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1 Introduction

Let X and Y be two real Banach spaces, K ⊂ X be a nonempty, closed and
convex subset of X and P ⊂ Y be a nonempty subset of Y . P is called proper
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cone, if P 6= Y and P is said to be a closed, convex and pointed cone with its apex
at the origin, if P is closed and the following conditions hold:

(i) λP ⊂ P, for all λ > 0;

(ii) P + P ⊂ P ;

(iii) P ∩ (−P ) = {0}.

The partial order ≤P in Y , induced by the pointed cone P is defined by declaring
x ≤P y if and only if y − x ∈ P for all x, y in Y . An ordered Banach space is
a pair (Y, P ) with the partial order induced by P . The weak order 6≤intP

in an
ordered Banach space (Y, P ) with intP 6= ∅ is defined as x 6≤intP

y if and only if
y−x 6∈ intP for all x, y in Y , where intP denotes the interior of P . Let L(X, Y ) be
the space of all continuous linear mappings from X into Y and T : K → L(X, Y )
be a nonlinear mapping. The vector variational inequality (for short, VVI) consists
in finding x ∈ K, such that

〈Tx, y − x〉 6≤intP
0, ∀y ∈ K.

A VVI was first introduced by Giannessi [1] in the setting of finite dimen-
sional Euclidean spaces, later on, a VVI was studied and generalized to infinite
dimensional spaces by Chen [2, 3], Chen and Craven [4], Chen and Yang [5]. Since
VVI has found many applications in vector optimization, vector complementar-
ity problems, approximate vector optimization, vector equilibria and other areas,
therefore it has been widely studied and generalized by many authors. For details
we refer [1–13] and references therein.

Recently, Zeng and Yao [13] introduced and considered the concepts of com-
plete semicontinuity and strong semicontinuity for vector set-valued mappings and
they proved the solvability for a class of generalized vector variational inequalities
without monotonicity assumption by using these concepts and by applying the
Brouwer’s fixed point theorem. Further, they removed the boundedness assump-
tion of K and extended to the general case of a nonempty closed and convex subset
K.

Inspired and motivated by the work of Zeng and Yao [13], in this paper we in-
troduced the concepts of η-f -complete semicontinuous, η-f -strong semicontinuous
and L(X, Y )-diagonally convex mappings. Further, we studied a class of general-
ized vector mixed variational-like inequality problem which is an extension of the
vector variational-like inequality problems studied by many authors; see for ex-
ample [6, 9, 10]. Furthermore, utilizing Brouwer’s fixed point theorem, we proved
the solvability for this class of generalized vector mixed variational-like inequality
problem without monotonicity assumption. The results presented in this paper
are extension and improvement of the corresponding results of Usman and Khan
[12], Zeng and Yao [13], Huang and Fang [8].
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2 Preliminaries

Throughout the paper unless otherwise specified, let X and Y be two real
Banach spaces, K be a nonempty, closed and convex subset of X and P be a
nonempty subset of Y . Let P : K → 2Y be a set-valued mapping such that for
each x ∈ K, P (x) is a proper, closed, convex cone with int P (x) 6= ∅ and let
P− =

⋂

x∈K P (x). Now let C ⊆ Y be a nonempty subset of Y . Let A : L(X, Y ) →
L(X, Y ) be a mapping η : K × K → X and f : K × K → Y be bi-mappings and
V : K → 2Y and H : K ×C → 2L(X,Y ) be set-valued mappings. In this paper, we
consider the following generalized vector mixed variational-like inequality problem
(for short, GVMVLIP): Find x ∈ K, z ∈ V (x) and ξ ∈ H(x, z) such that

〈Aξ, η(y, x)〉 + f(y, x) 6≤intP (x) 0, ∀y ∈ K. (2.1)

Some Special Cases

(I) If f ≡ 0 and A ≡ I, the identity mapping of L(X, Y ), then GVMVLIP
(2.1) reduces to the following generalized vector pre-variational inequality
problem of finding x ∈ K z ∈ V (x) and ξ ∈ H(x, z) such that

〈ξ, η(y, x)〉 6≤intP (x) 0, ∀y ∈ K,

which was introduced and considered by Chadli et al. [6] in 2004.

