

Tripartite Ramsey Number $r_{t}\left(K_{2,4}, K_{2,4}\right)$

Sasisophit Buada and Vites Longani ${ }^{1}$
Department of Mathematics, Faculty of Science
Chiang Mai University, Chiang Mai 50200, Thailand
e-mail : sasi_bua@hotmail.com (S. Buada)
vites@chiangmai.ac.th (V. Longani)

Abstract : A graph G is n - partite, $n \geq 1$, if it is possible to partition the set of points $V(G)$ into n subsets $V_{1}, V_{2}, \ldots, V_{n}$ (called partite sets) such that every element of the set of lines $E(G)$ joins a point of V_{i} to a point of $V_{j}, i \neq j$. For $n=2$, and $n=3$ such graphs are called bipartite graph, and tripartite graph respectively. A complete n-partite graph G is an n-partite graph with the added property that if $u \in V_{i}$ and $v \in V_{j}, i \neq j$, then the line $u v \in E(G)$. If $\left|V_{i}\right|=p_{i}$, then this graph is denoted by $K_{p_{1}, p_{2}, \ldots, p_{n}}$.

For the complete tripartite graph $K_{s, s, s}$ with the number of points $p=3 s$, let each line of the graph has either red or blue colour. The smallest number s such that $K_{s, s, s}$ always contains $K_{m, n}$ with all lines of $K_{m, n}$ have one colour (red or blue) is called tripartite Ramsey number and denoted by $r_{t}\left(K_{m, n}, K_{m, n}\right)$. In this paper, we show that

$$
r_{t}\left(K_{2,4}, K_{2,4}\right)=7 .
$$

Keywords : Tripartite Ramsey numbers; Bipartite Ramsey numbers; Ramsey numbers; Tripartite graphs; Bipartite graphs.
2010 Mathematics Subject Classification : 05C55; 05D10.

1 Introduction

A graph G is n - partite, $n \geq 1$, if it is possible to partition the set of points $V(G)$ into n subsets $V_{1}, V_{2}, \ldots, V_{n}$ (called partite sets) such that every element of the set of lines $E(G)$ joins a point of V_{i} to a point of $V_{j}, i \neq j$, see [1]. For

[^0]$n=2$, such graphs are called bipartite graphs. For $n=3$, such graphs are called tripartite graphs. A complete tripartite graph G is a tripartite graph with partite sets V_{1}, V_{2}, V_{3} having the added property that if $u \in V_{i}$ and $v \in V_{j}, i \neq j$, then $u v \in E(G)$. When $\left|V_{i}\right|=p_{i}$, we denote the complete n-partite graph by $K_{p_{1}, p_{2}, \ldots, p_{n}}$.

Consider a complete bipartite graph $K_{s, s}$ of order $p=2 s$. Let each line of $K_{s, s}$ be coloured by using either red or blue colour. We shall call such a $K_{s, s}$ as 2-coloured.

Consider a subgraph $K_{m, n}$ of 2 -coloured $K_{s, s}$. If all lines of $K_{m, n}$ have red(blue) colour, we shall say that the $K_{s, s}$ contains a red(blue) $K_{m, n}$. The smallest number s of points such that $K_{s, s}$ always contains red $K_{m, n}$ or blue $K_{m, n}$ is called bipartite Ramsey number and denoted by $r_{b}\left(K_{m, n}, K_{m, n}\right)$.

According to the definition of bipartite Ramsey number in this paper, Longani [4], has found that $r_{b}\left(K_{1, n}, K_{1, n}\right)=2 n-1(n=1,2,3, \ldots), r_{b}\left(K_{2,2}, K_{2,2}\right)=5$, and $r_{b}\left(K_{2,3}, K_{2,3}\right)=9$.

Beineke and Schwenk [2] have also found that $r_{b}\left(K_{2,2}, K_{2,2}\right)=5$ and $r_{b}\left(K_{3,3}\right.$, $\left.K_{3,3}\right)=17$.

In this paper, instead of considering a complete bipartite graph $K_{s, s}$, we shall consider a complete tripartite graph $K_{s, s, s}$ of order $p=3 s$. Let each line of $K_{s, s, s}$ be coloured by using either red or blue colour. The smallest number s of points such that $K_{s, s, s}$ always contains red $K_{m, n}$ or blue $K_{m, n}$ is called tripartite Ramsey number and denoted by $r_{t}\left(K_{m, n}, K_{m, n}\right)$.

In [3], Leamyoo have found that $r_{t}\left(K_{2,2}, K_{2,2}\right)=4$.

2 The Value of $r_{t}\left(K_{2,4}, K_{2,4}\right)$

We find the value of $r_{t}\left(K_{2,4}, K_{2,4}\right)$ by considering a particular 2-coloured $K_{6,6,6}$ and 2 -coloured $K_{7,7,7}$. For a $K_{7,7,7}$, consider all ninety eight lines that are adjacent to all points of a V_{i}. We call such lines as the lines of the V_{i}.

Lemma 2.1. Let $K_{7,7,7}$ be a 2-coloured complete tripartite graph with $p=21$ and each V_{1}, V_{2}, and V_{3} be the set of seven non-adjacent points of the $K_{7,7,7}$. There exists at least one V_{i} of which the number of red lines and blue lines of the V_{i} are not equal.

Proof. Consider the three V_{i} 's. Suppose there are forty nine red lines and forty nine blue lines of each V_{i}.

Since there are totally forty nine red lines of V_{1}, consider when there are n ($n \geq 0$) red lines which join points of V_{1} and V_{2}, and so there are $49-n$ red lines which join points of V_{1} and V_{3}. Since for V_{2} there are also exactly forty nine red lines of V_{2}, therefore there are $49-n$ red lines which join points of V_{2} and V_{3}.

Now we can see that there are $(49-n)+(49-n)$ red lines of V_{3}. Since there
are exactly forty nine red lines of V_{3}, therefore

$$
\begin{aligned}
(49-n)+(49-n) & =49 \\
n & =24.5
\end{aligned}
$$

This is not possible. Therefore, there exist some V_{i} 's of which the number of red lines and blue lines of the V_{i} 's are not equal.

In order to prove Theorem 2.2 we need to represent 2 -colored $K_{m, n}$ with with an $m \times n$ matrix as follows:

Given a 2 -colored $\mathrm{Km} ; \mathrm{n}$ with V_{1} and V_{2} as its partite sets size m and n , respectively. Put $V_{1}=\left\{r_{1}, r_{2}, \ldots, r_{m}\right\}$ and $V_{2}=\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$. Let $B=\left[b_{i j}\right]$ be an $m \times n$ matrix where $b_{i j}=1$ if the line $r_{i} c_{j}$ is red, otherwise $b_{i j}=0$. The following example is to illustrate 2-colored $K_{5,4}$. As in Figure 2.1 (a), we use the dark lines to indicate red lines while dash lines for blue lines.
(a)

$c_{1} \quad c_{2} \quad c_{3} \quad c_{4} \quad c_{5}$
(b)
r_{1}
r_{2}
r_{3}
$r_{4}$$\left[\begin{array}{lllll}1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0\end{array}\right]$

Figure 2.1.
Theorem 2.2. $r_{t}\left(K_{2,4}, K_{2,4}\right)=7$.
Proof. Consider the 2-coloured $K_{6,6,6}$ graph illustrated in Figure 2.2.

Figure 2.2.
It can be verified that the $K_{6,6,6}$ contains neither red $K_{2,4}$ nor blue $K_{2,4}$. Therefore $r_{t}\left(K_{2,4}, K_{2,4}\right)>6$. That is

$$
\begin{equation*}
r_{t}\left(K_{2,4}, K_{2,4}\right) \geq 7 . \tag{2.1}
\end{equation*}
$$

Let $K_{7,7,7}$ be a 2 -coloured complete tripartite graph. Consider the set V_{1}, V_{2} and V_{3} of seven non-adjacent points of the $K_{7,7,7}$:

$$
\begin{aligned}
& V_{1}=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}, u_{7}\right\}, \\
& V_{2}=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}\right\}, \\
& V_{3}=\left\{w_{1}, w_{2}, w_{3}, w_{4}, w_{5}, w_{6}, w_{7}\right\} .
\end{aligned}
$$

From Lemma 2.1, we can assume that from V_{1}, the number of red lines are greater than the number of blue lines, that is the number of red lines are equal to fifty or greater. We only need to consider the case when the number of red lines from V_{1} is fifty and show that in such case the $K_{7,7,7}$ always contains red $K_{2,4}$. For the cases when the number of red lines is greater than fifty, the results follow immediately.

