Geraghty's Fixed Point Theorem for Special Multi-Valued Mappings

M. Eshaghi Gordji ${ }^{1}$ H. Baghani, H. Khodaei and M. Ramezani
Department of Mathematics, Semnan University
P.O. Box 35195-363, Semnan, Iran
e-mail : madjid.eshaghi@gmail.com (M. Eshaghi Gordji)
h.baghani@gmail.com (H. Baghani)
hkhodaei.math@yahoo.com (H. Khodaei)
ramezanimaryam873@gmail.com (M. Ramezani)

Abstract

In this paper, we prove a generalization of Geraghty's fixed point

 theorem for a type of multi-valued map that called special multi-valued map.Keywords : Fixed point; Multi-valued mapping.
2010 Mathematics Subject Classification : 54H25.

1 Introduction

Many fixed point theorems have been proved by various authors as generalizations to Banach's contraction principle (see for example [1-7]). One such generalization is due to Geraghty [8] as follows.

Theorem 1.1. Let (X, d) be a complete metric space, let $f: X \rightarrow X$ be a mapping such that for each $x, y \in X$,

$$
d(f(x), f(y)) \leq \alpha(d(x, y)) d(x, y)
$$

where $\alpha \in S$, that S is the families of functions from $[0, \infty)$ into $[0,1)$ which satisfy the simple condition $\alpha\left(t_{n}\right) \rightarrow 1 \Longrightarrow t_{n} \rightarrow 0$. Then f has a fixed point $z \in X$, and $\left\{f^{n}(x)\right\}$ converges to z, for each $x \in X$.

[^0]Let (X, d) be a metric space. Let $C B(X)$ denotes the collection of all nonempty closed bounded subsets of X. For $A, B \in C B(X)$ and $x \in X$, define $D(x, A):=$ $\inf \{d(x, a) ; a \in A\}$ and

$$
H_{d}(A, B):=\max \left\{\sup _{a \in A} D(a, B), \sup _{b \in B} D(b, A)\right\}
$$

It is easy to see that H_{d} is a metric on $C B(X) . H_{d}$ is called the Hausdorff metric induced by d. Note that a point $p \in X$ is said to be a fixed point of a multi-valued mapping $T: X \rightarrow C B(X)$ if $p \in T(p)$ [9].

The fixed point theory of multi-valued contractions was initiated by Nadler [9] as follows.

Theorem 1.2. Let (X, d) be a complete metric space and let T be a mapping from X into $C B(X)$ such that for all $x, y \in X$,

$$
\begin{equation*}
H_{d}(T x, T y) \leq r d(x, y) \tag{1.1}
\end{equation*}
$$

where $0 \leq r<1$. Then T has a fixed point.
This theory was developed in different directions by many authors. See for example [10-15]. In this paper, we prove a version of Geraghty's fixed point theorem for multi-valued mappings.

Throughout this paper, we assume that (X, d) is a complete metric space and H_{d} is the Hausdorff metric on $C B(X)$ induced by d.

2 Main Results

In this section we have attempted to generalize a fixed point theorem of Geraghty for multi-valued mappings. For this purpose we introduce a notion called special multi-valued map and for this type of multi-valued map we have obtained a fixed point theorem.

Definition 2.1. Let (X, d) be a a metric space, mapping T from X into $C B(X)$ is called special multi-valued if

$$
\begin{equation*}
\inf _{y \in T x}\{d(x, y)+d(y, z)\}=D(x, T x)+D(z, T x) \tag{2.1}
\end{equation*}
$$

for all $x, z \in X$.
It is clear that every single valued mapping is special multi-valued mapping, also there exist some mappings that are special multi-valued but not single valued.

Example 2.1. Let $X=\left\{\frac{1}{2}, \frac{1}{4}, \ldots, \frac{1}{2^{n}}, \ldots\right\} \bigcup\{0,1\}, d(x, y)= \begin{cases}1 & x \neq y, \\ 0 & x=y .\end{cases}$

Define mapping $F: X \rightarrow C B(X)$ as

$$
F(x)=\left\{\begin{array}{cl}
\left\{\frac{1}{2^{n+1}}\right\} & x=\frac{1}{2^{n}}, \quad n=1,2, \ldots \\
\{0\} & x=0 \\
\left\{0, \frac{1}{2}\right\} & x=1
\end{array}\right.
$$

It is clear that above example is special multi- valued but not single valued. Now we prove our main result in this paper.