(II) If V ≡ 0, H ≡ T : K → 2L(X,Y ) and A ≡ I, the identity mapping of
L(X, Y ), then GVMVLIP (2.1) reduces to the following generalized vector
variational-type inequality problem of finding x ∈ K such that for all y ∈ K,
there exists so ∈ T (x) such that

〈s0, η(y, x)〉 + f(y, x) 6≤intP (x) 0,

which was introduced by Lee et al. [9] in 2000.

(III) If we take T : K → L(X, Y ) and P (x) = P, ∀x ∈ K in (II), then it reduces
to the following generalized weak vector variational-like inequality of finding
x ∈ K such that

〈Tx, η(y, x)〉 + f(y, x) 6≤intP
0,

which was studied by Lee et al. [10] in 2008.

First, we recall the following concepts and results which are needed in the
sequel.

Definition 2.1. A mapping f : K → Y is said to be

(i) P−-convex, if f(tx+(1− t)y) ≤P
−

tf(x)+ (1− t)f(y), ∀x, y ∈ K, t ∈ [0, 1];

(ii) P−-concave, if −f is P−-convex.

Definition 2.2. A mapping g : X → Y is said to be completely continuous if and
only if the weak convergence of {xn} in X to x in X implies the strong convergence
of {g(xn)} in Y to g(x) in Y .
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Definition 2.3 ([14]). Let K be a subset of a topological vector space X and let
F : K → 2X be a KKM mapping. If for each x ∈ K, F (x) is closed and for at
least one x ∈ K, F (x) is compact, then

⋂

x∈K

F (x) 6= ∅.

Lemma 2.4 ([11]). Let X, Y and Z be real topological vector spaces, K and C be
nonempty subsets of X and Y , respectively. Let H : K ×C → 2Z, V : K → 2Y be
set-valued mappings. If both H, V are upper semicontinuous with compact values,
then the set-valued mapping T : K → 2Z defined by

T (x) =
⋃

z∈V (x)

H(x, z) = H(x, V (x))

is upper semicontinuous with compact values.

3 Main Results

In this section, we shall establish the existence results for GVMVLIP (2.1)
without monotonicity assumption in the setting of Banach spaces with the help of
Brouwer’s fixed point theorem. First we recall lemmas due to Brouwer [15], Zeng
and Yao [13].

Lemma 3.1 ([15]). Let X be a nonempty, compact and convex subset of a finite
dimensional vector space and f : X → X be a continuous mapping. Then there
exists x ∈ X such that f(x) = x.

In order to establish the main results, we give the following definitions.

Definition 3.2. Let K be a nonempty, closed and convex subset of a real Banach
space X and Y be a real Banach space. Let P : K → 2Y be such that for each
x ∈ K, P (x) is a proper, closed, convex cone with int P (x) 6= ∅. Let η : X×X → X ,
f : K × K → Y and A : L(X, Y ) → L(X, Y ) be three mappings and V : K → 2Y

and H : K × C → 2L(X,Y ) be two set-valued mappings. Let Ω be a nonempty
subset of K.

(i) H and V are said to be η-f -complete semicontinuous on Ω, if for each y ∈ Ω,

{x ∈ Ω : 〈Aξ, η(y, x)〉 + f(y, x) ≤intP
0, ∀z ∈ V (x), ξ ∈ H(x, z)}

is open in Ω with respect to the weak topology of X;

(ii) H and V are said to be η-f -complete strong semicontinuous on Ω, if for each
y ∈ Ω,

{x ∈ Ω : 〈Aξ, η(y, x)〉 + f(y, x) ≤intP
0, ∀z ∈ V (x), ξ ∈ H(x, z)}

is open in Ω with respect to the norm topology of X .
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Definition 3.3. Let X and Y be two Banach spaces and let P : K → 2Y be such
that for each x ∈ K, P (x) is a proper, closed, convex cone with int P (x) 6= ∅. Let
K be a nonempty, convex subset of X and f : K × K → Y be a bi-function. A
function η : X ×X → X is said to be L(X, Y )-diagonally convex with respect to f ,
if for each ξ ∈ L(X, Y ) and finite subset {y1, .., yn} ⊆ K and x =

∑n

i=1 tiyi where
∑n

i=1 ti = 1, one has

n
∑

i=1

ti[〈ξ, η(yi, x)〉 + f(yi, x)] 6≤intP (x) 0, ∀x ∈ K.

Remark 3.4. If f ≡ 0, then the above Definition 3.3 reduces to the concept of
L(X, Y )-diagonal convexity introduced by Chadli et al. [6].