Let $V\left(G_{1}\right)=V_{1}$ and $V\left(G_{2}\right)=V_{2} \cup V_{3}$. For $V\left(G_{1}\right)$, let $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}$, u_{7} be respectively replaced by $r_{1}, r_{2}, r_{3}, r_{4}, r_{5}, r_{6}, r_{7}$. Also for $V\left(G_{2}\right)$, let v_{1}, v_{2}, $v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, w_{1}, w_{2}, w_{3}, w_{4}, w_{5}, w_{6}, w_{7}$ be respectively replaced by c_{1}, c_{2}, c_{3}, $c_{4}, c_{5}, c_{6}, c_{7}, c_{8}, c_{9}, c_{10}, c_{11}, c_{12}, c_{13}, c_{14}$. That is,

$$
\begin{aligned}
& V\left(G_{1}\right)=\left\{r_{1}, r_{2}, r_{3}, r_{4}, r_{5}, r_{6}, r_{7}\right\}, \\
& V\left(G_{2}\right)=\left\{c_{1}, c_{2}, \ldots, c_{14}\right\} .
\end{aligned}
$$

By ignoring the lines between V_{2} and V_{3} and consider the defined $V\left(G_{1}\right)$ and $V\left(G_{2}\right)$ the $K_{7,7,7}$ is now reduced to 2-coloured $K_{7,14}$. In order to prove the theorem we only need to show that this $K_{7,14}$ always contains red $K_{2,4}$.

We find the value of $r_{t}\left(K_{2,4}, K_{2,4}\right)$ by considering the 2-coloured $K_{7,14}$.
If there are $m, n, s, t, u, v(1 \leq m, n \leq 7$ and $1 \leq s, t, u, v \leq 14)$ such that some submatrices

$$
\left[\begin{array}{cccc}
b_{m s} & b_{m t} & b_{m u} & b_{m v} \tag{2.2}\\
b_{n s} & b_{n t} & b_{n u} & b_{n v}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right]
$$

then the $K_{7,14}$ contains red $K_{2,4}$.
Let $d_{1}, d_{2}, d_{3}, d_{4}, d_{5}, d_{6}, d_{7}$ be degrees of red lines of $r_{1}, r_{2}, r_{3}, r_{4}, r_{5}, r_{6}, r_{7}$ respectively. We can choose r_{i} 's such that $d_{1} \geq d_{2} \geq d_{3} \geq d_{4} \geq d_{5} \geq d_{6} \geq d_{7}$. Here we have the conditions that

$$
d_{1}+d_{2}+d_{3}+d_{4}+d_{5}+d_{6}+d_{7}=50
$$

and $0 \leq d_{i} \leq 14, i=1,2,3,4,5,6,7$.
Next, we consider two main cases.
Case 1. $d_{1}+d_{2} \geq 18$.
Here, the possible $d_{1} \geq d_{2}$ are $9 \geq 9,10 \geq 8,10 \geq 9,10 \geq 10,11 \geq 7,11 \geq$ $8,11 \geq 9,11 \geq 10,11 \geq 11,12 \geq 7,12 \geq 8,12 \geq 9,12 \geq 10,12 \geq 11,12 \geq 12,13 \geq$ $7,13 \geq 8,13 \geq 9,13 \geq 10,13 \geq 11,13 \geq 12,13 \geq 13,14 \geq 7,14 \geq 8,14 \geq 9,14 \geq$ $10,14 \geq 11,14 \geq 12,14 \geq 13,14 \geq 14$.

It is easy to show that for all of these cases the $K_{7,14}$ always contains red $K_{2,4}$. For example, consider cases $d_{1}=9$, and $d_{2}=9$. For a case in Table 2.1, parts of the matrix involving r_{1} and r_{2} would be

	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}	c_{7}	c_{8}	c_{9}	c_{10}	c_{11}	c_{12}	c_{13}	c_{14}
r_{1}	1	1	1	1	1	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$					
r_{2}						$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	1	1	1	1	1

Table 2.1.
from which submatrix of the form (2.2) appears, that is the $K_{7,7,7}$ contains red $K_{2,4}$.
Case 2. $d_{1}+d_{2}<18$.
With the conditions for d_{i}, there are five subcases to consider.
Subcase 2.1. $d_{1}=10, d_{2}=7, d_{3}=7, d_{4}=7, d_{5}=7, d_{6}=6, d_{7}=6$.
In this case we consider three points r_{1}, r_{2}, r_{3} of $V\left(G_{1}\right)$. When there are four or more points c_{i} 's each of which is joined to both of r_{1} and r_{2} by red lines, then we can see that the $K_{7,14}$ contains red $K_{2,4}$.

For other cases, suppose that r_{1} is joined by ten red lines to $c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}$, $c_{7}, c_{8}, c_{9}, c_{10}$ and r_{2} is joined by seven red lines to $c_{8}, c_{9}, c_{10}, c_{11}, c_{12}, c_{13}, c_{14}$, we consider seven red lines joining to r_{3}. Either at least four of seven red lines are joined from r_{3} to some points among $c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}, c_{8}$ or at least four of these seven red lines are joined to some points among $c_{9}, c_{10}, c_{11}, c_{12}, c_{13}, c_{14}$. In
either case, we can see that red $K_{2,4}$ is contained in the $K_{7,14}$, see Table 2.2 for example.

	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}	c_{7}	c_{8}	c_{9}	c_{10}	c_{11}	c_{12}	c_{13}	c_{14}
r_{1}	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	1	1	1	1	1	1				
r_{2}								1	1	1	1	1	1	1
r_{3}	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$								1	1	1

Table 2.2.

Subcase 2.2. $d_{1}=9, d_{2}=8, d_{3}=7, d_{4}=7, d_{5}=7, d_{6}=6, d_{7}=6$.
In this case, as in subcase 2.1, we also need to consider three points r_{1}, r_{2}, r_{3} of $V\left(G_{1}\right)$. The method in showing that the $K_{7,14}$ always contain red $K_{2,4}$ is almost exactly the same as in the subcase 2.1 above.

Subcase 2.3. $d_{1}=9, d_{2}=7, d_{3}=7, d_{4}=7, d_{5}=7, d_{6}=7, d_{7}=6$.
In this case we consider five points $r_{1}, r_{2}, r_{3}, r_{4}, r_{5}$ of $V\left(G_{1}\right)$. When there are four or more points c_{i} 's each of which is joined to both of r_{1} and r_{2} by red lines, then we can see that the $K_{7,14}$ contains red $K_{2,4}$.
2.3.1. Two c_{i} 's are joined by red lines to both of r_{1} and r_{2}.

Suppose that r_{1} is joined by nine red lines to $c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}, c_{8}, c_{9}$ and r_{2} is joined by seven red lines to $c_{8}, c_{9}, c_{10}, c_{11}, c_{12}, c_{13}, c_{14}$.

Consider seven red lines joining to r_{3}. Either at least four of seven red lines are joined from r_{3} to some points among $c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}$ or at least four of these seven red lines are joined to some points among $c_{8}, c_{9}, c_{10}, c_{11}, c_{12}, c_{13}, c_{14}$. In either case, we see that red $K_{2,4}$ is contained in the $K_{7,14}$, see Table 2.3 for example.

	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}	c_{7}	c_{8}	c_{9}	c_{10}	c_{11}	c_{12}	c_{13}	c_{14}
r_{1}	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	1	1	1	1	1					
r_{2}								1	1	1	1	1	1	1
r_{3}	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$								1	1	1

Table 2.3.
2.3.2. Three c_{i} 's are joined by red lines to both of r_{1} and r_{2}.

Suppose that r_{1} is joined by nine red lines to $c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}, c_{8}, c_{9}$ and r_{2} is joined by seven red lines to $c_{7}, c_{8}, c_{9}, c_{10}, c_{11}, c_{12}, c_{13}$.

Consider when c_{14} is not joined to some r_{i} 's $(i=3,4,5,6,7)$ by red lines.
Suppose c_{14} is not joined to r_{3} for example, then either at least four red lines from r_{3} are joined to points among $c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}$ or at least four red lines from r_{3} are joined to points among $c_{8}, c_{9}, c_{10}, c_{11}, c_{12}, c_{13}$. In either case, we see
that red $K_{2,4}$ is contained in $K_{7,14}$, see Table 2.4 for example.

	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}	c_{7}	c_{8}	c_{9}	c_{10}	c_{11}	c_{12}	c_{13}	c_{14}
r_{1}	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	1	1	1	1	1					
r_{2}							1	1	1	1	1	1	1	
r_{3}	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$							1	1	1	

Table 2.4.
Consider when the point c_{14} is joined to all r_{i} 's $(i=3,4,5,6,7)$ by red lines. Here we consider two subcases.
(1) Some $r_{i}, i=3,4,5,6,7$ are joined by red lines to some of c_{7}, c_{8}, c_{9}.

