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Abstract : In this research, we create and prove a strong convergence theorem by

using the hybrid iterative algorithm which was proposed by Yao et al. [Nonlinear
Anal. 71 (2009) 4997-5002] for finding the common element of fixed point set
of a Lipshitz pseudo-contraction and the set of equilibrium problem in Hilbert
spaces. Moreover, the results not only cover the original research but can also be
applied for finding the common element of the set of zeroes of a Lipshitz monotone
mapping and the set of equilibrium problem in Hilbert spaces.
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1 Introduction

Let H be a real Hilbert space with inner product (-,-) and norm || - ||. Let C
be a nonempty closed convex subset of H and F' : C' x C — R be a bifunction,
where R is the set of real numbers. The equilibrium problem (for short, EP) is to
find z € C such that

1Corresponding author email: kasamsuku@nu.ac.th (K. Ungchittrakool)

Copyright (© 2012 by the Mathematical Association of Thailand.
All rights reserved.



182 Thai J. Math. 10 (2012)/ A. Jarernsuk and K. Ungchittrakool

F(z,y) >0,Vy € C. (1.1)

The set of solution (1.1) is denote by EP(F'). Given a mapping T : C — H and
let F(z,y) = (Tx,y —x) for all z,y € C. Then, x € EP(F) if and only if z € C'is
a solution of the variational inequality (Tz,y — ) > 0 for all y € C. In addition,
there are several other problems, for example, the complementarity problem, fixed
point problem and optimization problem, which can also be written in the form of
an FP. In other words, the EP is an unifying model for several problems arising
in physics, engineering, science, optimization, economics, etc. There are many
papers have appeared in the literature on the existence of solutions of EP (see,
for example [1-4] and references therein). Motivated by the work [5-7], Takahashi
and Takahashi [8] introduced an iterative scheme by the viscosity approximation
method for finding a common element of the set of solutions of the EP (1.1) and
the set of fixed point of nonexpansive mapping in the setting of Hilbert space. They
also studied the strong convergence of the sequences generated by their algorithm
for a solution of the EP which is also a fixed point of a nonexpansive mapping
defined on a closed convex subset of a Hilbert space.

Recall, a mapping T' with domain D(T) and range R(T') in H is called non-
expansive if

T2z — Tyl < ||z —yll,Vz,y € D(T).

The mapping T is said to be a strict pseudo-contraction if there exists a con-
stant 0 < k < 1 such that

|72 = Tyl < lle — y|2 + &ll(I = T)x — (I = T)y|%, Yo,y € D(T).  (12)

In this case, T' may be called as k-strict pseudo-contraction mapping. In the even
that k = 1, T is said to be a pseudo-contraction, i.e.,

1Tz = Ty|* < ||z — y||* + |(I = T)z — (I = T)y||*, Y,y € D(T). (1.3)
It is easy to see that (1.3) is equivalent to
(x—y,(I -T)x— (I -T)y) >0,Yz,y € D(T).
By definition, it is clear that
nonexpansive = strict pseudo-contraction = pseudo-contraction.

However, the following examples show that the converse is not true.

Example 1.1. Take X =R?* B={z € R?: |z|| <1}, By ={z € B: [|z] < 3},
By={xe€B:3<|zf| <1}. Ifx = (a,b) € X we define z* to be (b,—a) € X.
DefineT : B — B by

T x4+t x € By,
T = T 1
W—(E‘f’l' N CEEBQ.

Then, T is Lipschitz and pseudo-contraction but not a strict pseudo-contraction.
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Example 1.1 is due to Chidume and Mutangadura [9)].

Example 1.2. Take X = R! and define T : X — X by Tz = 3z. Then, T is a
strict pseudo-contraction but not a nonexpansive mapping.