Example 3.5. Let X=R, Y =R
2, K=C=R+ and P (x)=R

2
+, ∀x ∈ R+. Let V ≡ I,

identity mapping and the mappings η : R×R → R, defined as η(y, x) = x(y − x),

H : R+ × R+ → 2L(R,R2), ξ ∈ H(x, y), where

H(x, y) =

(

x(y − x)3

x2 + 1

)

and f : R+ × R+ → R
2 defined as

f(y, x) =

(

x2(y − x)
4

x(x − y)

)

, ∀x, y ∈ R+.

For any finite subset {y1, .., yn} ⊆ R+ and x =
∑n

i=1 tiyi where
∑n

i=1 ti = 1, it
follows that

n
∑

i=1

ti[〈H(x, yi), η(yi, x)〉 + f(yi, x)] =

n
∑

i=1

ti

(

2x2(yi − x)
4

x3(yi − x)

)

=









2x2
n
∑

i=1

ti(yi − x)
4

x3(
n
∑

i=1

tiyi − x)









=





2x2
n
∑

i=1

ti(yi − x)
4

0



 6≤intR
2
+

0.

This shows that η is L(X, Y )-diagonally convex with respect to f .

Next, we give the existence result for GVMVLIP (2.1).

Theorem 3.6. Let K be a nonempty, bounded, closed and convex subset of a real
reflexive Banach space X and Y be a real Banach space. Let P : K → 2Y be such
that for each x ∈ K, P (x) is a proper, closed, convex cone with int P (x) 6= ∅. Let
η : X × X → X, f : K × K → Y be two bi-mappings and A : L(X, Y ) → L(X, Y )
be a mapping. If V : K → 2Y and H : K × C → 2L(X,Y ) are two set-valued
mappings. Suppose the following conditions hold:
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(i) f : K × K → Y is P−-convex in the first argument with the condition
f(x, y) + f(y, x) = 0, ∀x, y ∈ K;

(ii) for each x ∈ K, there exists z ∈ V (x) and ξ ∈ H(x, z) such that 〈Aξ, η(x, x)〉 =
0;

(iii) for each (ξ, y) ∈ L(X, Y ) × K fixed, 〈Aξ, η(., y)〉 : K → Y is P−-convex;

(iv) H and V are η-f -complete semicontinuous mappings on K.

Then there exist x̄ ∈ K, z̄ ∈ V (x̄) and ξ̄ ∈ H(x̄, z̄) such that

〈Aξ̄, η(y, x̄)〉 + f(y, x̄) 6≤intP (x̄) 0, ∀y ∈ K.

Proof. Suppose on contrary that the conclusion is not true. Then for each x ∈ K

there exists some y0 ∈ K such that

〈Aξ, η(y0, x)〉 + f(y0, x) ≤intP (x) 0, (3.1)

for all z ∈ V (x) and ξ ∈ H(x, z). For every y ∈ K, define the set Ny as follows:

Ny = {x ∈ K : 〈Aξ, η(y, x)〉+f(y, x) ≤intP (x) 0, ∀z ∈ V (x), ξ ∈ H(x, z)}. (3.2)

Since H and V are η-f -completely semicontinuous on K, the set Ny is open in K

with respect to the weak topology of X for every y ∈ K.
Now we assert that {Ny : y ∈ K} is an open cover of K with respect to the

weak topology of X . Indeed, first it is easy to see that

⋃

y∈K

Ny ⊆ K.

Second, for each x ∈ K, by inclusion (3.1) there exists y0 ∈ K such that x ∈ Ny0
.

Hence x ∈
⋃

y∈K Ny. This shows that K ⊆
⋃

y∈K Ny. Consequently,

K =
⋃

y∈K

Ny.

So the assertion is valid.
Now the weak compactness of K implies that there exists a finite set {y1, ..., yn} ⊆

K such that

K =

n
⋃

i=1

Nyi
.

Hence there exists a continuous (with respect to the weak topology of X) partition
of unity {β1, ..., βn} subordinated to {Ny1

, ..., Nyn
} such that βj(x) ≥ 0, ∀x ∈

K, j = 1, ..., n
n
∑

j=1

βj(x) = 1, ∀x ∈ K,



Generalized Vector Mixed Variational-Like Inequality Problem ... 251

and

βj(x) =







= 0, whenever x 6∈ Nyj
,

> 0, whenever x ∈ Nyj
.

