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1 Introduction

Many fixed point theorems have been proved by various authors as gener-
alizations to Banach’s contraction principle (see for example [1–7]). One such
generalization is due to Geraghty [8] as follows.

Theorem 1.1. Let (X, d) be a complete metric space, let f : X → X be a mapping

such that for each x, y ∈ X,

d(f(x), f(y)) ≤ α(d(x, y)) d(x, y)

where α ∈ S, that S is the families of functions from [0,∞) into [0, 1) which satisfy

the simple condition α(tn) → 1 =⇒ tn → 0. Then f has a fixed point z ∈ X, and

{fn(x)} converges to z, for each x ∈ X.
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Let (X, d) be a metric space. Let CB(X) denotes the collection of all nonempty
closed bounded subsets of X . For A, B ∈ CB(X) and x ∈ X , define D(x, A) :=
inf{d(x, a); a ∈ A} and

Hd(A, B) := max

{

sup
a∈A

D(a, B), sup
b∈B

D(b, A)

}

.

It is easy to see that Hd is a metric on CB(X). Hd is called the Hausdorff
metric induced by d. Note that a point p ∈ X is said to be a fixed point of a
multi–valued mapping T : X → CB(X) if p ∈ T (p) [9].

The fixed point theory of multi–valued contractions was initiated by Nadler
[9] as follows.

Theorem 1.2. Let (X, d) be a complete metric space and let T be a mapping from

X into CB(X) such that for all x, y ∈ X,

Hd(Tx, T y) ≤ r d(x, y) (1.1)

where 0 ≤ r < 1. Then T has a fixed point.

This theory was developed in different directions by many authors. See for
example [10–15]. In this paper, we prove a version of Geraghty’s fixed point
theorem for multi–valued mappings.

Throughout this paper, we assume that (X, d) is a complete metric space and
Hd is the Hausdorff metric on CB(X) induced by d.

2 Main Results

In this section we have attempted to generalize a fixed point theorem of Ger-
aghty for multi–valued mappings. For this purpose we introduce a notion called
special multi-valued map and for this type of multi-valued map we have obtained
a fixed point theorem.

Definition 2.1. Let (X, d) be a a metric space, mapping T from X into CB(X)
is called special multi–valued if

inf
y∈Tx

{d(x, y) + d(y, z)} = D(x, Tx) + D(z, Tx), (2.1)

for all x, z ∈ X .

It is clear that every single valued mapping is special multi–valued mapping,
also there exist some mappings that are special multi–valued but not single valued.

Example 2.1. Let X = { 1
2 , 1

4 , ..., 1
2n

, ...}
⋃

{0, 1}, d(x, y) =

{

1 x 6= y,

0 x = y.
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Define mapping F : X → CB(X) as

F (x) =











{ 1
2n+1 } x = 1

2n
, n = 1, 2, ...,

{0} x = 0,

{0, 1
2} x = 1.

It is clear that above example is special multi- valued but not single valued.
Now we prove our main result in this paper.

Theorem 2.2. Let T be special multi–valued mapping that

Hd(Tx, T y) ≤ α(d(x, y))d(x, y) + β(d(x, y))[D(x, Tx) + D(y, T y)]

+ γ(d(x, y))[D(x, T y) + D(y, Tx)]

for all x, y ∈ X, where α, β, γ are mappings from [0,∞) into [0, 1) such that
α+β+γ
1−(β+γ) ∈ S and β(t) ≥ γ(t) for all t ∈ [0,∞). Then T has a fixed point.

Proof. Define a function α
′

from [0,∞) into [0, 1) by α
′

(t) = α(t)+1−2β(t)−2γ(t)
2 for

all t ∈ [0,∞). Then we have

1) α(t) < α
′

(t) for all t ∈ [0,∞),

2) α
′

+β+γ
1−(β+γ) ∈ S,

3) for x, y ∈ X and u ∈ Tx, there exists ν ∈ Ty such that

d(ν, u) ≤ α
′

(d(x, y))d(x, y) + β(d(x, y))[D(x, Tx) + D(y, T y)]

+ γ(d(x, y))[D(x, T y) + D(y, Tx)].

