ( |t|
α
) , 0 < α ≤ 1, and r ≥ 1 (1.7)

(Definition 5.38 of Mc Fadden [2])

Given a positive increasing function ξ (t) and an integer r ≥ 1, f (x) ∈ Lip (ξ (t) , r)
if





2π
∫

0

|f (x+ t) − f (x)|
r
dx





1
r

= O (ξ (t)) (1.8)
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and that f (x) ∈W (Lr, ξ (t)), if





2π
∫

0

|f (x+ t) − f (x) |
r
sinβ rxdx





1
r

= O (ξ (t)) , β ≥ 0, r ≥ 1. (1.9)

If β = 0, our newly defined class W (Lr, ξ (t)) reduces to the class Lip (ξ (t) , r), if
ξ(t) = tα then Lip(ξ(t), r) class reduces to the class Lip(α, r) and if r → ∞ then
Lip(α, r) class reduces to the class Lipα. We observe that

Lipα ⊆ Lip (α, r) ⊆ Lip (ξ (t) , r) ⊆W (Lr, ξ (t)) for 0 < α ≤ 1, r ≥ 1.

Let
∑∞

n=0 un be a given infinite series with the sequence of its nth partial sums
{sn}. The (C, 1) transform is defined as the nth partial sum of (C, 1) summability
and is given by

tn =
s0 + s1 + s2 + · · · + sn

n+ 1

=
1

n+ 1

n
∑

k=0

sk → s as n→ ∞ (1.10)

then the series
∑∞

n=0 un is summable to the definite number s by (C, 1) method.
If

(E, 1) = E1
n =

1

2n

n
∑

k=0

(

n
k

)

sk → s as n→ ∞, (1.11)

then the infinite series
∑∞

n=0 un is said to be summable (E, 1) to a definite num-
ber s ([3]). The (C, 1) transform of (E, 1) transform defines (C, 1)(E, 1) product
transform and we denote it by (CE)1n. Thus if

(CE)1n =
1

n+ 1

n
∑

k=0

E1
k → s, as n→ ∞

=
1

n+ 1

n
∑

k=0

[

1

2k

k
∑

ν=0

(

k
v

)

]

→ s as n→ ∞ (1.12)

where E1
n denotes the (E, 1) transform of sn and C1

n denotes (C, 1) transform of
sn. Then the series

∑∞

n=0 un is said to be summable by (C, 1)(E, 1) means or
summable (C, 1)(E, 1) to a definite number s.

We use the following notations:

ψ (t) = f (x+ t) + f (x− t) ,

K̄n (t) =
1

2π (n+ 1)

n
∑

k=0

[

1

2k

k
∑

ν=0

(

k
ν

)

cos
(

ν + 1
2

)

t

sin (t/2)

]

,

τ =

[

1

t

]

, where τ denotes the greatest integer not greater than
1

t
.
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2 Main Theorems

A good amount of work has been done on degree of approximation of functions
belonging to Lipα, Lip (α, r) , Lip (ξ (t) , r) and W (Lr, ξ (t)) classes using Cesàro,
Nörlund and generalized Nörlund single summability methods by a number of
researchers like Alexits [4], Sahney and Goel [5], Qureshi and Neha [6], Quershi
[7, 8], Chandra [9], Khan [10], Leindler [11] and Rhoades [12]. But till now nothing
seems to have been done so far in the direction of present work. Therefore, in
present paper, two theorems on degree of approximation of conjugate of functions
f ∈ Lipα class and f ∈ W (Lr, ξ (t)) class using (C, 1)(E, 1) product summability
means of conjugate Fourier series have been established in the following form:

Theorem 2.1. If a function f (x), conjugate to a 2π- periodic function f(x)
belonging to the class Lipα, then its degree of approximation by (C, 1)(E, 1) product
means of conjugate Fourier series is given by

sup
0<x<2π

∣

∣

∣(CE)1n − f (x)
∣

∣

∣ =
∥

∥

∥(CE)1n − f (x)
∥

∥

∥

∞
=







O
(

1
(n+1)α

)

for 0 < α < 1

O
(

log(n+1)πe

(n+1)

)

for α = 1

(2.1)
where (CE)1n denotes the (C, 1)(E, 1) means of series (1.2) and

f̄ (x) = −
1

2π

π
∫

0

ψ (t) cot
1

2
t dt

provided

(2)
τ

n
∑

k=τ

(2)
−k

= O(n + 1). (2.2)