Let p : K → X be defined as

p(x) =

n
∑

j=1

βj(x)yj , ∀x ∈ K. (3.3)

Since βi is continuous with respect to the weak topology of X for each i, p is
continuous with respect to the weak topology of X . Let S = co{y1, ..., yn} ⊆ K.
Then S is a simplex of a finite dimensional vector space and p maps S into S. By
Brouwer’s fixed point theorem [15], there exists some x0 ∈ S such that p(x0) = x0.
Now for any given x ∈ K, let

k(x) = {j : x ∈ Nyj
} = {j : βj(x) > 0}.

Obviously, k(x) 6= ∅. Since x0 ∈ S ⊆ K is a fixed point of p, we have x0 = p(x0) =
∑n

j=1 βj(x0)yj . From inclusion (3.2) and the assumptions (i)-(iii), we have

0 = 〈Aξ0, η(x0, x0)〉 + f(x0, x0)

= 〈Aξ0, η(p(x0), x0)〉 + f(p(x0), x0)

=

〈

Aξ0, η





n
∑

j=1

βj(x0)yj , x0





〉

+ f





n
∑

j=1

βj(x0)yj , x0





≤P
−

n
∑

j=1

βj(x0)[〈Aξ0, η(yj , x0)〉 + f(yj, x0)] ≤intP (x0) 0.

which leads to a contradiction since P− =
⋂

x0∈K P (x0) is a proper cone. Therefore

there exist x̄ ∈ K, z̄ ∈ V (x̄) and ξ̄ ∈ H(x̄, z̄) such that

〈Aξ̄, η(y, x̄)〉 + f(y, x̄) 6≤intP (x̄) 0, ∀y ∈ K.

This completes the proof.

If X = R
n, then η-f -complete semicontinuity is equivalent to η-f -strong semi-

continuity. Also a bounded and closed subset is equivalent to a compact subset.
By Theorem 3.6, we can obtain the following results:

Corollary 3.7. Let K be a nonempty, compact and convex subset of R
n and Y be

a real Banach space. Let P : K → 2Y be such that for each x ∈ K, P (x) is a proper,
closed, convex cone with int P (x) 6= ∅. Let η : R

n × R
n → R

n, f : K × K → Y

be two bi-mappings and A : L(Rn, Y ) → L(Rn, Y ) be a mapping. If V : K → 2Y

and H : K × C → 2L(Rn,Y ) are two set-valued mappings. Suppose the following
conditions hold:
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(i) f : K × K → Y is P−-convex in the first argument with the condition
f(x, y) + f(y, x) = 0, ∀x, y ∈ K;

(ii) for each x ∈ K, there exists z ∈ V (x) and ξ ∈ H(x, z) such that 〈Aξ, η(x, x)〉
= 0;

(iii) for each (ξ, y) ∈ L(Rn, Y ) × K fixed, 〈Aξ, η(., y)〉 : K → Y is P−-convex;

(iv) H and V are η-f -strong semicontinuous mappings on K.

Then there exist x̄ ∈ K, z̄ ∈ V (x̄) and ξ̄ ∈ H(x̄, z̄) such that

〈Aξ̄, η(y, x̄)〉 + f(y, x̄) 6≤intP (x̄) 0, ∀y ∈ K.

Theorem 3.8. Let K be a nonempty, closed and convex subset of a real reflexive
Banach space X with 0 ∈ K and Y be a real Banach space. Let P : K → 2Y be such
that for each x ∈ K, P (x) is a proper, closed, convex cone with int P (x) 6= ∅. Let
η : X × X → X, f : K × K → Y be two bi-mappings and A : L(X, Y ) → L(X, Y )
be a mapping. If V : K → 2Y and H : K × C → 2L(X,Y ) are two set-valued
mappings. Suppose the following conditions hold:

(i) f : K × K → Y is P−-convex in the first argument with the condition
f(x, y) + f(y, x) = 0, ∀x, y ∈ K;

(ii) for each x ∈ K, there exist z ∈ V (x) and ξ ∈ H(x, z) such that 〈Aξ, η(x, x)〉 =
0;

(iii) for each (ξ, y) ∈ L(X, Y ) × K fixed, 〈Aξ, η(., y)〉 : K → Y is P−-convex;

(iv) there exists some r > 0 such that (a) H and V are η-f -complete semicon-
tinuous mappings on Kr, where Kr = {x ∈ K : ‖x‖ ≤ r}, and

(b) 〈Aξ, η(0, x)〉 + f(0, x) ≤intP (x) 0, ∀z ∈ V (x), ξ ∈ H(x, z)

and x ∈ K with ‖x‖ = r. (3.4)

Then there exists x̄ ∈ K, z̄ ∈ V (x̄) and ξ̄ ∈ H(x̄, z̄) such that

〈Aξ̄, η(y, x̄)〉 + f(y, x̄) 6≤intP (x̄) 0, ∀y ∈ K.