Suppose r_{3} is joined to c_{7} by red line, for example, then there are five other red lines joining r_{3}. Either at least three of the red lines are joined to points among $c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}$ or at least three of red lines are joined to points among $c_{8}, c_{9}, c_{10}, c_{11}, c_{12}, c_{13}$. In either case, red $K_{2,4}$ is formed. For example, see Table 2.5.

Similarly, if r_{3} is joined to c_{8} or c_{9} by red line, we can show that red $K_{2,4}$ is also formed.

	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}	c_{7}	c_{8}	c_{9}	c_{10}	c_{11}	c_{12}	c_{13}	c_{14}
r_{1}	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	1	1	1	$\mathbf{1}$	1	1					
r_{2}							1	1	1	1	1	1	1	
r_{3}	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$				$\mathbf{1}$					1	1	1

Table 2.5
(2) None of $r_{i}, i=3,4,5,6,7$ are joined by red lines to c_{7}, c_{8} and c_{9}.

Since each of $r_{i}, i=3,4,5,6,7$ is joined by red lines to c_{14}, there are six other red lines joining r_{i}. The six red lines from each r_{3} and r_{4} will join to points among $c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{10}, c_{11}, c_{12}, c_{13}$. Therefore, there are at least two points among $c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{10}, c_{11}, c_{12}, c_{13}$ which join r_{3} and r_{4}. First, consider the case when there are at least three points among $c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{10}, c_{11}, c_{12}$, c_{13} which join r_{3} and r_{4}. Also, since c_{14} is joined by red lines to r_{3}, r_{4}, we can see that red $K_{2,4}$ is contained in the $K_{7,14}$, see Table 2.6 for example.

	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}	c_{7}	c_{8}	c_{9}	c_{10}	c_{11}	c_{12}	c_{13}	c_{14}
r_{1}	1	1	1	1	1	1	1	1	1					
r_{2}							1	1	1	1	1	1	1	
r_{3}	1	1	$\mathbf{1}$								1	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
r_{4}			$\mathbf{1}$	1	1					1		$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$

Table 2.6.
Next, we consider the case when there are two points among $c_{1}, c_{2}, c_{3}, c_{4}$, $c_{5}, c_{6}, c_{10}, c_{11}, c_{12}, c_{13}$ which join r_{3} and r_{4}. Suppose that these two points are c_{12} and c_{13}. When we consider only $r_{1}, r_{2}, r_{3}, r_{4}$ there are cases when the $K_{7,14}$ does
not contain red $K_{2,4}$, see Table 2.7 for example. For such cases, we shall consider the seven red lines joining r_{5}.

	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}	c_{7}	c_{8}	c_{9}	c_{10}	c_{11}	c_{12}	c_{13}	c_{14}
r_{1}	1	1	1	1	1	1	1	1	1					
r_{2}							1	1	1	1	1	1	1	
r_{3}	1	1	1								1	1	1	1
r_{4}				1	1	1				1		1	1	1

Table 2.7.
From Table 2.7, r_{3} is joined to $c_{1}, c_{2}, c_{3}, c_{11}, c_{12}, c_{13}, c_{14}$ and r_{4} is joined to $c_{4}, c_{5}, c_{6}, c_{10}, c_{12}, c_{13}, c_{14}$ and since r_{5} is joined by one of the red lines to c_{14}, there are six other red lines joining r_{5}. Either at least three red lines are joined to points among $c_{1}, c_{2}, c_{3}, c_{11}$ or at least three red lines are joined to points among $c_{4}, c_{5}, c_{6}, c_{10}, c_{12}, c_{13}$. Assume that there are three red lines which are joined to points among $c_{1}, c_{2}, c_{3}, c_{11}$, say c_{2}, c_{3}, c_{11} or there are three red lines which are joined to points among $c_{4}, c_{5}, c_{6}, c_{10}, c_{12}, c_{13}$, say c_{4}, c_{10}, c_{12}, since all r_{3}, r_{4}, and r_{5} are joined to c_{14}. We can verify that in either case the $K_{7,14}$ contains red $K_{2,4}$, see Table 2.8 for example.

	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}	c_{7}	c_{8}	c_{9}	c_{10}	c_{11}	c_{12}	c_{13}	c_{14}
r_{1}	1	1	1	1	1	1	1	1	1					
r_{2}							1	1	1	1	1	1	1	
r_{3}	1	1	1								1	1	1	1
r_{4}				$\mathbf{1}$	1	1				$\mathbf{1}$		$\mathbf{1}$	1	$\mathbf{1}$
r_{5}		1	1	$\mathbf{1}$						$\mathbf{1}$	1	$\mathbf{1}$		$\mathbf{1}$

Table 2.8.
Subcase 2.4. $d_{1}=8, d_{2}=8, d_{3}=7, d_{4}=7, d_{5}=7, d_{6}=7, d_{7}=6$.
In this case, as in Subcase 2.3, we also need to consider five points $r_{1}, r_{2}, r_{3}, r_{4}, r_{5}$ of $V\left(G_{1}\right)$. The method in showing that the $K_{7,14}$ always contain red $K_{2,4}$ is almost exactly the same as in the Subcase 2.3 above.
Subcase 2.5. $d_{1}=8, d_{2}=7, d_{3}=7, d_{4}=7, d_{5}=7, d_{6}=7, d_{7}=7$.
When there are four or more c_{i} 's each of which is joined by red lines to both of r_{1} and r_{2}, then we see that the $K_{7,14}$ contains red $K_{2,4}$, see Table 2.9 for example.

	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}	c_{7}	c_{8}	c_{9}	c_{10}	c_{11}	c_{12}	c_{13}	c_{14}
r_{1}	1	1	1	1	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$						
r_{2}					$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	1	1	1			

Table 2.9.
We consider three more cases.
2.5.1. One of c_{i} 's is joined by red lines to both of r_{1} and r_{2}.

Suppose that r_{1} is joined by eight red lines to $c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}, c_{8}$ and r_{2} is joined by seven red lines to $c_{8}, c_{9}, c_{10}, c_{11}, c_{12}, c_{13}, c_{14}$.

Consider the seven red lines joining r_{3}. Either at least four of the seven red lines are joined, from r_{3}, to points among $c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}, c_{8}$ or at least four red lines are joined to points among $c_{9}, c_{10}, c_{11}, c_{12}, c_{13}, c_{14}$. In either case, we see that $K_{2,4}$ is contained in the $K_{7,14}$, see Table 2.10 for example.

	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}	c_{7}	c_{8}	c_{9}	c_{10}	c_{11}	c_{12}	c_{13}	c_{14}
r_{1}	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	1	1	1	1						
r_{2}								1	1	1	1	1	1	1
r_{3}	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$					1	1	1			

Table 2.10.
2.5.2. Two of c_{i} 's are joined by red lines to both of r_{1} and r_{2}.

Suppose that r_{1} is joined by eight red lines to $c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}, c_{8}$ and r_{2} is joined by seven red lines to $c_{7}, c_{8}, c_{9}, c_{10}, c_{11}, c_{12}, c_{13}$. Consider two subcases (1) and (2).
(1) c_{14} is not joined to some r_{i} 's $(i=3,4,5,6,7)$ by red lines.

If c_{14} is not joined to r_{3} for example, then either at least four red lines from r_{3} are joined to points among $c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}$ or at least four red lines from r_{3} are joined to points among $c_{8}, c_{9}, c_{10}, c_{11}, c_{12}, c_{13}$. In either case, we see that red $K_{2,4}$ is contained in $K_{7,14}$, see Table 2.11 for example.

	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}	c_{7}	c_{8}	c_{9}	c_{10}	c_{11}	c_{12}	c_{13}	c_{14}
r_{1}	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	1	1	1	1						
r_{2}							1	1	1	1	1	1	1	
r_{3}	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$					1	1	1			

Table 2.11.
(2) c_{14} is joined to all r_{i} 's $(i=3,4,5,6,7)$ by red lines.

Here we consider two possibilities (a) and (b).
(a) Some r_{i} 's $(i=3,4,5,6,7)$ are joined to c_{7} or c_{8} or both by red lines.

For example, suppose r_{3} is joined to c_{7} by red line, then there are five other red lines joining r_{3}. From these five red lines, either at least three of the red lines are joined to points among $c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}$ or at least three red lines are joined to points among $c_{8}, c_{9}, c_{10}, c_{11}, c_{12}, c_{13}$. In either case, red $K_{2,4}$ is formed. For example, see Table 2.12.