Construction of fixed points of nonexpansive mappings via Mann’s algorithm
[10] has extensively been investigated in the literature; See, for example [10-16]
and references therein. However we note that Mann’s iterations have only weak
convergence even in a Hilbert space (see e.g., [17]). If T is a nonexpansive self-
mapping of C, then Mann’s algorithm generates, initializing with an arbitrary
xo € C, a sequence according to the recursive manner

Tnt1l = nZpn + (1 — ap)Tx,, Vn >0, (1.4)

where {a,}2°, is a real control sequence in the interval (0,1). If T : C — C'is
a nonexpansive mapping with a fixed point and if the control sequence {a,,}52
is chosen so that Y o, (1 — o) = 0o, then the sequence {z,} generated by
Mann’s algorithm converges weakly to a fixed point of T'. Reich [12] showed that
the conclusion also holds good in the setting of uniformly convex Banach spaces
with a Fréchet differentiable norm. It is well know that Reich’s result is on of the
fundamental convergence results. Recently, Marino and Xu [18] extended Reich’s
result [12] to strict pseudo-contraction mapping in the setting of Hilbert spaces.
From a practical point of view, strict pseudo-contractions have more powerful
applications than nonexpansive mappings do in solving inverse problems (see [19]).
Therefore, it is important to develop theory of iterative methods for strict pseudo-
contractions. Indeed, Browder and Petryshyn [20] prove that if the sequence {z,}
is generated by the following:

Tn+1 = Opndn + (1 - an)TInv n Z 07 (15)

for any starting point z9 € C, {«,} is a constant sequence such that k < a,, < 1,
{z,} converges weakly to a fixed point of strict pseudo-contraction T'. Marino and
Xu [18] extended the result of Browder and Petryshyn [20] to Mann’s iteration
(1.4), they proved {x,} converges weakly to a fixed point of T, provided the
control sequence {«,} satisfies the conditions that x < «, < 1, for all n and
22 o(an — k)(1 - ) = oc.

In order to obtain a strong convergence theorem for the Mann iteration method
(1.4) to nonexpansive mapping, Nakajo and Takahashi [21] modified (1.4) by em-
ploying two closed convex sets that are created in order to form the sequence
via metric projection so that strong convergence is guaranteed. Later, it is often
referred as the hybrid algorithm or the CQ algorithm. After that, the hybrid
algorithm have been studied extensively by many authors (see, for example [18,
22-27]).

A few years ago, Takahashi and Zembayashi [28, 29] proposed some hybrid
methods to find the solution of fixed point problem and equilibrium problem in
Banach spaces. Subsequently, many authors (see, e.g. [30-34] and references
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therein.) have used the hybrid methods to solve fixed point problem and equilib-
rium problem.

Recently, Yao et al. [35] introduced the hybrid iterative algorithm which
just involved one sequence of closed convex set for pseudo-contractive mapping
in Hilbert spaces as follows:

Let C be a nonempty closed convex subset of a real Hilbert space H. Let
T : C — C be a pseudo-contraction. Let {a,} be a sequence in (0,1). Let
2o € H. For C; = C and x1 = Pg, (x0), define a sequence {z,,} of C as follows:

Yn = (1 - O‘n)xn + anTZnu
Cry1 ={v € Ch: lan(I = T)yal® < 200 (@0 — v, (I = T)yn) }, (1.6)

LTn+1 = Pcn+1(I0)'

Theorem 1.3 ([35]). Let C' be a nonempty closed conver subset of a real Hilbert
space H. Let T : C — C be a L-Lipschitz pseudo-contraction such that F(T) # @.
Assume the sequence {ay,} C [a,b] for some a,b € (0, %H) Then the sequence
{zn} generated by (1.6) converges strongly to Ppry(x0).

Motivated and inspired by the above research work, in this paper, by employing
(1.6) we create a hybrid algorithm to find the common element of fixed point
set of a Lipshitz pseudo-contraction and the set of equilibrium problem. More
precisely, we also provide some applications of the main theorems for finding the
common element of the set of zeroes of a Lipshitz monotone mapping and the set
of equilibrium problem in Hilbert spaces.

2 Preliminaries

Let H be a real Hilbert space with inner product (-,-) and norm || - || and let
C be a closed convex subset of H. For every point x € H there exists a unique
nearest point in C, denoted by Pc(z), such that

le — Pox|| < lle —yll VyeC,

where Pg is called the metric projection of H onto C. We know that Pc is a
nonexpansive mapping. It is also known that H satisfies Opial’s condition, i.e.,
for any sequence {z,,} with z,, — x, the inequality

liminf ||z, — z|| < liminf ||z, — y||
n—oo n—oo

holds for every y € H with y # x.