Theorem 2.2. If a function f(x), conjugate to a 2π- periodic function f(x) be-
longing to class W (Lr, ξ (t)) , r ≥ 1, then its degree of approximation by (C, 1)(E, 1)
product means of conjugate Fourier series is given by

∥

∥

∥(CE)1n − f (x)
∥

∥

∥

r
= O

[

(n+ 1)
β+ 1

r ξ

(

1

(n+ 1)

)]

(2.3)

provided that ξ (t) satisfies the condition (2.2),

(

ξ (t)

t

)

is non-increasing in t, (2.4)











1
n+1
∫

0

(

t |ψ (t)|

ξ (t)

)r

sinβrt dt











1
r

= O

(

1

n+ 1

)

(2.5)
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and










π
∫

1
n+1

(

t−δ |ψ (t)|

ξ (t)

)r

dt











1
r

= O
{

(n+ 1)δ
}

, (2.6)

where δ is an arbitrary positive number such that s (1 − δ)−1 > 0, 1
r
+ 1

s
= 1, 1 ≤

r ≤ ∞, conditions (2.5) and (2.6) hold uniformly in x, (CE)1n is (C, 1)(E, 1) means
of the series (1.2) and

f (x) = −
1

2π

π
∫

0

ψ (t) cot
1

2
t dt. (2.7)

3 Lemmas

For the proof of our theorems, following lemmas are required.

Lemma 3.1.

Kn (t) = O

(

1

t

)

for 0 ≤ t ≤
1

n+ 1
.

Proof. For 0 ≤ t ≤ 1
n+1 , sin (t/2) ≥ (t/π) and |cosnt| ≤ 1

∣

∣Kn (t)
∣

∣ =
1

2π (n+ 1)

∣

∣

∣

∣

∣

n
∑

k=0

[

1

2k

k
∑

ν=0

(

k
ν

)

cos
(

ν + 1
2

)

t

sin (t/2)

]∣

∣

∣

∣

∣

≤
1

2π (n+ 1)

n
∑

k=0

1

2k

k
∑

ν=0

(

k
ν

)

∣

∣cos
(

ν + 1
2

)

t
∣

∣

|sin (t/2)|

=
1

2t (n+ 1)

n
∑

k=0

1

2k

k
∑

ν=0

(

k
ν

)

=
1

2t (n+ 1)

n
∑

k=0

1

2k
2k since

k
∑

ν=0

(

k

ν

)

= 2k

=
1

2t (n+ 1)

n
∑

k=0

1

= O

(

1

t

)

.

Lemma 3.2. For 0 ≤ a ≤ b ≤ ∞, 0 ≤ t ≤ π and any n, we have

Kn (t) = O

(

τ2

(n+ 1)

)

+O

(

τ

(n+ 1)
2τ

n
∑

k=τ

2−k

)

.
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Proof. For 0 ≤ 1
n+1 ≤ t ≤ π, sin (t/2) ≥ (t/π)

∣

∣Kn (t)
∣

∣ =
1

2π (n+ 1)

∣

∣

∣

∣

∣

n
∑

k=0

[

1

2k

k
∑

ν=0

(

k
ν

)

cos
(

ν + 1
2

)

t

sin (t/2)

]∣

∣

∣

∣

∣

≤
1

2t (n+ 1)

∣

∣

∣

∣

∣

n
∑

k=0

[

1

2k
Re

{

k
∑

ν=0

(

k
ν

)

ei(ν+ 1
2 ) t

}]∣

∣

∣

∣

∣

≤
1

2t (n+ 1)

∣

∣

∣

∣

∣

n
∑

k=0

[

1

2k
Re

{

k
∑

ν=0

(

k
ν

)

eiν t

}]∣

∣

∣

∣

∣

∣

∣

∣
e

it

2

∣

∣

∣

≤
1

2t (n+ 1)

∣

∣

∣

∣

∣

n
∑

k=0

[

1

2k
Re

{

k
∑

ν=0

(

k
ν

)

eiν t

}]∣

∣

∣

∣

∣

≤
1

2t (n+ 1)

∣

∣

∣

∣

∣

τ−1
∑

k=0

[

1

2k
Re

{

k
∑

ν=0

(

k
ν

)

eiν t

}]∣

∣

∣

∣

∣

+
1

2t (n+ 1)

