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Abstract : In this paper, a generalized Shannon-McMillan theorem for the non-
homogeneous Markov chains indexed by an infinite tree which has a uniformly
bounded degree is discussed by constructing a nonnegative martingale and analyt-
ical methods. As corollaries, some Shannon-Mcmillan theorems for the nonhomo-
geneous Markov chains indexed by a homogeneous tree and the nonhomogeneous
Markov chain are obtained. Two results which have been obtained are extended.
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1 Introduction

A tree is a graph G = {T, E} which is connected and contains no circuits.
Given any two vertices α 6= β ∈ T , let αβ be the unique path connecting α and
β. Define the graph distance d(α, β) to be the number of edges contained in αβ.

In this paper, we mainly consider an infinite tree which has uniformly bounded
degree, that is, the numbers of neighbors of any vertices in this tree are uniformly
bounded. When the context permit, this type of trees are all denoted simply by
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T . For a better explanation of the tree T , we take Cayley tree TC,N for example.
It’s a special case of the tree T , the root o of Cayley tree has N neighbors and all
the other vertices of it have N + 1 neighbors each (see Fig. 1).

Let T be an infinite tree with a root o, the set of all vertices with the distance
n from the root is called the n-th generation of T , which is denoted by Ln. In
other words, Ln represents the set of all vertices on the level n. We denote by T (n)

the union of the first n generations of T . Denote by t the t-th vertex from the
root to the upper part, from the left side to the right side on the tree. For each
vertex t, there is a unique path from o to t, and |t| for the number of the edges on
this path. We denote the first predecessor of t by 1t, the second predecessor of t

by 2t, and denote by nt the n-th predecessor of t. For any two vertices s and t of
the tree T , write s ≤ t if s is on the unique path from the root o to t. We denote
s∧ t the vertex nearest from o satisfying s∧ t ≤ s and s∧ t ≤ t. XA = {Xt, t ∈ A}
and |A| denote by the number of the vertices of A.
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Fig. 1: An infinite tree TC,2.

Definition 1.1 (see [1]). Let T be an infinite tree, S = {s0, s1, s2, ..., sN−1} a
finite state space, {Xt, t ∈ T } be a collection of S-valued random variables defined
on the probability space {Ω,F ,P}. Let

p = {p(x), x ∈ S} (1.1)

be a distribution on S, and

Pt = (Pt(y|x)), x, y ∈ S, t ∈ T. (1.2)

be a series of strictly positive stochastic matrices on S2. If for any vertex t,

P (Xt = y|X1t
= x, and Xs for t ∧ s ≤ 1t) = P (Xt = y|X1t

= x) (1.3)

= Pt(y|x) ∀x, y ∈ S,
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and

P (X0 = x) = p(x), ∀x ∈ S. (1.4)

{Xt, t ∈ T } will be called S−valued Markov chains indexed by an infinite tree
defined as before with the initial distribution (1.1) and transition matrices (1.2).

The above definition is an extension of the definitions of Markov chain fields
on trees (see [2]).

Two special finite tree-indexed Markov chains are introduced in Kemeny et
al. [1], Spitzer [3], and there the finite transition matrix is assumed to be positive
and reversible to its stationary distribution, and this tree-indexed Markov chains
ensure that the cylinder probabilities are independent of the direction we travel
along a path. In this paper, we have no such assumption.

It is easy to see that when {Xt, t ∈ T } is a T -indexed Markov chain,

P
(

xT (n)
)

= P
(

XT (n)

= xT (n)
)

= P (X0 = x0)
∏

t∈T (n)\{o}

Pt(xt|x1t
). (1.5)

Let T be a tree, {Xt, t ∈ T } be a stochastic process indexed by the tree T

with the state space S. Denote

P
(

xT (n)
)

= P
(

XT (n)

= xT (n)
)

. (1.6)

Let

fn(ω) = −
1

|T (n)|
log P

(

XT (n)
)

. (1.7)

fn(ω) will be called the entropy density of XT (n)

, where log is the natural loga-
rithm. If {Xt, t ∈ T } is a T -indexed Markov chain with the state space S defined
by Definition 1, we have by (1.5)

fn(ω) = −
1

|T (n)|
[log P (X0) +

∑

t∈T (n)\{o}

log Pt(Xt|X1t
)]. (1.8)