For a given sequence {z,,} C C, let wy(x,) = {z : Iz, — =} denote the weak
w-limit set of {z,}.

Now we collect some lemmas which will be used in the proof of the main result
in the next section. We note that Lemmas 2.1 and 2.2 are well known.

Lemma 2.1. Let H be a real Hilbert space. There holds the following identities
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1 lo—yl? = llzl® = llyl* - 2(x —y,y) Va,y € H.

2. Az + (1= Nyll? = Azl + (1 = Vlyl? = A0 = Nz — y[|* Yo,y € H and
A€ [0,]1]

Lemma 2.2. Let C be a closed convex subset of real Hilbert space H. Given x € H
and z € C. Then z = Pox if and only if there holds the relation

(x—2zy—2)<0 VYyeC.

For solving the equilibrium problem for a bifunction F' : C' x C — R, let us
assume that F satisfies the following condition:

(Al) F(z,z) =0 for all z € C;

(A2) F is monotone, i.e., F(z,y) + F(y,z) <0 for all z,y € C;

(A3) for each z,y,z € C, limy o F(tz + (1 — t)z,y) < F(z,y);

(A4) for each z € C, y — F(xz,y) is convex and lower semicontinous.

The following lemma appears implicitly in [1].

Lemma 2.3 ([1]). Let C be a nonempty closed convex subset of a Hilbert space H
and let F be a bifunction of C x Cinto R satisfying (A1) — (A4). Let r > 0 and
x € H. Then, there exists z € C such that

1
F(z,y)+ ;(y—z,z—x) >0 forall yeC.
The following lemma was also given in [5].
Lemma 2.4 ([5]). Assume that F : C x C — R satisfying (A1) — (A4). For r >
0 and x € H, define a mapping T, : H — C as follows:

Tsz{zeC:F(z,y)—l—l(y—Z,Z—@ZO,VyEC}
r

for all x € H. Then, the following hold:
1. T, is single-valued;

2. T, is firmly nonexpansive, i.e., for any x,y € H, ||Trx — Tyy||*> < (Trx —
TTy7 T — y>)

3. F(T,) = EP(F);
4. EP(F) is closed and convex.

The following lemma provides some useful properties of firmly nonexpansive
mapping.

Lemma 2.5. T is firmly nonezpansive if and only if (I—T) is firmly nonexpansive.
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Proof. Suppose first that T is firmly nonexpansive. We want to show that (I —T)
is firmly nonexpansive. Consider,

I(I =Tz = (I =T)yl* = [(Tz = Ty) — (x = y)|I”

Tz — Ty||? = 2(Tx — Ty, x —y) + ||z — y|>
< —(Tz—Ty,x —y) + [ —y|?

— (I~ T)a— (I - T)y,z—y).

Conversely, assume that (I — T') is firmly nonexpansive. Consider,
[Tz —Ty|* = (I = T)z — (I = T)y) — (z —y)|I”
= (I =Tz~ (I = T)y|* = 2((( = Tz — (I = T)y),z — y) + [l= — yI?
< I -Te— (I -T)y,z—y)+|lz —yl
=(Tx—Ty,z—y).
O

Lemma 2.6 ([36]). Let H be a real Hilbert space, C a closed convex subset of H
and T : C'— C a continuous pseudo-contractive mapping, then

1. F(T) is closed convex subset of C.

2. I—T is demiclosed at zero, i.e., if {x,} is a sequence in C' such that x,, — z

and (I —T)xy, — 0, then (I —T)z=0.

Lemma 2.7 ([37]). Let C be a closed convex subset of H. Let {x,} be a sequence
in H andu € H. Let ¢ = Pou. If {xn} is such that wy,(z,) C C and satisfies the
condition

ln —ull < llu—qll Vn.

Then x, — q.