Similarly, if r_{3} is joined to c_{8} by red line, we can show that red $K_{2,4}$ is also formed, and if r_{3} is joined to c_{7} and c_{8} by red lines, then there are four other red lines joining r_{3}. For these four red lines, either at least two of the red lines are joined to points among $c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}$ or at least two red lines are joined to points among $c_{9}, c_{10}, c_{11}, c_{12}, c_{13}$. In either case, we can see that red $K_{2,4}$ is
contained in $K_{7,14}$.

	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}	c_{7}	c_{8}	c_{9}	c_{10}	c_{11}	c_{12}	c_{13}	c_{14}
r_{1}	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	1	1	1	$\mathbf{1}$	1						
r_{2}							1	1	1	1	1	1	1	
r_{3}	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$				$\mathbf{1}$		1	1				1

Table 2.12.
(b) None of r_{i} 's $(i=3,4,5,6,7)$ are joined to c_{7} and c_{8} by red lines.

We consider r_{4}. Since each of $r_{i}(i=3,4,5,6,7)$ is joined by red lines to c_{14}, there are six other red lines joining each r_{i}. The six red lines joining each r_{3} and r_{4} will join to points among $c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{9}, c_{10}, c_{11}, c_{12}, c_{13}$. Therefore, there are at least one point among $c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{9}, c_{10}, c_{11}, c_{12}, c_{13}$ which join r_{3} and r_{4}. First, consider the case when there are at least three points among $c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{9}, c_{10}, c_{11}, c_{12}, c_{13}$ each of which joins r_{3} and r_{4}. Also, since c_{14} is joined by red lines to r_{3}, r_{4}, we can see that red $K_{2,4}$ is contained in the $K_{7,14}$, see Table 2.13 for example.

	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}	c_{7}	c_{8}	c_{9}	c_{10}	c_{11}	c_{12}	c_{13}	c_{14}
r_{1}	1	1	1	1	1	1	1	1						
r_{2}							1	1	1	1	1	1	1	
r_{3}	1	1	$\mathbf{1}$								1	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
r_{4}			$\mathbf{1}$	1	1					1		$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$

Table 2.13.
Thus we shall consider the case when there are one and two points among $c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{9}, c_{10}, c_{11}, c_{12}, c_{13}$ which join r_{3} and r_{4}.

Consider when there is one point among $c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{9}, c_{10}, c_{11}, c_{12}, c_{13}$ which join r_{3} and r_{4}. Suppose this point is c_{13}, see Table 2.14 for example. When we consider only $r_{1}, r_{2}, r_{3}, r_{4}$ there are cases when the $K_{7,14}$ does not contain red $K_{2,4}$, see Table 2.14 for example. For such cases, we shall consider the seven red lines joining r_{5}.

	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}	c_{7}	c_{8}	c_{9}	c_{10}	c_{11}	c_{12}	c_{13}	c_{14}
r_{1}	1	1	1	1	1	1	1	1						
r_{2}							1	1	1	1	1	1	1	
r_{3}	1	1	1								1	1	1	1
r_{4}				1	1	1			1	1			1	1

Table 2.14.
From Table 2.14, r_{3} is joined to $c_{1}, c_{2}, c_{3}, c_{11}, c_{12}, c_{13}$ and r_{4} is joined to $c_{4}, c_{5}, c_{6}, c_{9}, c_{10}, c_{13}$ and since r_{5} is joined by one of the red lines to c_{14}, there are six other red lines joining r_{5}. From these six red lines, either at least three red lines are joined to points among $c_{1}, c_{2}, c_{3}, c_{11}, c_{12}, c_{13}$ or at least three red lines are joined to points among $c_{4}, c_{5}, c_{6}, c_{9}, c_{10}, c_{13}$. Assume that there are three red lines that are joined to points among $c_{1}, c_{2}, c_{3}, c_{11}, c_{12}, c_{13}$, say c_{2}, c_{3}, c_{11} or there are
three red lines that are joined to points among $c_{4}, c_{5}, c_{6}, c_{9}, c_{10}, c_{13}$, say c_{9}, c_{10}, c_{13}. Also, since c_{14} is joined by red lines to r_{3}, r_{4} and r_{5}, we can verify that in either case the $K_{7,14}$ contains red $K_{2,4}$, see Table 2.15 for example.

	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}	c_{7}	c_{8}	c_{9}	c_{10}	c_{11}	c_{12}	c_{13}	c_{14}
r_{1}	1	1	1	1	1	1	1	1						
r_{2}							1	1	1	1	1	1	1	
r_{3}	1	$\mathbf{1}$	$\mathbf{1}$								1	1	$\mathbf{1}$	$\mathbf{1}$
r_{4}				1	1	1			1	1			1	1
r_{5}		$\mathbf{1}$	$\mathbf{1}$						1	1	1		$\mathbf{1}$	$\mathbf{1}$

Table 2.15.
Consider when there are two points among $c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{9}, c_{10}, c_{11}, c_{12}$, c_{13} which join r_{3} and r_{4}.

Suppose these points are c_{12} and c_{13}. There are cases when the $K_{7,14}$ does not contain red $K_{2,4}$, see Table 2.16 for example. So, we consider the seven red lines joining r_{5}.

	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}	c_{7}	c_{8}	c_{9}	c_{10}	c_{11}	c_{12}	c_{13}	c_{14}
r_{1}	1	1	1	1	1	1	1	1						
r_{2}							1	1	1	1	1	1	1	
r_{3}	1	1	1								1	1	1	1
r_{4}				1	1	1				1		1	1	1

Table 2.16.
From Table 2.16, r_{3} is joined to $c_{1}, c_{2}, c_{3}, c_{11}, c_{12}, c_{13}$ and r_{4} is joined to c_{4}, c_{5}, $c_{6}, c_{10}, c_{12}, c_{13}$ and since r_{5} is joined by one of the red lines to c_{14}. If r_{5} is not joined to c_{9}, there are six other red lines joining r_{5}. From these six red lines, either at least three red lines are joined to points among $c_{1}, c_{2}, c_{3}, c_{11}, c_{12}, c_{13}$ or at least three red lines are joined to points among $c_{4}, c_{5}, c_{6}, c_{10}, c_{12}, c_{13}$, we can see that the $K_{7,14}$ contains red $K_{2,4}$. If r_{5} is joined to c_{9}, there are five other red lines joining r_{5}. From these five red lines, either at least three red lines joining to points among $c_{1}, c_{2}, c_{3}, c_{11}, c_{12}, c_{13}$, say c_{1}, c_{2}, c_{11} or at least three red lines are joined to points among $c_{4}, c_{5}, c_{6}, c_{10}, c_{12}, c_{13}$, say c_{4}, c_{10}. Also, since c_{14} is joined by red lines to r_{3}, r_{4} and r_{5}. We can verify that in either case the $K_{7,14}$ contains red $K_{2,4}$, see Table 2.17 for example.

	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}	c_{7}	c_{8}	c_{9}	c_{10}	c_{11}	c_{12}	c_{13}	c_{14}
r_{1}	1	1	1	1	1	1	1	1						
r_{2}							1	1	1	1	1	1	1	
r_{3}	1	1	1								$\mathbf{1}$	1	1	$\mathbf{1}$
r_{4}				1	1	1				1		1	1	1
r_{5}	$\mathbf{1}$	$\mathbf{1}$		1					1	1	$\mathbf{1}$			$\mathbf{1}$

Table 2.17.
2.5.3. Three of c_{i} 's are joined by red lines to both of r_{1} and r_{2}.

Suppose that r_{1} is joined by eight red lines to $c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}, c_{8}$ and r_{2} is joined by seven red lines to $c_{6}, c_{7}, c_{8}, c_{9}, c_{10}, c_{11}, c_{12}$. We consider two subcases.
(1) Some r_{i} 's $(i=3,4,5,6,7)$ are not joined to c_{13} and c_{14} by red lines.

If both c_{13} and c_{14} are not joined to r_{3} for example, then either at least four red lines from r_{3} are joined to points among $c_{1}, c_{2}, \ldots, c_{7}$ or at least four red lines are joined to points among $c_{8}, c_{9}, \ldots, c_{12}$. In either case, we see that red $K_{2,4}$ is contained in $K_{7,14}$, see Table 2.18 for example.