Proof. One can readily see that all conditions of Theorem 3.6 are fulfilled for
nonempty, bounded, closed and convex subset Kr = K ∩ Br, where Br = {x ∈
X : ‖x‖ ≤ r}. Thus according to Theorem 3.1, there exist xr ∈ Kr, zr ∈ V (xr)
and ξr ∈ H(xr, zr) such that

〈Aξr, η(v, xr)〉 + f(v, xr) 6≤intP (xr) 0, ∀v ∈ Kr. (3.5)

Putting v = 0 in the above inclusion (3.5), one has

〈Aξr , η(0, xr)〉 + f(0, xr) 6≤intP (xr) 0. (3.6)
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Combining (3.4) with (3.6), we know that ‖xr‖ < r. For any y ∈ K, choose
t ∈ (0, 1) small enough such that (1 − t)xr + ty ∈ Kr. Putting v = (1 − t)xr + ty

in (3.5), one has

〈Aξr, η((1 − t)xr + ty, xr)〉 + f((1 − t)xr + ty, xr) 6≤intP (xr) 0.

Since the mappings f(., xr) and 〈Aξr , η(., xr)〉 are P−-convex in the first argument,
we have

〈Aξr, η((1− t)xr + ty, xr)〉+ f((1− t)xr + ty, xr) ≤P
−

t[〈Aξr , η(y, xr)〉+ f(y, xr)].

Consequently, we have

〈Aξr , η(y, xr)〉 + f(y, xr) 6≤intP (xr) 0, ∀y ∈ K.

This completes the proof.

Theorem 3.9. Let K be a nonempty, bounded, closed and convex subset of a real
reflexive Banach space X and Y be a real Banach space. Let P : K → 2Y be such
that for each x ∈ K, P (x) is a proper, closed, convex cone with int P (x) 6= ∅. Let
η : X×X → X, f : K×K → Y be two bi-mappings and A : L(X, Y ) → L(X, Y ) be
a mapping. If V : K → 2Y and H : K×C → 2L(X,Y ) are two upper semicontinuous
mappings with compact convex values. Suppose the following conditions hold:

(i) for each y ∈ K fixed, x 7→ f(y, x) is continuous on the convex hull of each
finite subset of K with the condition f(x, y) + f(y, x) = 0, ∀x, y ∈ K;

(ii) for each y ∈ K fixed, x 7→ η(y, x) is continuous on the convex hull of each
finite subset of K;

(iii) for each x ∈ K, there exist z ∈ V (x) and ξ ∈ H(x, z) such that 〈Aξ, η(x, x)〉 =
0;

(iv) η is L(X, Y )-diagonally convex with respect to f ;

(v) A is continuous mapping;

(vi) H and V are η-f -complete semicontinuous mappings on K.

Then there exist x̄ ∈ K, z̄ ∈ V (x̄) and ξ̄ ∈ H(x̄, z̄) such that

〈Aξ̄, η(y, x̄)〉 + f(y, x̄) 6≤intP (x̄) 0, ∀y ∈ K.

Proof. Following the same idea of proof as in Theorem 3.6, suppose on contrary
that the conclusion is not true. Then for each x ∈ K, there exists some y0 ∈ K

such that
〈Aξ, η(y0, x)〉 + f(y0, x) ≤intP (x) 0,

for all z ∈ V (x) and ξ ∈ H(x, z). For every y ∈ K, define the set Ny as follows:

Ny = {x ∈ K : 〈Aξ, η(y, x)〉 + f(y, x) ≤intP (x) 0, ∀z ∈ V (x), ξ ∈ H(x, z)}.
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Utilizing the η-f -complete semicontinuity of H and V on K, we can show that the
set {Ny : y ∈ K} is open cover of K with respect to the weak topology of X . From
the weak compactness of K, it follows that there exists a finite set {y1, ..., yn} ⊆ K

such that

K =

n
⋃

i=1

Nyi
.