3 Main result

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space
H,T:C — C be L-Lipschitz pseudo-contraction and F' be a bifunction of C' x C
into R satisfying (A1) — (A4) with F := F(T)NEP(F) # @. Let x9 € H. For
Cy = C and x1 = Po, (x0), define a sequence {x,,} of C as follows:
Yn = (1 - an)xn + anTZnu
Zn = (1 - ﬁn)xn + ﬁnuna
un € Csuch that F(un,,y) + %(y — Uy Uy, — Tp) > 0,
Cr1={v € Cp: lan(T = T)ynll* + (1 — 2B0)||2n — un?
< 2an<xn -, (I - T)yn> + 2<xn -, (I - Trn)zﬂ + (‘Tn - ’U,n)>
+20Bn L|zn — un||lyn — n + an(l = T)ynl},

LTn+1 = Pcn+1 (xo)
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Assume the sequence {an}, {Bn} and {r,} be such that
(1) O<a§an§b<%ﬂ <1 for alln € N,
(2) 0< B, <1 foralln € N with lim, o 3, =0,
(8) rn >0 for all n € N with iminf, ., > 0.

Then {xy,} converges strongly to Pz(xo).

187

Proof. By Lemma 2.6 (i) and Lemma 2.4 (iv), we see that F'(T) and EP(F) are
closed and convex respectively, then I is also. Hence P is well defined. Next,

we will prove by induction that FcC Cy, for all n € N. Note that FccC= .
Assume that F' C Cy holds for some k > 1. Let p € F, thus p € C. We observe

that

|2k —p — (L — T)ys|?

= llzx — plI* = [l (I = T)yill* — 2ax((I = T)yr, xr — p — ar(I — T)yx)

= |lzx — plI* = [l (I = T)ywll* — 2 (I = T)yx — (I — T)p, yr — p)
=20, ((I = Ty, vk — yx — (L — T)yi)

< lak = plI?> = llaw(I = T)ywll® = 20 ((I = T)yr, ke — yr — ar(I — T)yx)

= llzx — plI> = l@k — y&) + (yr — 2 + (I = T)yi)|I?

—200((I = T)yr» x — yr — (I — T )y

= [lzx = plI* = llen — yrll® = llyx — 2% + an( = Tyl
—2(xk — Yk, yp — ok + o (L = T)y)
—200((I = T)yr» x — yr — (I — T )y

<l = pl* = llze — ywll® = llyn — 21 + ax (I = T)ys?
+ 2k — yp — (I = T)yr, 21 — Yo — (I = Ty

Consider the last term of (3.2) we obtain

[k —ye — (L = T)yr, y — 21 + (L — T)y)|
= apl(vr — Tz — (L = T)yr, yr — 21 + o (I — T)ys)|

(3.2)

= ak|<wk —Txp +Txp — Tz, — (I — T)yk,yk — T + ak(I — T)yk>|

= ax[((I = T)xr, — (I = T)yr, yr — v + (I — T)yx)
+ (Taxr — Tzg, g — vk + ax (I — T)yi)|
< ap(L+ Dz — ylllye — 26 + ax(I = T)yxll
+ax Ll — zilllyk — 2k + (I — T)yx||
< ar(L+1)
- 2
+ arBeLl|lze — ukllllyx — 26 + ar(l = T)yxl-

(lze =yl + llyx — 2% + (X — T)yrl?)
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Substituting (3.3) into (3.2), we obtain

zr —p — (I = T)yi||®
<lww = pl? = llew = yll® = lye — 2 + (I = Tyl
+ ar(L+ D (llze = yell® + llyk — 2 + ax (I = T)yi|l?)
+ 200 Be Lz — wellye — 2k + ar(l — T)yx||
<lwk = plI? + 200 Bk Ll — wn ||y — x5 + ax (I = Tyl (3.4)
Notice that