	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}	c_{7}	c_{8}	c_{9}	c_{10}	c_{11}	c_{12}	c_{13}	c_{14}
r_{1}	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	1	1	1	1						
r_{2}						1	1	1	1	1	1	1		
r_{3}	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$					1	1	1			

Table 2.18.
(2) Each of all r_{i} 's $(i=3,4,5,6,7)$ is joined to c_{13} or c_{14} or both by red lines. Here we consider two possibilities (2.1) and (2.2).
(2.1) Three or more r_{i} 's $(i=3,4,5,6,7)$ are joined to one of c_{13} and c_{14}. Suppose r_{3}, r_{4}, r_{5} are joined to one of c_{13} and c_{14}, then at least two of r_{3}, r_{4}, r_{5} are joined to c_{13} or at least two of r_{3}, r_{4}, r_{5} are joined to c_{14}. Let r_{3}, r_{4} be joined to c_{13}. Consider 4 subcases.
(2.1.1) r_{3} or r_{4} are joined to c_{6}, c_{7}, and c_{8}.

Suppose that r_{3} is joined to c_{6}, c_{7}, c_{8}. There are three other red lines joining r_{3}. From these three red lines joining r_{3}, either at least two of the red lines are joined to points among $c_{1}, c_{2}, \ldots, c_{5}$ or at least two red lines are joined to points among $c_{9}, c_{10}, \ldots, c_{12}$. In either case, red $K_{2,4}$ is formed. For this subcase, see Table 2.19 for example.

	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}	c_{7}	c_{8}	c_{9}	c_{10}	c_{11}	c_{12}	c_{13}	c_{14}
r_{1}			1	1	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$						
r_{2}						1	1	1	1	1	1	1		
r_{3}				1	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	1				1	

Table 2.19.
(2.1.2) r_{3} or r_{4} are joined to two of c_{6}, c_{7}, and c_{8}.

Suppose that r_{3} is joined to c_{7} and c_{8}, there are four other red lines joining r_{3}. From these four red lines, either at least two of the red lines are joined to points among $c_{1}, c_{2}, \ldots, c_{5}$ or at least two red lines are joined to points among $c_{9}, c_{10}, \ldots, c_{12}$. In either case, we see that red $K_{2,4}$ is contained in the $K_{7,14}$, see

Table 2.20 for example.

	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}	c_{7}	c_{8}	c_{9}	c_{10}	c_{11}	c_{12}	c_{13}	c_{14}
r_{1}	1	1	1	1	1	1	1	1						
r_{2}						1	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	1	1		
r_{3}	1	1					$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$			1	

Table 2.20.
(2.1.3) r_{3} or r_{4} are joined to one of c_{6}, c_{7}, and c_{8}.

Suppose that r_{3} is joined to c_{8}, there are five other red lines joining r_{3}. From these five red lines joining r_{3}, either at least three of the red lines are joined to points among $c_{1}, c_{2}, \ldots, c_{5}$ or at least three red lines are joined to points among $c_{9}, c_{10}, \ldots, c_{12}$. In either case, we can see that red $K_{2,4}$ is contained in the $K_{7,14}$, see Table 2.21 for example.

	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}	c_{7}	c_{8}	c_{9}	c_{10}	c_{11}	c_{12}	c_{13}	c_{14}
r_{1}	1	1	1	1	1	1	1	1						
r_{2}						1	1	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	1		
r_{3}	1	1						$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$		1	

Table 2.21.
(2.1.4) r_{3} and r_{4} are not joined to c_{6}, c_{7}, and c_{8}.

Since r_{3} is joined to c_{13} and not joined to c_{6}, c_{7} and c_{8}. There are six other red lines joining r_{3}. From these six red lines joining r_{3}, either at least three of the red lines are joined to points among $c_{1}, c_{2}, \ldots, c_{5}$ or at least three red lines are joined to points among $c_{9}, c_{10}, \ldots, c_{12}$. Consider the case when there are at least four points among $c_{1}, c_{2}, \ldots, c_{5}$ or at least four points among $c_{9}, c_{10}, \ldots, c_{12}$ that are joined to r_{3}. In either case, we can see that red $K_{2,4}$ is contained in the $K_{7,14}$.

Thus we consider the case when there are three points among $c_{1}, c_{2}, \ldots, c_{5}$, say c_{1}, c_{2}, c_{3} and three points among $c_{9}, c_{10}, \ldots, c_{12}$, say c_{9}, c_{10}, c_{11} that are joined to r_{3} by red lines. There are cases, see Table 2.22 for example, when the $K_{7,14}$ does not contain red $K_{2,4}$, so we consider r_{4}.

	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}	c_{7}	c_{8}	c_{9}	c_{10}	c_{11}	c_{12}	c_{13}	c_{14}
r_{1}	1	1	1	1	1	1	1	1						
r_{2}						1	1	1	1	1	1	1		
r_{3}	1	1	1							1	1	1	1	

Table 2.22.
Since r_{4} is joined to c_{13} and not joined to c_{6}, c_{7}, c_{8}, there are six other red lines joining r_{4}. From these six red lines, we can see that there are at least three
points among $c_{1}, c_{2}, \ldots, c_{5}, c_{9}, c_{10}, \ldots, c_{12}$ that are joined to both r_{3} and r_{4}. In either case, red $K_{2,4}$ is contained in the $K_{7,14}$, see Table 2.23 for example.

	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}	c_{7}	c_{8}	c_{9}	c_{10}	c_{11}	c_{12}	c_{13}	c_{14}
r_{1}	1	1	1	1	1	1	1	1						
r_{2}						1	1	1	1	1	1	1		
r_{3}	1	1	$\mathbf{1}$							1	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	
r_{4}			$\mathbf{1}$	1	1				1		$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	

Table 2.23.
From subcases $(2,1,1),(2.1 .2)$, and (2.1.3), if there is at least one of r_{i} 's $(i=3,4,5,6,7)$ that is joined to some c_{6}, c_{7}, c_{8}, then we can see that red $K_{2,4}$ is contained in the $K_{7,14}$. Later, if we consider the cases when r_{i} 's $(i=3,4,5,6,7)$ are joined to one of c_{13} and c_{14}, we shall consider only the case when r_{i} 's $(i=$ $3,4,5,6,7)$ is not joined to c_{6}, c_{7}, c_{8}.
(2.2) Less than three r_{i} 's $(i=3,4,5,6,7)$ that are joined to one of c_{13} and c_{14}. Consider three subcases.
(2.2.1) One of r_{i} 's $(i=3,4,5,6,7)$, say r_{7} is joined to one of c_{13} and c_{14}. In these cases there are four of r_{i} 's $(i=3,4,5,6,7)$, say r_{3}, r_{4}, r_{5} and r_{6} that are joined to both c_{13} and c_{14}. Consider two possibilities (a) and (b).
(a) Some r_{i} 's $(i=3,4,5,6)$ are joined to at least two of c_{6}, c_{7} and c_{8}.

Suppose that r_{3} is joined to c_{7} and c_{8}. There are three other red lines joining r_{3}. From these three red lines, either at least two of the red lines are joined to points among $c_{1}, c_{2}, \ldots, c_{5}$ or at least two red lines are joined to points among $c_{9}, c_{10}, \ldots, c_{12}$. In either case, red $K_{2,4}$ is contained in the $K_{7,14}$, see Table 2.24 for example.

	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}	c_{7}	c_{8}	c_{9}	c_{10}	c_{11}	c_{12}	c_{13}	c_{14}
r_{1}	$\mathbf{1}$	$\mathbf{1}$	1	1	1	1	$\mathbf{1}$	$\mathbf{1}$						
r_{2}						1	1	1	1	1	1	1		
r_{3}	$\mathbf{1}$	$\mathbf{1}$					$\mathbf{1}$	$\mathbf{1}$	1				1	1

Table 2.24.
(b) Each of r_{i} 's $(i=3,4,5,6)$ is joined to one or none of c_{6}, c_{7} and c_{8}. There are three possibilities.
(i) Each of all r_{i} 's $(i=3,4,5,6)$ is joined to one of c_{6}, c_{7} and c_{8}.

Since all r_{i} 's $(i=3,4,5,6)$ are joined to one of c_{6}, c_{7} and c_{8}, then at least two of r_{i} are joined to c_{6} or at least two of r_{i} are joined to c_{7} or at least two of r_{i} are joined to c_{8}. Let r_{3}, r_{4} are joined to c_{8}. For this case we consider only three of $r_{3}, r_{4}, r_{5}, r_{6}$ then we can see that red $K_{2,4}$ is contained in the $K_{7,14}$.

Since r_{3} is joined by red lines to c_{8}, c_{13}, and c_{14}. There are four other red lines joining r_{3}. From these four red lines, either at least two of the red lines are
joined to points among $c_{1}, c_{2}, \ldots, c_{5}$ or at least two red lines are joined to points among $c_{9}, c_{10}, \ldots, c_{12}$. For the cases when there are three or more red lines joining r_{3} and points among $c_{1}, c_{2}, \ldots, c_{5}$ or $c_{9}, c_{10}, \ldots, c_{12}$, we can see that red $K_{2,4}$ is contained in the $K_{7,14}$ see Table 2.25 for example.