Theorem 2.2. Let T be special multi-valued mapping that

$$
\begin{gathered}
H_{d}(T x, T y) \leq \alpha(d(x, y)) d(x, y)+\beta(d(x, y))[D(x, T x)+D(y, T y)] \\
+\gamma(d(x, y))[D(x, T y)+D(y, T x)]
\end{gathered}
$$

for all $x, y \in X$, where α, β, γ are mappings from $[0, \infty)$ into $[0,1)$ such that $\frac{\alpha+\beta+\gamma}{1-(\beta+\gamma)} \in S$ and $\beta(t) \geq \gamma(t)$ for all $t \in[0, \infty)$. Then T has a fixed point.

Proof. Define a function α^{\prime} from $[0, \infty)$ into $[0,1)$ by $\alpha^{\prime}(t)=\frac{\alpha(t)+1-2 \beta(t)-2 \gamma(t)}{2}$ for all $t \in[0, \infty)$. Then we have

1) $\alpha(t)<\alpha^{\prime}(t)$ for all $t \in[0, \infty)$,
2) $\frac{\alpha^{\prime}+\beta+\gamma}{1-(\beta+\gamma)} \in S$,
3) for $x, y \in X$ and $u \in T x$, there exists $\nu \in T y$ such that

$$
\begin{gathered}
d(\nu, u) \leq \alpha^{\prime}(d(x, y)) d(x, y)+\beta(d(x, y))[D(x, T x)+D(y, T y)] \\
+\gamma(d(x, y))[D(x, T y)+D(y, T x)]
\end{gathered}
$$

Putting $u=y$ in 3), we obtain that:
4) For $x \in X$ and $y \in T x$ there exists $\nu \in T y$ such that

$$
\begin{gathered}
d(\nu, y) \leq \alpha^{\prime}(d(x, y)) d(x, y)+\beta(d(x, y))[D(x, T x)+D(y, T y)] \\
+\gamma(d(x, y))[D(x, T y)+D(y, T x)]
\end{gathered}
$$

Hence, we can define a sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ which satisfies $x_{n+1} \in T x_{n}, x_{n+1} \neq x_{n}$ and

$$
\begin{aligned}
d\left(x_{n+2}, x_{n+1}\right) \leq \alpha^{\prime} & \left(d\left(x_{n+1}, x_{n}\right)\right) d\left(x_{n+1}, x_{n}\right)+\beta\left(d\left(x_{n+1}, x_{n}\right)\right)\left[D\left(x_{n}, T x_{n}\right)\right. \\
& \left.+D\left(x_{n+1}, T x_{n+1}\right)\right]+\gamma\left(d\left(x_{n+1}, x_{n}\right)\right)\left[D\left(x_{n}, T x_{n+1}\right)\right. \\
& \left.+D\left(x_{n+1}, T x_{n}\right)\right]
\end{aligned}
$$

for all $n \in \mathbb{N}$. It follows that

$$
d\left(x_{n+2}, x_{n+1}\right) \leq \frac{\alpha^{\prime}\left(d\left(x_{n+1}, x_{n}\right)\right)+\beta\left(d\left(x_{n+1}, x_{n}\right)\right)+\gamma\left(d\left(x_{n+1}, x_{n}\right)\right)}{1-\left(\beta\left(d\left(x_{n+1}, x_{n}\right)\right)+\gamma\left(d\left(x_{n+1}, x_{n}\right)\right)\right)} d\left(x_{n+1}, x_{n}\right)
$$

for all $n \in \mathbb{N}$. We show that $\left\{x_{n}\right\}$ is a Cauchy sequence. To this end, we break the argument into two Steps.

Step 1: $\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+1}\right)=0$.
Since $\frac{\alpha^{\prime}(t)+\beta(t)+\gamma(t)}{1-(\beta(t)+\gamma(t))}<1$ for all $t,\left\{d\left(x_{n}, x_{n+1}\right)\right\}$ is decreasing and bounded below, so

$$
\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+1}\right)=r \geq 0 .
$$

Assume $r>0$. Then we have
$\frac{d\left(x_{n+1}, x_{n+2}\right)}{d\left(x_{n}, x_{n+1}\right)} \leq \frac{\alpha^{\prime}\left(d\left(x_{n}, x_{n+1}\right)\right)+\beta\left(d\left(x_{n}, x_{n+1}\right)\right)+\gamma\left(d\left(x_{n}, x_{n+1}\right)\right)}{1-\left(\beta\left(d\left(x_{n}, x_{n+1}\right)\right)+\gamma\left(d\left(x_{n}, x_{n+1}\right)\right)\right)}, n=1,2, \ldots$.
By letting $n \rightarrow \infty$, we see that

$$
1 \leq \lim _{n \rightarrow \infty} \frac{\alpha^{\prime}\left(d\left(x_{n}, x_{n+1}\right)\right)+\beta\left(d\left(x_{n}, x_{n+1}\right)\right)+\gamma\left(d\left(x_{n}, x_{n+1}\right)\right)}{1-\left(\beta\left(d\left(x_{n}, x_{n+1}\right)\right)+\gamma\left(d\left(x_{n}, x_{n+1}\right)\right)\right)} .
$$

On the other hand, we have $\frac{\alpha^{\prime}+\beta+\gamma}{1-(\beta+\gamma)} \in S$. Therefore $r=0$. This is a contradiction, hence, we prove Step 1.