ek —p—r(I =Tyl = [lzx—pl* =20 @k —p, I =T)yx)+llax(I=T)yel*. (3.5)
Therefore, from (3.4) and (3.5), we get
[l (I =T)ykl|> < 20 (xx —p, (I—T)yk>+2akﬂkL||éEk—uk||||yk—$k+ak(I—T)3ék(|5|-
On the other hand, by using Lemma 2.5 we obtain (39
ox —p — Be(I = Ty, )22
= llex = plI> = 18I = T zill® = 26 ((T = Ty) 2k, o — p — Bi(I — Try ) 2k)
= llex — plI? = 18I = Tr)zill® = 26T = Tp) 2k — (I = Tr )p, 26 — p)
= 201((I = T2, o — 21 — B (I — Ty, ) 21
<lew = plI* = 186 (I = Tr) 2l = 208 (I = Tr ) zhs wr — 20 — Bu(I — Ty ) 21)
= [lzx = plI* = 18I = Tr,) 2 ||
+ (186 = T zill® = Nl — 2ll® + Nl — 21 — Be(I = Tp) 21 ]1?)
= Iz = 21) + (zx = DI° = llew = 2zll® + 186 (I = Tr)w = BT = Tp) 2|l
= llex — zll® + 2(ek — 21, 21 — ) + [l25 — 21> = [l — 2l
+ 186 (I = T )ar, — Br(I = Tr, )z 1?
= 2wg — 2k, (2 — x3) + (@1, — p)) + (1 = Be)(zx — p) + Br(Trx — p)|1?
+ 18I = Ty )r — Br(I — Ty 2 1?
< 2wy — p, Be(I = Ty k) — 2|z, — 2)|* + Bill Tk — pl?
— Br(1 = Bo)llex — Tk + (1 = Bi)llew — plI> + Bk — 2112
< 2ay, — p, B = Tp)w) + Bellew — plI* + (1 = Bi)llew — pl?
= Br(1 = Be)lles — Trpaw | + BRI = Try ) |2
= 2(zx — p, Br(I = Tp, )ar) + |lzn — plI” — Bre(1 — Bi)llar — ur?
+ Bitlles — . (3.7)
Notice that

lar —p—Be(I =Ty )zl = ||k —plI* =26k (xr —p, (I =Ty )zk) + B | (I =Ty, ) 2] 2.
(3.8)

NG
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Combining (3.7) and (3.8) and then it implies that
Bre(1 = Bi)llzx — urll® < Brlwr — p, (I = Tr)zk + (zr — up)) + Billzn — ui?
— BT = Tr) 2|l
<284 (g —p, (I = T )zi + (wx — ) + Billog — ugll.
Since §,, > 0 for all n, so we get
(1 — Qﬁk)HIk — uk||2 < 2<:Ek - P, (I — Trk)zk + ({Ek — uk)> (39)

It follows form (3.6) and (3.9) we obtain

llok (I = T)ykll? + (1 — 26|, — ug|?

< 20p(xr —p, (I = T)yx) + 2{xk —p, (I = Tp,) 2k + (5 — ug))
+ 20k Bk L7k — ug||yx — or + ar (I = T)yxl|-

Therefore, p € Cy41. By mathematical induction, we have Fc C, for all n € N.
It is easy to check that C), is closed and convex and then {x,,} is well define. From

xn = Po, (x0), we have (zg — xp, 2, —y) > 0 for all y € C,,. Using Fc C,, we
also have (g — &, x, —u) > 0 for all u € F. So, for u € F, we have

0 < {x0— Tpn,Tn — u) = (Tg — Tp, Ty, — To + Lo — )

—|lzo — l’n||2 + (o — Tn, x0 — u)

IN

—llzwo = @nll* + llzo — zallzo — ull.