The convergence of fn(ω) in a sense (L1 convergence, convergence in probabil-
ity, or almost sure convergence) is called the Shannon-McMillan theorem or the as-
ymptotic equipartition property (AEP) in information theory. Shannon-McMillan
theorems on the Markov chain have been studied extensively (see [4–7]). In the
recent years, with the development of the information theory scholars get to study
the Shannon-McMillan theorems for stochastic processes on the tree graph (see
[8]). The tree models have recently drawn increasing interest from specialists in
physics, probability and information theory. Berger and Ye (see [9]) have stud-
ied the existence of entropy rate for G-invariant random fields. Recently, Ye and
Berger (see [10]) have also studied the ergodic property and Shannon-McMillan
theorem for PPG-invariant random fields on trees. But their results only relate
to convergence in probability. Liu and Yang (see [11]) have recently studied a.s.
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convergence of Shannon-McMillan theorem for Markov chains indexed by a homo-
geneous tree and the generalized Cayley tree. Huang (see [12]) have discussed some
strong laws of large numbers for Markov chains indexed by an infinite tree with
uniformly bounded degree. Yang and Ye (see [13]) have studied the asymptotic
equipartition property for nonhomogeneous Markov chains indexed by the homo-
geneous tree. Wang (see [7, 14–22]) have also studied the asymptotic equipartition
property for mth-order nonhomogeneous Markov chains and some limit properties
for nonhomogeneous Markov chains and Markov chains field.

In this paper, we study the generalized Shannon-McMillan theorems for nonho-
mogeneous Markov chains indexed by an infinite tree with the uniformly bounded
degree by using the tools of the consistent distribution functions and a nonnegative
super-martingale. As corollaries, some Shannon-McMillan theorems for Markov
chains indexed by a homogeneous tree and the general nonhomogeneous Markov
chain are obtained. Liu and Yang’s (see [4, 13]) results are extended.

2 Main Results and Its Proof

Theorem 2.1. Let T be an infinite tree with a uniformly bounded degree. Let
X = {Xt, t ∈ T } be a T -indexed Markov chain with the state space S defined as
before, {at, t ∈ T } an arbitrary nonnegative increasing stochastic sequence. Denote
by Ht(ω) the random conditional entropy of Xt relative to X1t

, that is

Ht(ω) = −
∑

xt∈S

Pt(xt|X1t
) log Pt(xt|X1t

), t ∈ T (n)\{o}. (2.1)

If

lim
n→∞

∑

t∈T (n)\{o}

1

a2
t

< ∞. a.s. (2.2)

Then

lim
n→∞

∑

t∈T (n)\{o}

log Pt(Xt|X1t
) + Ht(ω)

at

< ∞. a.s. (2.3)

lim
n→∞

1

a|T (n)|

∑

t∈T (n)\{o}

[log Pt(Xt|X1t
) + Ht(ω)] = 0, a.s. (2.4)

where |T (n)| represents the number of all the vertices from level 0 to level n.

Proof. On the probability space (Ω,F ,P), let λ = 1 or λ = −1. Denote

µQ(λ; xT (n)

) =

p(x0)
∏

t∈T (n)\{o}

Pt(xt|x1t
) exp

{

λ(log Pt(xt|x1t
)+Ht(ω))

at

}

∏

t∈T (n)\{o}

Ut(λ; xt)
, n ≥ 1,

(2.5)
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where

Ut(λ; xt) = E

{

exp

{

λ(log Pt(Xt|X1t
) + Ht(ω))

at

}

|X1t
= x1t

}

(2.6)

=
∑

xt∈S

exp

{

λ(log Pt(xt|x1t
) + Ht(ω))

at

}

· Pt(xt|x1t
). t ∈ T (n)\{o}.

By (2.5) and (2.6), when n ≥ 1,

∑

xLn∈SLn

µQ

(

λ; xT (n)
)

=
∑

xLn∈SLn

p(x0)
∏

t∈T (n)\{o}

Pt(xt|x1t
) exp

{

λ(log Pt(xt|x1t
)+Ht(ω))

at

}

∏

t∈T (n)\{o} Ut(λ; xt)

= µQ

(

λ; xT (n−1)
)

∑

xLn∈SLn

∏

t∈Ln

Pt(xt|x1t
) exp

{

λ(log Pt(xt|x1t
)+Ht(ω))

at

}

∏

t∈Ln
Ut(λ; xt)

= µQ

(

λ; xT (n−1)
)

∏

t∈Ln

∑

xt∈S

Pt(xt|x1t
) exp

{

λ(log Pt(xt|x1t
)+Ht(ω))

at

}

∏

t∈Ln
Ut(λ; xt)

= µQ

(

λ; xT (n−1)
)

∏

t∈Ln
Ut(λ; xt)

∏

t∈Ln
Ut(λ; xt)

= µQ

(

λ; xT (n−1)
)

. a.s. (2.7)

Define µQ(λ; xT (0)

) = p(x0), then

∑

x0∈S

µQ

(

λ; xT (0)
)

=
∑

x0∈S

p(x0) = 1.