Putting u = y in 3), we obtain that:

4) For x ∈ X and y ∈ Tx there exists ν ∈ Ty such that

d(ν, y) ≤ α
′

(d(x, y))d(x, y) + β(d(x, y))[D(x, Tx) + D(y, T y)]

+ γ(d(x, y))[D(x, T y) + D(y, Tx)].

Hence, we can define a sequence {xn}n∈N which satisfies xn+1 ∈ Txn, xn+1 6= xn

and

d(xn+2, xn+1) ≤ α
′

(d(xn+1, xn))d(xn+1, xn) + β(d(xn+1, xn))[D(xn, Txn)

+ D(xn+1, Txn+1)] + γ(d(xn+1, xn))[D(xn, Txn+1)

+ D(xn+1, Txn)]

for all n ∈ N. It follows that

d(xn+2, xn+1) ≤
α

′

(d(xn+1, xn)) + β(d(xn+1, xn)) + γ(d(xn+1, xn))

1 − (β(d(xn+1, xn)) + γ(d(xn+1, xn)))
d(xn+1, xn)
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for all n ∈ N. We show that {xn} is a Cauchy sequence. To this end, we break
the argument into two Steps.

Step 1: limn→∞ d(xn, xn+1) = 0.

Since α
′

(t)+β(t)+γ(t)
1−(β(t)+γ(t)) < 1 for all t, {d(xn, xn+1)} is decreasing and bounded below,

so
lim

n→∞

d(xn, xn+1) = r ≥ 0.

Assume r > 0. Then we have

d(xn+1, xn+2)

d(xn, xn+1)
≤

α
′

(d(xn, xn+1)) + β(d(xn, xn+1)) + γ(d(xn, xn+1))

1 − (β(d(xn, xn+1)) + γ(d(xn, xn+1)))
, n = 1, 2, ....

By letting n → ∞, we see that

1 ≤ lim
n→∞

α
′

(d(xn, xn+1)) + β(d(xn, xn+1)) + γ(d(xn, xn+1))

1 − (β(d(xn, xn+1)) + γ(d(xn, xn+1)))
.

On the other hand, we have α
′

+β+γ
1−(β+γ) ∈ S. Therefore r = 0. This is a contradiction,

hence, we prove Step 1.

Step 2: {xn} is a Cauchy sequence.
Assume lim supn,m→∞

d(xn, xm) > 0. By triangle inequality for positive real num-
bers n, m and for y ∈ Txm, we obtain d(xn, xm) ≤ d(xn, y)+d(y, xm). This means
that for every positive real numbers m, n, with using of relation (2.1), we have

d(xn, xm) ≤ inf
y∈Txm

{d(xn, y) + d(y, xm)} = D(xm, Txm) + D(xn, Txm)

≤ d(xm, xm+1) + D(xm+1, Txm) + d(xn, xn+1) + D(xn+1, Txm)

≤ Hd(Txm, Txn) + d(xn, xn+1) + d(xm, xm+1)

≤ α(d(xn, xm))d(xn, xm) + β(d(xn, xm))[D(xn, Txn) + D(xm, Txm)]

+ γ(d(xn, xm))[D(xn, Txm) + D(xm, Txn)] + d(xn, xn+1) + d(xm, xm+1).

Hence,

d(xn, xm) ≤ (β(d(xn,xm))+γ(d(xn,xm)))(d(xn,xn+1)+d(xm,xm+1))+d(xn,xn+1)+d(xm,xm+1)
1−(α(d(xn,xm))+2γ(d(xn,xm))) .

Under the assumption lim supn,m→∞
d(xn, xm) > 0, it follows by Step 1, that

lim sup
n,m→∞

1

1 − (α(d(xn, xm)) + 2γ(d(xn, xm)))
= +∞

for which
lim sup
n,m→∞

α(d(xn, xm)) + 2γ(d(xn, xm)) = 1. (2.2)

On the other hand, since

α(t) + β(t) + γ(t)

1 − (β(t) + γ(t))
< 1, (2.3)
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then β(t) + γ(t) < 1
2 , for all t ∈ [0,∞).