Step 2: $\left\{x_{n}\right\}$ is a Cauchy sequence.
Assume $\lim \sup _{n, m \rightarrow \infty} d\left(x_{n}, x_{m}\right)>0$. By triangle inequality for positive real numbers n, m and for $y \in T x_{m}$, we obtain $d\left(x_{n}, x_{m}\right) \leq d\left(x_{n}, y\right)+d\left(y, x_{m}\right)$. This means that for every positive real numbers m, n, with using of relation (2.1), we have

$$
\begin{aligned}
d\left(x_{n}, x_{m}\right) & \leq \inf _{y \in T x_{m}}\left\{d\left(x_{n}, y\right)+d\left(y, x_{m}\right)\right\}=D\left(x_{m}, T x_{m}\right)+D\left(x_{n}, T x_{m}\right) \\
& \leq d\left(x_{m}, x_{m+1}\right)+D\left(x_{m+1}, T x_{m}\right)+d\left(x_{n}, x_{n+1}\right)+D\left(x_{n+1}, T x_{m}\right) \\
& \leq H_{d}\left(T x_{m}, T x_{n}\right)+d\left(x_{n}, x_{n+1}\right)+d\left(x_{m}, x_{m+1}\right) \\
& \leq \alpha\left(d\left(x_{n}, x_{m}\right)\right) d\left(x_{n}, x_{m}\right)+\beta\left(d\left(x_{n}, x_{m}\right)\right)\left[D\left(x_{n}, T x_{n}\right)+D\left(x_{m}, T x_{m}\right)\right] \\
& +\gamma\left(d\left(x_{n}, x_{m}\right)\right)\left[D\left(x_{n}, T x_{m}\right)+D\left(x_{m}, T x_{n}\right)\right]+d\left(x_{n}, x_{n+1}\right)+d\left(x_{m}, x_{m+1}\right) .
\end{aligned}
$$

Hence,
$d\left(x_{n}, x_{m}\right) \leq \frac{\left(\beta\left(d\left(x_{n}, x_{m}\right)\right)+\gamma\left(d\left(x_{n}, x_{m}\right)\right)\right)\left(d\left(x_{n}, x_{n+1}\right)+d\left(x_{m}, x_{m+1}\right)\right)+d\left(x_{n}, x_{n+1}\right)+d\left(x_{m}, x_{m+1}\right)}{1-\left(\alpha\left(d\left(x_{n}, x_{m}\right)\right)+2 \gamma\left(d\left(x_{n}, x_{m}\right)\right)\right)}$.
Under the assumption $\lim \sup _{n, m \rightarrow \infty} d\left(x_{n}, x_{m}\right)>0$, it follows by Step 1, that

$$
\limsup _{n, m \rightarrow \infty} \frac{1}{1-\left(\alpha\left(d\left(x_{n}, x_{m}\right)\right)+2 \gamma\left(d\left(x_{n}, x_{m}\right)\right)\right)}=+\infty
$$

for which

$$
\begin{equation*}
\limsup _{n, m \rightarrow \infty} \alpha\left(d\left(x_{n}, x_{m}\right)\right)+2 \gamma\left(d\left(x_{n}, x_{m}\right)\right)=1 . \tag{2.2}
\end{equation*}
$$

On the other hand, since

$$
\begin{equation*}
\frac{\alpha(t)+\beta(t)+\gamma(t)}{1-(\beta(t)+\gamma(t))}<1, \tag{2.3}
\end{equation*}
$$

then $\beta(t)+\gamma(t)<\frac{1}{2}$, for all $t \in[0, \infty)$.
Hence, since $\beta(t) \geq \gamma(t)$, for all $t \in[0, \infty)$, by using (2.2) and (2.3)