∣

∣

∣

∣

∣

n
∑

k=τ

[

1

2k
Re

{

k
∑

ν=0

(

k
ν

)

eiν t

}]∣

∣

∣

∣

∣

. (3.1)

Now considering first term of (3.1)

1

2t (n+ 1)

∣

∣

∣

∣

∣

τ−1
∑

k=0

[

1

2k
Re

{

k
∑

ν=0

(

k
ν

)

eiν t

}]∣

∣

∣

∣

∣

≤
1

2t (n+ 1)

∣

∣

∣

∣

∣

τ−1
∑

k=0

1

2k

k
∑

ν=0

(

k
ν

)

∣

∣

∣

∣

∣

∣

∣eiν t
∣

∣

≤
1

2t (n+ 1)

τ−1
∑

k=0

[

1

2k

k
∑

ν=0

(

k
ν

)

]

=
1

2t (n+ 1)

τ−1
∑

k=0

1

=
τ

2t (n+ 1)

= O

(

τ2

(n+ 1)

)

. (3.2)

Now considering second term of (3.1) and using Abel’s Lemma
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1

2t (n+ 1)

∣

∣

∣

∣

∣

n
∑

k=τ

[

1

2k
Re

{

k
∑

ν=0

(

k
ν

)

eiν t

}]∣

∣

∣

∣

∣

≤
1

2t (n+ 1)

n
∑

k=τ

1

2k
max

0≤ m≤ k

∣

∣

∣

∣

∣

m
∑

ν=0

(

k
ν

)

eiν t

∣

∣

∣

∣

∣

≤
1

2t (n+ 1)
2τ

n
∑

k=τ

1

2k

= O

[

τ

(n+ 1)
2τ

n
∑

k=τ

2−k

]

. (3.3)

Combining (3.1), (3.2) and (3.3), we get

Kn (t) = O

(

τ2

(n+ 1)

)

+O

(

τ

(n+ 1)
2τ

n
∑

k=τ

2−k

)

(3.4)

4 Proof of Theorems.

Proof of Theorem 2.1. Let sn (f ;x) denotes the nth partial sum of the series
(1.2), then, following Lal [13], we have

sn (f ;x) − f (x) =
1

2π

π
∫

0

ψ (t)
cos
(

n+ 1
2

)

t

sin t
2

dt.

Therefore using (1.2), the (E, 1) transform E1
n of sn (f ;x) is given by

E1
n − f (x) =

1

2π 2n

π
∫

0

ψ (t)

sin (t/2)

{

n
∑

k=0

(

n
k

)

cos

(

k +
1

2

)

t

}

dt.

Now denoting (C, 1)(E, 1) transform of sn by
(

(CE)1n

)

, we write

(CE)1n − f (x) =
1

2π (n+ 1)

n
∑

k=0

[

1

2k

∫ π

0

(

φ (t)

sin
(

t
2

)

){

k
∑

ν=0

(

k
ν

)

cos

(

ν +
1

2

)

t

}

dt

]

=

π
∫

0

ψ (t)Kn (t) dt

=







1
n+1
∫

0

+

π
∫

1
n+1






ψ (t) Kn (t) = I1.1 + I1.2 (say). (4.1)
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We consider,

|I1.1| ≤

1
n+1
∫

0

|ψ (t)|
∣

∣Kn (t)
∣

∣ dt.

Using Lemma 3.1,

|I1.1| =

1
n+1
∫

0

|tα|

|t|
dt =

1
n+1
∫

0

tα−1 dt =

[

tα

α

]
1

n+1

0

= O

[

1

(n+ 1)
α

]

for 0 < α < 1. (4.2)

Using Lemma 3.2, we have

|I1.2| ≤

π
∫

1
n+1

|ψ (t)|
∣

∣Kn (t)
∣

∣ dt

= O







π
∫

1
n+1

1

(n+ 1) t2−α
dt






+O







π
∫

1
n+1

2τ

(n+ 1) t1−α

n
∑

k=τ

1

2k
dt







= I1.2.1 + I1.2.2 (say). (4.3)

Now we consider,

I1.2.1 = O







1

n+ 1

π
∫

1
n+1

tα−2dt






=







O
(

1
(n+1)α

)

, 0 < α < 1

O
(

log π(n+1)
(n+1)

)

, α = 1
. (4.4)

Using (2.2), we have

I1.2.2 = O











π
∫

1
n+1

tα−1dt











= O

{

1

(n+ 1)
α

}

. (4.5)