Hence, since β(t) ≥ γ(t), for all t ∈ [0,∞), by using (2.2) and (2.3)

lim sup
n,m→∞

α(d(xn, xm)) + β(d(xn, xm)) + γ(d(xn, xm))

1 − (β(d(xn, xm)) + γ(d(xn, xm)))

≥ lim sup
n,m→∞

α(d(xn, xm)) + 2γ(d(xn, xm))

1 − (β(d(xn, xm)) + γ(d(xn, xm)))

≥ lim sup
n,m→∞

α(d(xn, xm)) + 2γ(d(xn, xm)) = 1.

(2.4)

Now since, α+β+γ
1−(β+γ) ∈ S, then by using (2.4), we have

lim sup
n,m→∞

α(d(xn, xm)) + β(d(xn, xm)) + γ(d(xn, xm))

1 − (β(d(xn, xm)) + γ(d(xn, xm)))
= 1.

It follows that lim supn,m→∞
d(xn, xm) = 0 which is a contradiction. Thus, Step 2

is proved.
By completeness of X , there exists x∗ ∈ X such that limn→∞ xn = x∗. Now,

we have

D(x∗, Tx∗) ≤ d(x∗, xn+1) + D(xn+1, Tx∗)

≤ d(x∗, xn+1) + Hd(Txn, Tx∗)

≤ d(x∗, xn+1) + α(d(xn, x∗))d(xn, x∗)

+ β(d(xn, x∗))[D(xn, Txn) + D(x∗, Tx∗)]

+ γ(d(xn, x∗))[D(xn, Tx∗) + D(x∗, Txn)]

for all n ∈ N. Therefore,

D(x∗, Tx∗) ≤ d(x∗, xn+1) + α(d(xn, x∗))d(xn, x∗)

+ β(d(xn, x∗))[d(xn+1, xn) + D(x∗, Tx∗)]

+ γ(d(xn, x∗))[D(xn, Tx∗) + d(xn+1, x
∗)]

for all n ∈ N. It follows that

D(x∗, Tx∗) ≤ lim inf
n→∞

(β(d(xn, x∗)) + γ(d(xn, x∗)))D(x∗, Tx∗)

= lim inf
s→0+

(β(s) + γ(s))D(x∗, Tx∗)

≤ lim sup
s→0+

(β(s) + γ(s))D(x∗, Tx∗).

On the other hand, since β(t) + γ(t) < 1
2 , for all t ∈ [0,∞), then we have

lim sup
s→0+

(β(s) + γ(s)) < 1

then D(x∗, Tx∗) = 0. We know that Tx∗ is closed, then x∗ ∈ Tx∗.
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Corollary 2.3. Let T be a mapping from X into X such that

d(Tx, T y) ≤ α(d(x, y))d(x, y) + β(d(x, y))[d(x, Tx) + d(y, T y)]

+ γ(d(x, y))[d(x, T y) + d(y, Tx)]

for all x, y ∈ X, where α, β, γ are mappings from [0,∞) into [0, 1) such that
α+β+γ
1−(β+γ) ∈ S and β(t) ≥ γ(t) for all t ∈ [0,∞). Then T has a fixed point.

By Putting β = γ = 0 in Theorem 2.1, since every single valued mapping is
special multi–valued mapping, we have the following result, which can be regarded
as an extension of Geraghty’s fixed point theorem. Indeed, the following corollary
is a special multi–valued version of Geraghty’s fixed point theorem.

Corollary 2.4. Let T be special multi–valued mapping, α ∈ S and let

Hd(Tx, T y) ≤ α(d(x, y)) d(x, y)

for all x, y ∈ X. Then T has a fixed point.

Corollary 2.5. Let T be special multi–valued mapping and

Hd(Tx, T y) ≤ β(d(x, y))[D(x, Tx) + D(y, T y)]

for all x, y ∈ X, where β is a mapping from [0,∞) into [0, 1
2 ) such that β

1−β
∈ S.

Then T has a fixed point.

Corollary 2.6. Let T be special multi–valued mapping and

Hd(Tx, T y) ≤ α(d(x, y))d(x, y) + β(d(x, y))[D(x, Tx) + D(y, T y)]

for all x, y ∈ X, where α, β are mappings from [0,∞) into [0, 1) such that α+β
1−β

∈ S.

Then T has a fixed point.
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