$$
\begin{align*}
& \limsup _{n, m \rightarrow \infty} \frac{\alpha\left(d\left(x_{n}, x_{m}\right)\right)+}{\left.\left.1-\left(\beta\left(d\left(x_{n}, x_{m}\right)\right)+x_{m}\right)\right)+\gamma\left(d\left(x_{n}, x_{m}\right)\right)\right)} \\
& 1 \geq \limsup _{n, m \rightarrow \infty} \frac{\alpha\left(d\left(x_{n}, x_{m}\right)\right)+2 \gamma\left(d\left(x_{n}, x_{m}\right)\right)}{1-\left(\beta\left(d\left(x_{n}, x_{m}\right)\right)+\gamma\left(d\left(x_{n}, x_{m}\right)\right)\right)} \tag{2.4}\\
& \geq \limsup _{n, m \rightarrow \infty} \alpha\left(d\left(x_{n}, x_{m}\right)\right)+2 \gamma\left(d\left(x_{n}, x_{m}\right)\right)=1
\end{align*}
$$

Now since, $\frac{\alpha+\beta+\gamma}{1-(\beta+\gamma)} \in S$, then by using (2.4), we have

$$
\limsup _{n, m \rightarrow \infty} \frac{\alpha\left(d\left(x_{n}, x_{m}\right)\right)+\beta\left(d\left(x_{n}, x_{m}\right)\right)+\gamma\left(d\left(x_{n}, x_{m}\right)\right)}{1-\left(\beta\left(d\left(x_{n}, x_{m}\right)\right)+\gamma\left(d\left(x_{n}, x_{m}\right)\right)\right)}=1 .
$$

It follows that $\lim \sup _{n, m \rightarrow \infty} d\left(x_{n}, x_{m}\right)=0$ which is a contradiction. Thus, Step 2 is proved.

By completeness of X, there exists $x^{*} \in X$ such that $\lim _{n \rightarrow \infty} x_{n}=x^{*}$. Now, we have

$$
\begin{aligned}
D\left(x^{*}, T x^{*}\right) \leq & d\left(x^{*}, x_{n+1}\right)+D\left(x_{n+1}, T x^{*}\right) \\
\leq & d\left(x^{*}, x_{n+1}\right)+H_{d}\left(T x_{n}, T x^{*}\right) \\
\leq & d\left(x^{*}, x_{n+1}\right)+\alpha\left(d\left(x_{n}, x^{*}\right)\right) d\left(x_{n}, x^{*}\right) \\
& +\beta\left(d\left(x_{n}, x^{*}\right)\right)\left[D\left(x_{n}, T x_{n}\right)+D\left(x^{*}, T x^{*}\right)\right] \\
& +\gamma\left(d\left(x_{n}, x^{*}\right)\right)\left[D\left(x_{n}, T x^{*}\right)+D\left(x^{*}, T x_{n}\right)\right]
\end{aligned}
$$

for all $n \in \mathbb{N}$. Therefore,

$$
\begin{aligned}
D\left(x^{*}, T x^{*}\right) \leq d & \left(x^{*}, x_{n+1}\right)+\alpha\left(d\left(x_{n}, x^{*}\right)\right) d\left(x_{n}, x^{*}\right) \\
& +\beta\left(d\left(x_{n}, x^{*}\right)\right)\left[d\left(x_{n+1}, x_{n}\right)+D\left(x^{*}, T x^{*}\right)\right] \\
& +\gamma\left(d\left(x_{n}, x^{*}\right)\right)\left[D\left(x_{n}, T x^{*}\right)+d\left(x_{n+1}, x^{*}\right)\right]
\end{aligned}
$$

for all $n \in \mathbb{N}$. It follows that

$$
\begin{aligned}
D\left(x^{*}, T x^{*}\right) & \leq \liminf _{n \rightarrow \infty}\left(\beta\left(d\left(x_{n}, x^{*}\right)\right)+\gamma\left(d\left(x_{n}, x^{*}\right)\right)\right) D\left(x^{*}, T x^{*}\right) \\
& =\liminf _{s \rightarrow 0^{+}}(\beta(s)+\gamma(s)) D\left(x^{*}, T x^{*}\right) \\
& \leq \limsup _{s \rightarrow 0^{+}}(\beta(s)+\gamma(s)) D\left(x^{*}, T x^{*}\right)
\end{aligned}
$$

On the other hand, since $\beta(t)+\gamma(t)<\frac{1}{2}$, for all $t \in[0, \infty)$, then we have

$$
\limsup _{s \rightarrow 0^{+}}(\beta(s)+\gamma(s))<1
$$

then $D\left(x^{*}, T x^{*}\right)=0$. We know that $T x^{*}$ is closed, then $x^{*} \in T x^{*}$.