Combining (4.1) to (4.5) and writing log e = 1,

∥

∥

∥(CE)1n − f
∥

∥

∥

∞
= sup

{ ∣

∣

∣(CE)1n − f
∣

∣

∣ : x ∈ [0, 2π]
}

=







O
(

1
(n+1)α

)

for 0 < α < 1

O
(

log(n+1) π e

(n+1)

)

for α = 1

This completes the proof of Theorem 2.1.
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Proof of Theorem 2.2. Following the proof of Theorem 2.1,

(CE)1n − f (x) =







1
n+1
∫

0

+

π
∫

1
n+1






ψ (t) Kn (t) dt = I2.1 + I2.2 (say). (4.6)

Now considering,

|I2.1| ≤

1
n+1
∫

0

|ψ (t)|
∣

∣Kn (t)
∣

∣ dt.

Using Hölder’s inequality and the fact that ψ ∈ W (Lr, ξ (t)),

|I2.1| ≤







1
n+1
∫

0

{

t |ψ (t) | sinβt

ξ (t)

}r

dt







1
r






1
n+1
∫

0

{

ξ (t)
∣

∣Kn (t)
∣

∣

t sinβt

}s

dt







1
s

= O

(

1

n+ 1

)







1
n+1
∫

0

{

ξ (t)
∣

∣Kn (t)
∣

∣

t sinβt

}s

dt







1
s

by (2.5).

Since sin t ≥
(

2t
π

)

and using Lemma 3.1,

I2.1 = O

(

1

n+ 1

)







1
n+1
∫

0

{

ξ (t)

t2+β

}s

dt







1
s

.

Since ξ(t) is a positive increasing function and using second mean value theorem
for integrals,

I2.1 = O

{(

1

n+ 1

)

ξ

(

1

n+ 1

)}











1
n+1
∫

ε

(

dt

t(2+β)s

)











1
s

for some 0 < ε <
1

n+ 1

= O

{(

1

n+ 1

)

ξ

(

1

n+ 1

)}

[

{

t−(2+β)s+1

− (2 + β) s+ 1

}

1
n+1

ε

]

1
s

= O

{(

1

n+ 1

)

ξ

(

1

n+ 1

)}

{

(n+ 1)
2+β− 1

s

}

= O

[

ξ

(

1

n+ 1

)

(n+ 1)
β+1− 1

s

]

= O

{

(n+ 1)β+ 1
r ξ

(

1

n+ 1

)}

since
1

r
+

1

s
= 1, 1 ≤ r ≤ ∞. (4.7)
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Now we take,

|I2.2| ≤

π
∫

1
n+1

|ψ (t)|
∣

∣Kn (t)
∣

∣ dt.

Now using Lemma 3.2,

|I2.2| = O







π
∫

1
n+1

|ψ (t) |

t2 (n+ 1)
dt






+O







π
∫

1
n+1

|ψ (t) |

(n+ 1)t
2τ

n
∑

k=τ

1

2k
dt







1
s

= O (I2.2.1) +O (I2.2.2) (say). (4.8)

Using Hölder’s inequality, |sin t| ≤ 1, sin t ≥ (2t/π) , conditions (2.4) and (2.6)
and using second mean value theorem for integral,

|I2.2.1| ≤

(

1

n+ 1

)







π
∫

1
n+1

{

t−δ |ψ (t) | sinβt

ξ (t)

}r

dt







1
r







π
∫

1
n+1

{

ξ (t)

t−δ+2sinβt

}s

dt







1
s

=

(

π

2 (n+ 1)

)







π
∫

1
n+1

{

t−δ |ψ (t) |

ξ (t)

}r

dt







1
r







π
∫

1
n+1

{

ξ (t)

t−δ+β+2

}s

dt







1
s

= O
{

(n+ 1)δ−1
}







n+1
∫

1
π







ξ
(

1
y

)

yδ−2−β







s

dy

y2







1
s

= O

{

(n+ 1)
δ−1

ξ

(

1

n+ 1

)}





n+1
∫

η

dy

ys(δ−2−β)+2





1
s

for some
1

π
≤ η ≤ n+ 1

= O

{

(n+ 1)
δ−1

ξ

(

1

n+ 1

)}[∫ n+1

1

dy

ys(δ−2−β)+2

]