Let B = co{y1, ..., yn}. Then we consider the following set-valued mapping F :
B → 2B defined as:

Fy = {x ∈ B : ∃z ∈ V (x), ξ ∈ H(x, z) such that 〈Aξ, η(y, x)〉+f(y, x) ≤intP (x) 0},

∀y ∈ B. From assumption (iii), one has F (y) 6= ∅ since y ∈ F (y). Now we claim
that for each y ∈ B, F (y) ⊆ B is closed in the norm topology of X . Indeed,
suppose x ∈ F (y), the closure of F (y) in the norm topology of X . Since B is
compact, there is a sequence {xn} ⊆ F (y) such that xn → x ∈ B. Hence, there
exists zn ∈ V (xn) and ξn ∈ H(xn, zn) such that

〈Aξn, η(y, xn)〉 + f(y, xn) 6≤intP (xn) 0, ∀n,

which implies that

〈Aξn, η(y, xn)〉 + f(y, xn) ∈ Y \-intP (xn), ∀n.

Since V is upper semicontinuous with compact values, V (B) is compact. There-
fore, without loss of generality one deduces that zn → z ∈ V (x). On the other
hand, since H is upper semicontinuous with compact values, H(B, V (B)) is com-
pact. It follows without loss of generality that ξn → ξ ∈ H(x, z). Note that f is
continuous on the convex hull of each finite subset of K. Since A is continuous, it
follows that Aξn → Aξ as n → ∞. Thus from assumptions (i) and (v), we derive

‖[〈Aξn, η(y, xn)〉 + f(y, xn)] − [〈Aξ, η(y, x)〉 + f(y, x)]‖

≤ ‖〈Aξn, η(y, xn)〉 − 〈Aξn, η(y, x)〉‖ + ‖〈Aξn, η(y, x)〉 − 〈Aξ, η(y, x)〉‖

+ ‖f(y, xn) − f(y, x)‖

= ‖〈Aξn, η(y, xn) − η(y, x)〉‖ + ‖〈Aξn − Aξ, η(y, x)〉‖

+ ‖f(y, xn) − f(y, x)‖

≤ ‖Aξn‖‖η(y, xn) − η(y, x)‖ + ‖Aξn − Aξ‖‖η(y, x)‖

+ ‖f(y, xn) − f(y, x)‖ → 0 as n → ∞,

that is as n → ∞

〈Aξn, η(y, xn)〉 + f(y, xn) → 〈Aξ, η(y, x)〉 + f(y, x).

Since Y \(-intP (xn)) is closed, we have

〈Aξ, η(y, x)〉 + f(y, x) ∈ Y \(-intP (x)).
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Consequently, we get

〈Aξ, η(y, x)〉 + f(y, x) 6≤intP (x) 0,

and so x ∈ F (y). This shows that F (y) is closed for each y ∈ B. Since B is a
compact subset of X, F (y) is also compact for each y ∈ B.

Next we claim that F : B → 2B is a KKM mapping. Indeed, let {v1, ..., vm} ⊆
B and let us verify that co{v1, ..., vm} ⊆

⋃m

i=1 F (vi). Let u ∈ co{v1, ..., vm},
u =

∑m

i=1 tivi with ti ≥ 0 and
∑m

i=1 ti = 1. From assumption (iv) one has

m
∑

i=1

ti[〈ξ, η(vi, u)〉 + f(vi, u) 6∈ -intP (u).

Therefore there exists i ∈ {1, ..., m} such that

〈ξ, η(vi, u)〉 + f(vi, u) 6∈ -intP (u).

Hence u ∈ F (vi) ⊆
⋃m

j=1 F (vj). Consequently, from Ky Fan’s Lemma 2.4, we
conclude that

⋂

y∈B

F (y) 6= ∅,

and hence we may choose

x̂ ∈
⋂

y∈B

F (y) ⊆
n
⋃

i=1

F (yi).

This implies that for each i = 1, ..., n there exists zi ∈ V (x̂) and ξi ∈ H(x̂, zi) such
that

〈Aξi, η(yi, x̂)〉 + f(yi, x̂) 6≤intP (x̂) 0. (3.7)

On the other hand, since

x̂ ∈ K =

n
⋃

i=1

Nyi
,

so there exists some i = {1, ..., n} such that x̂ ∈ Nyi
, that is,

〈Aξ, η(yi, x̂)〉 + f(yi, x̂) ≤intP (x̂) 0,

for all z ∈ V (x̂) and ξ ∈ H(x̂, z), which contradicts (3.7). Thus, the conclusion of
the theorem follows. This completes the proof.