	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}	c_{7}	c_{8}	c_{9}	c_{10}	c_{11}	c_{12}	c_{13}	c_{14}
r_{1}	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	1	1	1	1	$\mathbf{1}$						
r_{2}						1	1	1	1	1	1	1		
r_{3}	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$					$\mathbf{1}$	1				1	1

Table 2.25.
Thus we shall consider when each $r_{i}(i=3,4,5,6)$ has two red lines that are joined to points among $c_{1}, c_{2}, \ldots, c_{5}$ and two red lines that are joined to points among $c_{9}, c_{10}, \ldots, c_{12}$.

Suppose that r_{3} is joined by red lines to two points among $c_{1}, c_{2}, \ldots, c_{5}$, say c_{1}, c_{2}, and joined by red lines to two points among $c_{9}, c_{10}, \ldots, c_{12}$, say c_{9}, c_{10}. There are cases when the $K_{7,14}$ does not contain red $K_{2,4}$, see Table 2.26 for example. We consider r_{4}.

	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}	c_{7}	c_{8}	c_{9}	c_{10}	c_{11}	c_{12}	c_{13}	c_{14}
r_{1}	1	1	1	1	1	1	1	1						
r_{2}						1	1	1	1	1	1	1		
r_{3}	1	1						1	1	1			1	1

Table 2.26.
Since r_{4} is joined to c_{8}, c_{13}, and c_{14}, there are four other red lines joining r_{4}. From these four red lines, either at least two of the red lines are joined to points among $c_{1}, c_{2}, \ldots, c_{5}$ and at least two red lines are joined to points among $c_{9}, c_{10}, \ldots, c_{12}$. For the case when there is at least one of $c_{1}, c_{2}, c_{9}, c_{10}$ that is joined to both r_{3} and r_{4}, since c_{8}, c_{13}, and c_{14} are joined to both r_{3} and r_{4}, then red $K_{2,4}$ is contained in the $K_{7,14}$ see Table 2.27 for example.

	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}	c_{7}	c_{8}	c_{9}	c_{10}	c_{11}	c_{12}	c_{13}	c_{14}
r_{1}	1	1	1	1	1	1	1	1						
r_{2}						1	1	1	1	1	1	1		
r_{3}	1	1						$\mathbf{1}$	1	$\mathbf{1}$			$\mathbf{1}$	$\mathbf{1}$
r_{4}			1	1				$\mathbf{1}$		$\mathbf{1}$	1		$\mathbf{1}$	$\mathbf{1}$

Table 2.27.
Thus we consider the case when none of $c_{1}, c_{2}, c_{9}, c_{10}$ is joined to both r_{3} and r_{4}, there are cases when the $K_{7,14}$ does not contain red $K_{2,4}$, see Table 2.28 for example, so we consider r_{5}.

Since r_{5} is joined to one of c_{6}, c_{7} and c_{8}, say c_{7}, if r_{5} is not joined to c_{5}, there are four red lines joining r_{5}. From these four red lines, either two of the red lines
are joined to points among $c_{1}, c_{2}, c_{9}, c_{10}$ or two of the red lines are joined to points among $c_{3}, c_{4}, c_{11}, c_{12}$, and since c_{13} and c_{14} are joined to both r_{3} and r_{4}, then we can see that red $K_{2,4}$ is contained in the $K_{7,14}$. If r_{5} is joined to c_{5}, there are three red lines joining r_{5}. From these three red lines, either two of the red lines are joined to points among $c_{1}, c_{2}, c_{9}, c_{10}$ or two red lines are joined to points among $c_{3}, c_{4}, c_{11}, c_{12}$. Also, since c_{13} and c_{14} are joined to r_{3}, r_{4}, and r_{5}, so we can see that red $K_{2,4}$ is contained in the $K_{7,14}$, see Table 2.28 for example.

	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}	c_{7}	c_{8}	c_{9}	c_{10}	c_{11}	c_{12}	c_{13}	c_{14}
r_{1}	1	1	1	1	1	1	1	1						
r_{2}						1	1	1	1	1	1	1		
r_{3}	1	$\mathbf{1}$						1	1	$\mathbf{1}$			$\mathbf{1}$	$\mathbf{1}$
r_{4}			1	1				1			1	1	1	1
r_{5}		$\mathbf{1}$			1		1			$\mathbf{1}$	1		$\mathbf{1}$	$\mathbf{1}$

Table 2.28.
(ii) All r_{i} 's $(i=3,4,5,6)$ are not joined to c_{6}, c_{7}, and c_{8}.

For this case we consider only three of $r_{3}, r_{4}, r_{5}, r_{6}$ and we can see that red $K_{2,4}$ is contained in the $K_{7,14}$. Since r_{3} is joined to c_{13} and c_{14}, there are five other red lines joining r_{3}. For the cases when r_{3} is joined by red lines to at least four points among $c_{1}, c_{2}, \ldots, c_{5}$ or at least four points among $c_{9}, c_{10}, c_{11}, c_{12}$, we can see that the $K_{7,14}$ contains red $K_{2,4}$.

Thus we shall consider the cases when each of r_{i} 's $(i=3,4,5,6)$ is joined by red lines to three points among $c_{1}, c_{2}, \ldots, c_{5}$ or three points among $c_{9}, c_{10}, c_{11}, c_{12}$. Consider when r_{3} is joined by red lines to three points among $c_{1}, c_{2}, \ldots, c_{5}$ or three points among $c_{9}, c_{10}, c_{11}, c_{12}$. There are cases when the $K_{7,14}$ does not contain red $K_{2,4}$, see Table 2.29 for example, so we consider r_{4}.

	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}	c_{7}	c_{8}	c_{9}	c_{10}	c_{11}	c_{12}	c_{13}	c_{14}
r_{1}	1	1	1	1	1	1	1	1						
r_{2}						1	1	1	1	1	1	1		
r_{3}	1	1	1						1	1			1	1

Table 2.29.

Since r_{4} is joined to c_{13} and c_{14}, there are other five red lines joining r_{4}. We can see that there is at least one of $c_{1}, c_{2}, c_{3}, c_{9}, c_{10}$ that is joined by red lines to both r_{3} and r_{4}. For the cases when r_{4} is joined by red lines to at least two points among $c_{1}, c_{2}, c_{3}, c_{9}, c_{10}$, we can see that the $K_{7,14}$ contains red $K_{2,4}$. Thus we consider the case when one point among $c_{1}, c_{2}, c_{3}, c_{9}, c_{10}$, say c_{3}, is joined by red line to both r_{3} and r_{4}. There are cases when the $K_{7,14}$ does not contain red $K_{2,4}$,
see Table 2.30 for example, so we consider r_{5}.

	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}	c_{7}	c_{8}	c_{9}	c_{10}	c_{11}	c_{12}	c_{13}	c_{14}
r_{1}	1	1	1	1	1	1	1	1						
r_{2}						1	1	1	1	1	1	1		
r_{3}	1	1	1						1	1			1	1
r_{4}			1	1	1						1	1	1	1

Table 2.30.
Since r_{5} is joined to c_{13} and c_{14}, there are other five red lines joining r_{5}. Either there are at least three red lines that are joined to points among $c_{1}, c_{2}, c_{3}, c_{9}, c_{10}$ or at least three red lines that are joined to points among $c_{3}, c_{4}, c_{5}, c_{11}, c_{12}$. In either case, the $K_{7,14}$ contains red $K_{2,4}$, see Table 2.31 for example.

	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}	c_{7}	c_{8}	c_{9}	c_{10}	c_{11}	c_{12}	c_{13}	c_{14}
r_{1}	1	1	1	1	1	1	1	1						
r_{2}						1	1	1	1	1	1	1		
r_{3}	1	1	1						1	1			1	1
r_{4}			1	1	1						$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
r_{5}	1	1		1							$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$

Table 2.31.
From subcases (a) of (2.2.1), if there is at least one of r_{i} 's $(i=3,4,5,6,7)$ that is joined to at least two of c_{6}, c_{7}, c_{8}, then we can see that red $K_{2,4}$ is contained in the $K_{7,14}$. Later, if we consider the cases when r_{i} 's $(i=3,4,5,6,7)$ are joined to c_{13} and c_{14}, we shall consider only the case when r_{i} 's $(i=3,4,5,6,7)$ is joined to one or none of c_{6}, c_{7}, c_{8}.
(iii) Some r_{i} 's $(i=3,4,5,6)$ are joined by red line to one point among c_{6}, c_{7}, c_{8} and some r_{i} 's $(i=3,4,5,6)$ are not joined to c_{6}, c_{7}, and c_{8}.