Therefore µQ(λ; xT (n)

), n = 0, 1, 2, ... are a family of consistent distribution func-

tions on ST (n)

. Let

Tn(λ, ω) =
µQ(λ; XT (n)

)

P (XT (n))
. (2.8)

By (1.5), (2.5) and (2.8), we have

Tn(λ, ω) =

exp

{

∑

t∈T (n)\{o}

λ(log Pt(Xt|X1t
)+Ht(ω))

at

}

∏

t∈T (n)\{o}

Ut(λ; Xt)
, n ≥ 0. (2.9)

It is easy to see that Tn(λ, ω) is a nonnegative sup-martingale from Doob’s mar-
tingale convergence theorem (see [23]). Therefore, we obtain by (2.8)

lim
n→∞

Tn(λ, ω) = T∞(λ, ω) < ∞. a.s. ω ∈ D(ω) (2.10)
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Denote Pt(xt|X1t
) by Pt in brief, by (2.1) we have

∑

xt∈S

λ[log Pt(xt|X1t
) + Ht(ω)]

at

· Pt(xt|X1t
) =

λ[Ht(ω) − Ht(ω)]

at

= 0. (2.11)

By (2.6), (2.11) and the inequality 0 ≤ ex − 1 − x ≤ (1/2)x2e|x|, the entropy
density inequality Ht(ω) ≤ log N , noticing that λ = ±1, we have

0 ≤ Ut(λ; Xt) − 1

=
∑

xt∈S

{

exp

{

λ(log Pt + Ht(ω))

at

}

− 1 −
λ(log Pt + Ht(ω))

at

}

Pt

≤
1

2a2
t

∑

xt∈S

(log Pt + Ht(ω))2 exp

{

| log Pt + Ht(ω)|

at

}

Pt

≤
1

2a2
t

∑

xt∈S

(log Pt + Ht(ω))2 exp

{

− log Pt + log N

at

}

Pt. a.s. (2.12)

It is easy to see at → ∞, t → ∞ (as n → ∞) from (2.2), there exists a positive
integer m such that at ≥ 2 as t ≥ m. Hence as t ≥ m, by (2.12) and the entropy
density inequality, we obtain

0 ≤ Ut(λ; Xt) − 1

≤
1

2a2
t

∑

xt∈S

(log Pt + Ht(ω))2 exp

{

− logPt + log N

2

}

Pt

≤
1

2a2
t

∑

xt∈S

(log Pt + Ht(ω))2 exp{log(N/Pt)
1/2}Pt

≤
N

2a2
t

∑

xt∈S

(log Pt + Ht(ω))2P
1/2
t

≤
N

2a2
t

∑

xt∈S

[(log Pt)
2P

1/2
t + 2Ht(ω) · P

1/2
t log Pt + (Ht(ω))2]

≤
N

2a2
t

∑

xt∈S

[(log Pt)
2P

1/2
t − 2 logN · P

1/2
t log Pt + (log N)2]. a.s. (2.13)

It is easy to calculate

max{x1/2(log x)2, 0 < x ≤ 1} = 16e−2;

max{−x1/2 log x, 0 < x ≤ 1} = 2e−1.
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By (2.2) and (2.13), we have

∑

t∈T (n)\{o}

(Ut(λ; Xt) − 1)

≤
∑

t∈T (n)\{o}

N

2a2
t

∑

xt∈S

[(log Pt)
2P

1/2
t − 2 log N · P

1/2
t log Pt + (log N)2]

≤
∑

t∈T (n)\{o}

∑

xt∈S

N

2a2
t

[16e−2 + 2(log N)2e−1 + (log N)2]

=
∑

t∈T (n)\{o}

N2

2a2
t

[16e−2 + 4(log N)e−1 + (log N)2] < ∞, a.s. ω ∈ D(ω).

(2.14)

By the convergence theorem of infinite production, (2.14) implies that

lim
n→∞

∏

t∈T (n)\{o}

Ut(λ; Xt) converges a.s. ω ∈ D(ω). (2.15)

By (2.9), (2.10) and (2.15), we obtain

lim
n→∞

exp







∑

t∈T (n)\{o}

λ(log Pt(Xt|X1t
) + Ht(ω))

at







= a finite number a.s. ω ∈ D(ω).

(2.16)
Letting λ = 1 and λ = −1 in (2.16), respectively, we have

lim
n→∞

exp







∑

t∈T (n)\{o}

log Pt(Xt|X1t
) + Ht(ω)

at







= a finite number a.s. ω ∈ D(ω).