If X = R
n, then η-f -complete semicontinuity is equivalent to η-f -strong semi-

continuity. Also a bounded and closed subset is equivalent to a compact subset.
By Theorem 3.9, we can obtain the following results:
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Corollary 3.10. Let K be a nonempty, compact and convex subset of R
n and

Y be a real Banach space. Let P : K → 2Y be such that for each x ∈ K, P (x)
is a proper, closed, convex cone with int P (x) 6= ∅. Let η : R

n × R
n → R

n,
f : K × K → Y be two bi-mappings and A : L(Rn, Y ) → L(Rn, Y ) be a mapping.
If V : K → 2Y and H : K×C → 2L(Rn,Y ) are two upper semicontinuous mappings
with compact convex values. Suppose the following conditions hold:

(i) for each y ∈ K fixed, x 7→ f(y, x) is continuous on the convex hull of each
finite subset of K with the condition f(x, y) + f(y, x) = 0, ∀x, y ∈ K;

(ii) for each y ∈ K fixed, x 7→ η(y, x) is continuous on the convex hull of each
finite subset of K;

(iii) for each x ∈ K, there exists z ∈ V (x) and ξ ∈ H(x, z) such that 〈Aξ, η(x, x)〉
= 0;

(iv) η is L(Rn, Y )-diagonally convex with respect to f ;

(v) A is continuous mapping;

(vi) H and V are η-f -strong semicontinuous mappings on K.

Then there exist x̄ ∈ K, z̄ ∈ V (x̄) and ξ̄ ∈ H(x̄, z̄) such that

〈Aξ̄, η(y, x̄)〉 + f(y, x̄) 6≤intP (x̄) 0, ∀y ∈ K.

Theorem 3.11. Let K be a nonempty, closed and convex subset of a real reflexive
Banach space X with 0 ∈ K and Y be a real Banach space. Let P : K → 2Y be such
that for each x ∈ K, P (x) is a proper, closed, convex cone with int P (x) 6= ∅. Let
η : X×X → X, f : K×K → Y be two bi-mappings and A : L(X, Y ) → L(X, Y ) be
a mapping. If V : K → 2Y and H : K×C → 2L(X,Y ) are two upper semicontinuous
mappings with compact convex values. Suppose the following conditions hold:

(i) for each y ∈ K fixed, x 7→ f(y, x) is continuous on the convex hull of each
finite subset of K with the condition f(x, y) + f(y, x) = 0, ∀x, y ∈ K;

(ii) for each y ∈ K fixed, x 7→ η(y, x) is continuous on the convex hull of each
finite subset of K;

(iii) for each x ∈ K, there exists z ∈ V (x) and ξ ∈ H(x, z) such that 〈Aξ, η(x, x)〉
= 0;

(iv) η is L(X, Y )-diagonally convex with respect to f ;

(v) A is continuous mapping;

(vi) there exists some r > 0 such that (a) H and V are η-f -complete semicon-
tinuous mappings on Kr, where Kr = {x ∈ K : ‖x‖ ≤ r}, and

(b) 〈Aξ, η(0, x)〉 + f(0, x) ≤intP (x) 0, ∀z ∈ V (x), ξ ∈ H(x, z)

and x ∈ K with ‖x‖ = r.

Then there exists x̄ ∈ K, z̄ ∈ V (x̄) and ξ̄ ∈ H(x̄, z̄) such that

〈Aξ̄, η(y, x̄)〉 + f(y, x̄) 6≤intP (x̄) 0, ∀y ∈ K.
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Proof. One can readily see that all conditions of Theorem 3.9 are fulfilled for
nonempty, bounded, closed and convex subset Kr = K ∩ Br, where Br = {x ∈
X : ‖x‖ ≤ r}. Thus according to Theorem 3.9, there exist xr ∈ Kr, zr ∈ V (xr)
and ξr ∈ H(xr, zr) such that

〈Aξr , η(v, xr)〉 + f(v, xr) 6≤intP (xr) 0, ∀v ∈ Kr.

The remainder of the proof is same as in Theorem 3.8. Thus, we omit it. This
completes the proof.
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