Corollary 2.3. Let T be a mapping from X into X such that

$$
\begin{gathered}
d(T x, T y) \leq \alpha(d(x, y)) d(x, y)+\beta(d(x, y))[d(x, T x)+d(y, T y)] \\
+\gamma(d(x, y))[d(x, T y)+d(y, T x)]
\end{gathered}
$$

for all $x, y \in X$, where α, β, γ are mappings from $[0, \infty)$ into $[0,1)$ such that $\frac{\alpha+\beta+\gamma}{1-(\beta+\gamma)} \in S$ and $\beta(t) \geq \gamma(t)$ for all $t \in[0, \infty)$. Then T has a fixed point.

By Putting $\beta=\gamma=0$ in Theorem 2.1, since every single valued mapping is special multi-valued mapping, we have the following result, which can be regarded as an extension of Geraghty's fixed point theorem. Indeed, the following corollary is a special multi-valued version of Geraghty's fixed point theorem.

Corollary 2.4. Let T be special multi-valued mapping, $\alpha \in S$ and let

$$
H_{d}(T x, T y) \leq \alpha(d(x, y)) d(x, y)
$$

for all $x, y \in X$. Then T has a fixed point.
Corollary 2.5. Let T be special multi-valued mapping and

$$
H_{d}(T x, T y) \leq \beta(d(x, y))[D(x, T x)+D(y, T y)]
$$

for all $x, y \in X$, where β is a mapping from $[0, \infty)$ into $\left[0, \frac{1}{2}\right)$ such that $\frac{\beta}{1-\beta} \in S$. Then T has a fixed point.

Corollary 2.6. Let T be special multi-valued mapping and

$$
H_{d}(T x, T y) \leq \alpha(d(x, y)) d(x, y)+\beta(d(x, y))[D(x, T x)+D(y, T y)]
$$

for all $x, y \in X$, where α, β are mappings from $[0, \infty)$ into $[0,1)$ such that $\frac{\alpha+\beta}{1-\beta} \in S$. Then T has a fixed point.

Acknowledgement : The authors would like to thank the referees for their comments and suggestions on the manuscript.

References

[1] R.P. Agarwal, M. Meehan, D. O'Regan, Fixed Point Theory and Applications, Cambridge University Press, 2001.
[2] M. Edelstein, An extention of Banach contraction principle, Proc. Amer. Math. Soc. 12 (1) (1961) 7-10.
[3] M. Edelstein, On nonexpansive mappings, Proc. Amer. Math. Soc. 15 (5) (1964) 689-695.
[4] M. Eshaghi Gordji, H. Baghani, Y.J. Cho, Coupled fixed point theorems for contractions in intuitionistic fuzzy normed spaces, Mathematical and Computer Modelling 54 (2011) 1897-1906.
[5] B.E. Rhoades, A comparison of various definitions of contractive mappings, Transactions of the American Mathematical Society 226 (1977) 257-290.
[6] V.M. Sehgal, A fixed point theorem for mappings with a contractive iterate, Proc. Amer. Math. Soc. 23 (3) (1969) 631-634.
[7] E. Zeidler, Nonlinear Functional Analysis and Its Applications I: Fixed Point Theorems, Springer-Verlag, Berlin, 1986.
[8] M. Geraghty, On contractive mappings, Proc. Amer. Math. Soc. 40 (1973) 604-608.
[9] S.B. Nadler Jr., Multi-valued contraction mappings, Pacific J. Math. 30 (1969) 475-488.
[10] M. Eshaghi Gordji, H. Baghani, H. Khodaei, M. Ramezani, Generalized multivalued contraction mappings, J. Comput. Anal. Appl. 13 (4) (2011) 730-733.
[11] M. Eshaghi Gordji, H. Baghani, H. Khodaei, M. Ramezani, A generalization of Nadler's fixed point theorem, J. Nonlinear Sci. Appl. 3 (2) (2010) 148-151.
[12] A.A. Eldred, J. Anuradha, P. Veeramani, On equivalence of generalized multivalued contactions and Nadler's fixed point theorem, J. Math. Anal. Appl. 336 (2) (2007) 751-757.
[13] N. Mizoguchi, W. Takahashi, Fixed point theorems for multivalued mappings on complete metric spaces, J. Math. Anal. Appl. 141 (1989) 177-188.
[14] I.A. Rus, Generalized Contractions and Applications, Cluj University Press, Cluj-Nappa, 2001.
[15] T. Suzuki, Mizoguchi and Takahashi's fixed point theorem is a real generalization of Nadler's, J. Math. Anal. Appl. 340 (2008) 752-755.
(Received 30 May 2011)
(Accepted 9 January 2012)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

[^0]: ${ }^{1}$ Corresponding author.
 Copyright (c) 2012 by the Mathematical Association of Thailand. All rights reserved.