(2.17)

lim
n→∞

exp







∑

t∈T (n)\{o}

−(log Pt(Xt|X1t
) + Ht(ω))

at







= a finite number a.s. ω ∈ D(ω).

(2.18)
(2.17) and (2.18) imply that

lim
n→∞

∑

t∈T (n)\{o}

log Pt(Xt|X1t
) + Ht(ω)

at

converges a.s. ω ∈ D(ω). (2.19)

Hence (2.3) holds. By (2.19) and Kronecker’s lemma, we have

lim
n→∞

1

a|T (n)|

∑

t∈T (n)\{o}

[log Pt(Xt|X1t
) + Ht(ω)] = 0 a.s. ω ∈ D(ω). (2.20)
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3 Some Shannon-McMillan Theorems for

Nonhomogeneous Markov Chains on the

Homogeneous Tree

Corollary 3.1. Let X = {Xt, t ∈ T } be a nonhomogeneous Markov chain indexed
by a homogeneous tree, fn(ω) and Hk(ω) be defined as (1.8) and (2.1). Then

lim
n→∞

∑

t∈T (n)\{o}

[log Pt(Xt|X1t
) + Ht(ω)]

t
< ∞, a.s. (3.1)

lim
n→∞

[fn(ω) −
1

|T (n)|

∑

t∈T (n)\{o}

Ht(ω)] = 0. a.s. (3.2)

Proof. Let T be a homogeneous tree, that is on the tree each vertex has M neigh-
boring vertices. Let at = t, t ∈ T (n), then lim

n→∞

∑

t∈T (n)\{o}

1
a2

t

< ∞ holds obviously,

we obtain a|T (n)| = |T (n)|, by (1.8), (2.4) we get

lim
n→∞

1

a|T (n)|

∑

t∈T (n)\{o}

[log Pt(Xt|X1t
) + Ht(ω)]

= − lim
n→∞

1

|T (n)|

∑

t∈T (n)\{o}

[− logPt(Xt|X1t
) − Ht(ω)]

= − lim
n→∞

[fn(ω) −
1

|T (n)|

∑

t∈T (n)\{o}

Ht(ω)] = 0, a.s. (3.3)

(3.1), (3.2) follow from (2.3), (2.4) directly.

Remark 3.2. Equation (3.2) is a result of Yang and Ye (see [13]).

Corollary 3.3. Let X = {Xt, t ∈ T } be a T -indexed Markov chain with the state
space S, Ht(ω) defined as before. Denote p > 1/2, then

lim
n→∞

∑

t∈T (n)\{o}

log Pt(Xt|X1t
) + Ht(ω)

t1/2(log t)p
< ∞. a.s. (3.4)

lim
n→∞

1

|T (n)|1/2(log |T (n)|)p

∑

t∈T (n)\{o}

[log Pt(Xt|X1t
) + Ht(ω)] = 0. a.s. (3.5)

Proof. Let at = t1/2(log t)p, t ∈ T (n), then limn→∞

∑

t∈T (n)\{o}
1

t(log t)2p < ∞

holds obviously. we obtain (3.4), (3.5) from (2.3), (2.4), respectively.

When the successor of each vertex on the infinite tree with the uniformly
bounded degree has only one vertex, the nonhomogeneous Markov chain on the
tree degenerates into the general nonhomogeneous Markov chain.
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Corollary 3.4. Let {Xn, n ≥ 0} be a nonhomogeneous Markov chain with the
initial distribution and the transition probabilities as follows:

p(i) > 0, i ∈ S.

Pt(j|i) > 0, i, j ∈ S, t = 1, 2, .... (3.6)

Set

fn(ω) = −
1

n + 1

[

log P (X0) +

n
∑

t=1

log Pt(Xt|Xt−1)

]

, (3.7)

Ht(ω) = −
∑

xt∈S

Pt(xt|Xt−1) log Pt(xt|Xt−1). (3.8)

Then
∞
∑

t=1

log Pt(Xt|Xt−1) + Ht(ω)

t
< ∞, a.s. (3.9)

lim
n→∞

[

fn(ω) −
1

n + 1

n
∑

t=1

Ht(ω)

]

= 0. a.s. (3.10)

Proof. At this time the nonhomogeneous Markov chain X = {Xt, t ∈ T } indexed
by the infinite tree is changed into the general nonhomogeneous Markov chain
{Xn, n ≥ 0}, we obtain Pt(Xt|X1t

) = Pt(Xt|Xt−1), |T
(n)| = n + 1. (3.7)-(3.10)

follow from (1.8), (2.1), (3.1) and (3.2), respectively.

Remark 3.5. Equation (3.10) is just Theorem 2 of Liu and Yang (see [4]).
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