We need to consider only two key cases 1) and 2). It will become clear later that the required results, for all subcases with condition (iii), will follow from the results of 1) or 2).

1) Two of r_{i} 's $(i=3,4,5,6)$ are joined to one of c_{6}, c_{7}, c_{8} and one of the remaining r_{i} 's is joined to none of c_{6}, c_{7}, c_{8}.

Suppose two of r_{i} 's $(i=3,4,5,6)$ are joined to one of c_{6}, c_{7}, c_{8} are r_{3}, r_{5} and one of r_{i} is joined to none of c_{6}, c_{7}, c_{8} is r_{4}.

Suppose that r_{3} is joined to one of c_{6}, c_{7} and c_{8}, say c_{8}, and since r_{3} is joined to c_{13}, c_{14}, there are four other red lines joining r_{3}. From these four red lines, either at least two of the red lines are joined to points among $c_{1}, c_{2}, \ldots, c_{5}$ or at least two red lines are joined to points among $c_{9}, c_{10}, \ldots, c_{12}$.

For the cases when three or more red lines joining r_{3} and points among $c_{1}, c_{2}, \ldots, c_{5}$ or $c_{9}, c_{10}, \ldots, c_{12}$, we can see that red $K_{2,4}$ is contained in the $K_{7,14}$, see Table 2.25.

Thus we consider when each of r_{3}, r_{5} has two red lines that are joined to points among $c_{1}, c_{2}, \ldots, c_{5}$, and two red lines that are joined to points among $c_{9}, c_{10}, \ldots, c_{12}$.

Suppose that r_{3} is joined by red lines to two points among $c_{1}, c_{2}, \ldots, c_{5}$, say c_{1}, c_{2}, and joined by red lines to two points among $c_{9}, c_{10}, \ldots, c_{12}$, say c_{9}, c_{10}. For this case there are cases when the $K_{7,14}$ does not contain red $K_{2,4}$, see Table 2.26, so we consider r_{4}.

Since r_{4} is joined to c_{13} and c_{14}, there are five other red lines joining r_{4}. For the cases when at least four of the red lines are joined to points among $c_{1}, c_{2}, \ldots, c_{5}$ or when at least four of the red lines are joined to points among $c_{9}, c_{10}, c_{11}, c_{12}$, we can see that the $K_{7,14}$ contains red $K_{2,4}$. Thus we shall consider the case when there are three red lines that are joined to points among $c_{1}, c_{2}, \ldots, c_{5}$ or there are three red lines that are joined to points among $c_{9}, c_{10}, c_{11}, c_{12}$. When there are at least two points among $c_{1}, c_{2}, c_{9}, c_{10}$ that are joined by red line to both r_{3} and r_{4}, we can see that the $K_{7,14}$ contains red $K_{2,4}$. Thus we consider when there is at most one point among $c_{1}, c_{2}, c_{9}, c_{10}$ that is joined by red line to both r_{3} and r_{4}.

Consider the case when there is one point among $c_{1}, c_{2}, c_{9}, c_{10}$ that is joined by red line to both r_{3} and r_{4}, say c_{10}. There are cases when the $K_{7,14}$ does not contain red $K_{2,4}$ see Table 2.32 for example, so we consider r_{5}.

	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}	c_{7}	c_{8}	c_{9}	c_{10}	c_{11}	c_{12}	c_{13}	c_{14}
r_{1}	1	1	1	1	1	1	1	1						
r_{2}						1	1	1	1	1	1	1		
r_{3}	1	1						1	1	1			1	1
r_{4}			1	1						1	1	1	1	1

Table 2.32.
Since r_{5} is joined to c_{13} and c_{14} and is joined to one of c_{6}, c_{7}, c_{8}, say c_{7}. If r_{5} is not joined by red lined to c_{5}, there are four other red lines joining r_{5}. Either there are at least two red lines that are joined to points among $c_{1}, c_{2}, c_{9}, c_{10}$ or at least two red lines that are joined to points among $c_{3}, c_{4}, c_{10}, c_{11}, c_{12}$, we can see that the $K_{7,14}$ contains red $K_{2,4}$. If r_{5} is joined to c_{5}, there are three other red lines joining r_{5}. Either there are at least two red lines that are joined to points among $c_{1}, c_{2}, c_{9}, c_{10}$ or at least two red lines that are joined to points among $c_{3}, c_{4}, c_{10}, c_{11}, c_{12}$, we can see that the $K_{7,14}$ contains red $K_{2,4}$, see Table 2.33 for example.

	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}	c_{7}	c_{8}	c_{9}	c_{10}	c_{11}	c_{12}	c_{13}	c_{14}
r_{1}	1	1	1	1	1	1	1	1						
r_{2}						1	1	1	1	1	1	1		
r_{3}	1	1						1	1	1			1	1
r_{4}			1	1						1	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
r_{5}		1			1		1				$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$

Table 2.33.

Consider the case when all of $c_{1}, c_{2}, c_{9}, c_{10}$ are not joined to r_{4}. There are cases when the $K_{7,14}$ does not contain red $K_{2,4}$, see Table 2.34 for example, so we consider r_{5}.

	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}	c_{7}	c_{8}	c_{9}	c_{10}	c_{11}	c_{12}	c_{13}	c_{14}
r_{1}	1	1	1	1	1	1	1	1						
r_{2}						1	1	1	1	1	1	1		
r_{3}	1	1						1	1	1			1	1
r_{4}			1	1	1						1	1	1	1

Table 2.34.
Since r_{5} is joined to c_{13} and c_{14} and is joined by red line to one point among c_{6}, c_{7}, c_{8}, say c_{7}, there are four other red lines joining r_{5}. Either there are at least two red lines that are joined to points among $c_{1}, c_{2}, c_{9}, c_{10}$ or at least two red lines that are joined to points among $c_{3}, c_{4}, c_{5}, c_{11}, c_{12}$, we can see that the $K_{7,14}$ contains red $K_{2,4}$, see Table 2.35 for example.

	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}	c_{7}	c_{8}	c_{9}	c_{10}	c_{11}	c_{12}	c_{13}	c_{14}
r_{1}	1	1	1	1	1	1	1	1						
r_{2}						1	1	1	1	1	1	1		
r_{3}	1	1						1	1	1			1	1
r_{4}			1	1	$\mathbf{1}$						1	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
r_{5}	1				$\mathbf{1}$		1			1		$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$

Table 2.35.
2) One of r_{i} 's $(i=3,4,5,6)$ is joined to one of c_{6}, c_{7}, c_{8} and two of the remaining r_{i} 's are joined to none of c_{6}, c_{7}, c_{8}.

Suppose that one of r_{i} 's $(i=3,4,5,6)$ that is joined to one of c_{6}, c_{7}, c_{8} is r_{3} and two of r_{i} that are joined to none c_{6}, c_{7}, c_{8} are r_{4}, r_{5}.

From Table 2.34, we can see that there are cases when the $K_{7,14}$ does not contain red $K_{2,4}$, so we consider r_{5}. Since r_{5} is joined to c_{13} and c_{14}, there are five other red lines joining r_{5}. Either there are at least three red lines that are joined to points among $c_{1}, c_{2}, c_{9}, c_{10}$ or at least three red lines that are joined to points among $c_{3}, c_{4}, c_{5}, c_{11}, c_{12}$, we can see that the $K_{7,14}$ contains red $K_{2,4}$, see Table 2.36 for example.

	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}	c_{7}	c_{8}	c_{9}	c_{10}	c_{11}	c_{12}	c_{13}	c_{14}
r_{1}	1	1	1	1	1	1	1	1						
r_{2}						1	1	1	1	1	1	1		
r_{3}	1	1						1	1	1			1	1
r_{4}			1	1	1						$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
r_{5}	1				1					1	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$

Table 2.36.
(2.2.2) Two of r_{i} 's $(i=3,4,5,6,7)$, say r_{3} and r_{4}, are joined to one
of c_{13} and c_{14}.

In these cases there are three of r_{i} 's $(i=3,4,5,6,7)$, say r_{5}, r_{6} and r_{7}, that are joined to both c_{13} and c_{14}.

From what we have mentioned at the end of (2.1), here we need to consider only the cases when r_{3} and r_{4} are not joined to c_{6}, c_{7}, and c_{8}.
(a) r_{3} and r_{4} are joined by red lines to c_{13}.

From Table 2.23, we can see that the $K_{7,14}$ contains red $K_{2,4}$. Similarly, if r_{3} and r_{4} are joined by red lines to c_{14}, we can see that red $K_{2,4}$ is also formed.
(b) r_{3} is joined by red lines to c_{13} and r_{4} is joined by red lines to c_{14}.