1
s

for some
1

π
≤ 1 ≤ n+ 1

= O

{

(n+ 1)
δ−1

ξ

(

1

n+ 1

)}

[

{

ys(2+β−δ)−1

s (2 + β − δ) − 1

}n+1

1

]
1
s

= O

{

(n+ 1)δ−1ξ

(

1

n+ 1

)}

[

(n+ 1)(2+β−δ)− 1
s

]

= O

{

ξ

(

1

n+ 1

)

(n+ 1)
β+1− 1

s

}

= O

{

(n+ 1)β+ 1
r ξ

(

1

n+ 1

)}

since
1

r
+

1

s
= 1. (4.9)
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Similarly using (2.2), conditions (2.4) and (2.6), |sin t| ≤ 1, sin t ≥ (2t/π) and
second mean value theorem for integrals,

|I2.2.2| ≤







π
∫

1
n+1

{

t−δ |ψ (t) | sinβt

ξ (t)

}r

dt







1
r







π
∫

1
n+1

{

ξ (t)

t1−δsinβt

1

(n+ 1)
2τ

n
∑

k=τ

1

2k

}s

dt







1
s

= O







π
∫

1
n+1

{

t−δ |ψ (t) |

ξ (t)

}r

dt







1
r







π
∫

1
n+1

{

ξ (t)

t1−δ+β

}s

dt







1
s

= O
{

(n+ 1)δ
}







π
∫

1
n+1

{

ξ (t)

t1−δ+β

}s

dt







1
s

= O
{

(n+ 1)
δ
}







π
∫

1
n+1







ξ
(

1
y

)

yδ−1−β







s

dy

y2







1
s

= O

{

(n+ 1)
δ
ξ

(

1

n+ 1

)}





n+1
∫

ε1

{

dy

ys(δ−1−β)+2

}





1
s

for some
1

π
< ε1 < n+ 1

= O

{

(n+ 1)
δ
ξ

(

1

n+ 1

)}[∫ n+1

1

dy

ys(δ−1−β)+2

]

1
s

for some
1

π
≤ 1 ≤ n+ 1

= O

{

(n+ 1)
δ
ξ

(

1

n+ 1

)}

[

{

ys(1+β−δ)−1

s (1 + β − δ) − 1

}n+1

1

]
1
s

= O

{

(n+ 1)
δ
ξ

(

1

n+ 1

)}

[

(n+ 1)
β+1−δ− 1

s

]

= O

{

(n+ 1)β+1− 1
s ξ

(

1

n+ 1

)}

= O

{

(n+ 1)
β+ 1

r ξ

(

1

n+ 1

)}

since
1

r
+

1

s
= 1. (4.10)

Combining (4.8), (4.9) and (4.10),
∣

∣

∣
(CE)1n − f (x)

∣

∣

∣
= O

{

(n+ 1)β+ 1
r ξ

(

1

n+ 1

)}

.

Now, using Lr-norm, we get

∥

∥

∥(CE)1n − f (x)
∥

∥

∥

r
=







2π
∫

0

∣

∣

∣(CE)1n − f (x)
∣

∣

∣

r

dx







1
r
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= O













2π
∫

0

{

(n+ 1)
β+ 1

r ξ

(

1

n+ 1

)}r

dx







1
r







= O

{

(n+ 1)
β+ 1

r ξ

(

1

n+ 1

)}













2π
∫

0

dx







1
r







= O

{

(n+ 1)
β+ 1

r ξ

(

1

n+ 1

)}

.

This completes the proof of Theorem 2.2.

5 Applications

Following corollaries can be derived from our main Theorem 2.2:

Corollary 5.1. If ξ (t) = tα, 0 < α ≤ 1, then the weighted class W (Lr, ξ (t)) , r ≥
1, reduces to the class Lip (α, r) and the degree of approximation of a function
f (x), conjugate to a 2π - periodic function f ∈ Lip(α, r), 1

r
≤ α < 1, is given by

| (CE)1n − f (x) |= O

(

1

(n+ 1)
α− 1

r

)

.

Proof. The result follows by setting β = 0 in (2.3).

Corollary 5.2. If ξ (t) = tα for 0 < α < 1 and r = ∞ in corollary 1, then
f ∈ Lipα and we have

∥

∥

∥(CE)1n − f(x)
∥

∥

∥

∞
= O

(

1

(n+ 1)α

)

.

Remark 5.3. An independent proof of above Corollary 5.1 can be obtained along
the same lines of our Theorem 2.2.
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