Since r_{3} is joined to c_{13} and is not joined to c_{6}, c_{7}, and c_{8}, there are six other red lines joining r_{3}. From these six red lines joining r_{3}, either at least three of the red lines are joined to points among $c_{1}, c_{2}, \ldots, c_{5}$ or at least three of the red lines are joined to points among $c_{9}, c_{10}, \ldots, c_{12}$. Consider the cases when there are at least four points among $c_{1}, c_{2}, \ldots, c_{5}$ or at least four points among $c_{9}, c_{10}, \ldots, c_{12}$ that are joined to r_{3}. In either case, we can see that red $K_{2,4}$ is contained in the $K_{7,14}$.

Thus we consider the cases when there are three points among $c_{1}, c_{2}, \ldots, c_{5}$ and three points among $c_{9}, c_{10}, \ldots, c_{12}$ that are joined to r_{3} by red lines. Suppose these six points are $c_{1}, c_{2}, c_{3}, c_{10}, c_{11}, c_{12}$, we can see that there are cases when the $K_{7,14}$ does not contain red $K_{2,4}$, so we consider r_{4}.

Since r_{4} is joined to c_{14}, there are six other red lines joining r_{4}. From these six red lines, we can see that there are at least three lines are joined to points among $c_{1}, c_{2}, \ldots, c_{5}, c_{9}, c_{10}, \ldots, c_{12}$ that are joined to both r_{3} and r_{4}. There are cases when the $K_{7,14}$ does not contain red $K_{2,4}$ see Table 2.37 for example, so we consider r_{i} 's $(i=5,6,7)$. We consider three subcases.

	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}	c_{7}	c_{8}	c_{9}	c_{10}	c_{11}	c_{12}	c_{13}	c_{14}
r_{1}	1	1	1	1	1	1	1	1						
r_{2}						1	1	1	1	1	1	1		
r_{3}	1	1	1							1	1	1	1	
r_{4}			1	1	1				1		1	1		1

Table 2.37.
From what we have mentioned at the end of (ii) of (b) in (2.2.1), here we need to consider only the cases when r_{5}, r_{6}, and r_{7} are joined to one and none of c_{6}, c_{7}, and c_{8}.
(i) All r_{i} 's $(i=5,6,7)$ are not joined to c_{6}, c_{7}, c_{8}.

From Table 2.37, we can see that r_{3} is joined to $c_{1}, c_{2}, c_{3}, c_{10}, c_{11}, c_{12}$ and r_{4} is joined to $c_{3}, c_{4}, c_{5}, c_{9}, c_{11}, c_{12}$. We consider r_{5}. Since r_{5} is joined to c_{13}, c_{14}, then there are five other red lines joining r_{5}. From these five red lines, either at least three lines are joined to points among $c_{1}, c_{2}, c_{3}, c_{10}, c_{11}, c_{12}$ or at least three lines are joined to points among $c_{3}, c_{4}, c_{5}, c_{9}, c_{11}, c_{12}$. Suppose that these five points are $c_{1}, c_{2}, c_{4}, c_{9}, c_{10}$. Since r_{3} and r_{5} are joined to c_{13}, we can see that the $K_{7,14}$
contains red $K_{2,4}$ see Table 2.38 for example.

	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}	c_{7}	c_{8}	c_{9}	c_{10}	c_{11}	c_{12}	c_{13}	c_{14}
r_{1}	1	1	1	1	1	1	1	1						
r_{2}						1	1	1	1	1	1	1		
r_{3}	$\mathbf{1}$	$\mathbf{1}$	1							$\mathbf{1}$	1	1	$\mathbf{1}$	
r_{4}			1	1	1				1		1	1		1
r_{5}	$\mathbf{1}$	$\mathbf{1}$		1					1	$\mathbf{1}$			$\mathbf{1}$	1

Table 2.38.
(ii) Each of all r_{i} 's $(i=5,6,7)$ is joined to one of c_{6}, c_{7}, c_{8}.

Since r_{5} is joined to c_{13}, c_{14} and is joined to one of c_{6}, c_{7}, c_{8}, say c_{8}, then there are four other red lines joining r_{5}. From these four red lines, either at least two lines are joined to points among $c_{1}, c_{2}, c_{3}, c_{10}, c_{11}, c_{12}$ or at least two lines are joined to points among $c_{3}, c_{4}, c_{5}, c_{9}, c_{11}, c_{12}$. For this case there are cases when the $K_{7,14}$ does not contain red $K_{2,4}$, see Table 2.39 for example, so we consider r_{6}.

	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}	c_{7}	c_{8}	c_{9}	c_{10}	c_{11}	c_{12}	c_{13}	c_{14}
r_{1}	1	1	1	1	1	1	1	1						
r_{2}						1	1	1	1	1	1	1		
r_{3}	1	1	1							1	1	1	1	
r_{4}			1	1	1				1		1	1		1
r_{5}		1		1				1	1	1			1	1

Table 2.39.
Since r_{6} is joined to c_{13}, c_{14} and is joined by red line to one point among c_{6}, c_{7}, c_{8}, say c_{7}, there are four other red lines joining r_{6}. From these four red lines, either there are at least three red lines that are joined to points among $c_{1}, c_{2}, c_{3}, c_{10}, c_{11}, c_{12}$ or there are at least three red lines that are joined to points among $c_{3}, c_{4}, c_{5}, c_{9}, c_{11}, c_{12}$ or there are at least two red lines that are joined to points among $c_{2}, c_{4}, c_{9}, c_{10}$. We can see that the $K_{7,14}$ contains red $K_{2,4}$, see Table 2.40 for example.

	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}	c_{7}	c_{8}	c_{9}	c_{10}	c_{11}	c_{12}	c_{13}	c_{14}
r_{1}	1	1	1	1	1	1	1	1						
r_{2}						1	1	1	1	1	1	1		
r_{3}	$\mathbf{1}$	1	1							$\mathbf{1}$	$\mathbf{1}$	1	$\mathbf{1}$	
r_{4}			1	1	1				1		1	1		1
r_{5}		1		1				1	1	1			1	1
r_{6}	$\mathbf{1}$				1		1			$\mathbf{1}$	$\mathbf{1}$		$\mathbf{1}$	1

Table 2.40.
(iii) Some r_{i} 's $(i=5,6,7)$ are joined to one of c_{6}, c_{7}, c_{8} and some $r_{i}{ }^{\prime}$ s $(i=5,6,7)$ are not joined to c_{6}, c_{7}, c_{8}.

For this case we can see that there is at least one of r_{5}, r_{6}, and r_{7} that is not joined to c_{6}, c_{7}, c_{8}. From subcase (i) and Table 2.38, we can see that the $K_{7,14}$ contains red $K_{2,4}$.
(2.2.3) None r_{i} 's $(i=3,4,5,6,7)$ are joined to one of c_{13} and c_{14}.

In these cases all r_{i} 's $(i=3,4,5,6,7)$ are joined to both c_{13} and c_{14}.
From the case (2.2.1), since if four of r_{i} 's $(i=3,4,5,6,7)$ are joined to c_{13} and c_{14} then the $K_{7,14}$ contains red $K_{2,4}$. Therefore in the case (2.2.3) the $K_{7,14}$ contains red $K_{2,4}$.

Hence,

$$
\begin{equation*}
r_{t}(K(2,4), K(2,4)) \leq 7 . \tag{2.3}
\end{equation*}
$$

Therefore, from the inequalities (2.1) and (2.3), we have $r_{t}(K(2,4), K(2,4))=7$ as required.

Acknowledgements : We would like to thank Nakhon Sawan Rajabhat University for the financial supports. Also, we would like to thank the Graduate School and the Department of Mathematics, the Faculty of Science of Chiang Mai University, Thailand for the facilities they provided.

References

[1] G. Chartrand, L. Lesniak, Graphs and Digraphs, Fourth Edition, Chapman \& Hall /CRC, Boca Raton, Fl, USA, 2005.
[2] L.W. Beineke, A.J. Schwenk, On a bipartite form of the Ramsey problem, Congress. Numerantium 15 (1975) 17-22.
[3] K. Leamyoo, Determination of some tripartite Ramsey numbers, Master's thesis, Chiang Mai University, Thailand, (2010).
[4] V. Longani, Some Bipartite Ramsey Numbers, Southeast Asian Bulletin of Mathematics 26 (4) (2003) 583-592.
(Received 25 March 2012)
(Accepted 23 April 2012)

Thai J. Math. Online @ http://www.math.science.cmu.ac.th/thaijournal

[^0]: ${ }^{1}$ Corresponding author email: vites@chiangmai.ac.th (V. Longani)
 Copyright (c) 2012 by the Mathematical Association of Thailand. All rights reserved.