Hence, _
lzo — zn|| < ||lwo —ul|| forall ue F. (3.10)

This implies that {z,} is bounded and then {y,}, {Tyn}, {zn}, {Tr, 2n} and {u,}
are also.
From z,, = P¢, (z0) and 2,41 = Pc, ., (0) € Cht1 C Cp, we have

(o — Tpy Ty — Tpy1) > 0. (3.11)
Hence,

0 < (o —Tn,Tn — Tnt1) = (To — Tn, Tn — To + Lo — Try1)

= _”IO - {En||2 + <I0 — Tn,To — In+1>

< —llwo = @all® + llwo — zallllzo — zatall,
and therefore ||zg — z,| < ||®o — Zn+1]|, which implies that lim, o |2, — Zo||
exists. From Lemma 2.1 and (3.11), we obtain

[ Zn+1 — xn”Q = [(znt+1 — x0) = (Tn — $0)||2

= ||Zn+1 — zol|* = |0 — 20|* = 2(@nt1 — Tn, Tn — T0)

<Nzns1 — zol* = [lzn — 20]|> = 0 as n — oo.
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Since z,41 € Cr41 C C,, we have
l|ovn (1 — T)yn||2 + (1 =28u)|lzn — un||2
S 2an<xn — Tp+41, (I - T)yn> + 2<xn — Tp+41, (I - Trn)zn + (xn - un))
+ 200 Bn Ll|zn, — un|l||yn — 0 + (I = T)yn]l = 0 as n — oco.
Therefore, we obtian
lyn — Tynll = 0 and ||z, —us|| =0 asn — occ. (3.12)
We note that
”xn - Tan < ”xn - yn” + Hyn - Tyﬂ” + ”Tyn - Tan
< (L4 Dllzn = yall + lyn — Tyall
< an(L+ Df|zn = Tzal| + |yn — Tynll (3.13)
< an(L+Dllwn — Tan|| + an(L+ D[ T2n — Tznl| + [[yn — Tyal|
< an(L+ D[y = Tan|| + anfnL(L + 1) |20 — unll + [[yn — Tyl

that is,
anfrL(L+1) 1
Next, we will show that _
wy(zy) C F. (3.14)

Since {x,} is bounded, the reflexivity of H guarantees that w,(z,) # . Let
D € wy(Zn), then there exists a subsequence {zy,} of {x,} such that z,, — p and
by Lemma 2.6 (ii) we have p € F(T). On the other hand, since ||z, — u,| — 0

and z,, — p, so we have u,, — p. It follows from w,, = T, x, and (A2) that
1
— (Y = Un, Up — X)) > F(y,uy,) forall yeC.
Tn

Replacing n by n;, we have

<y — Uy, u> > F(y, un,).
T,

By using (A4) and (3), we obtain 0 > F(y,p) for all y € C. So, from (Al) and
(A4) we have

0= F(yt,y:) = Flye, ty + (1 — t)p) < tF(ye,y) + (1 — t)F(ye, p) < tF(ye,y)-
Dividing by ¢, we have
F(y;,y) >0 forall yeC.

From (A3) we have 0 < limy_,g F(yz,y) = limy_o F(ty + (1 — t)p,y) < F(p,y) for
all y € C, and hence p € EP(F). So, p € F(T) N EP(F) = F and then we have
(3.14). Therefore, by inequality (3.10) and Lamma 2.7, we obtain {z, } converges
strongly to Pz(z0). This completes the proof. O
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Corollary 3.2 (Yao et al. [35, Theorem 3.1]). Let C be a nonempty closed convex
subset of a real Hilbert space H. Let T : C' — C be L-Lipschitz pseudo-contraction
such that F(T) # @. Assume the sequence {au,}be such that 0 < a < o, < b <
LL—H < 1 for all n. Then the sequence {x,} generated by (1.6) converges strongly
to Pp(r)(2o)-

Proof. Put F(z,y) = 0 for all z,y € C and r, = 1 for all n > 1 in Theorem
3.1. Then, T,, = Pc for all n > 1. So, u, = Pcx, for all n > 1(Note that
x1 = Poxg). Since x, = Po,x9 € C,, C C for all n > 1, so we have u,, = z,, and
then z, = x,, for all n > 1. Thus (I — T}, )zn, = n, — Poxy, =0 for all n > 1. For
this reason, (1.6) is a special case of (3.1). Applying Theorem 3.1, we have the
desired result. [l

Recall that a mapping A is said to be monotone, if (x —y, Az — Ay) > 0 for
all z,y € H and inverse strongly monotone if there exists a real number v > 0
such that (z —y, Ax — Ay) > v||Ax — Ay||? for all 2,y € H. For the second case
A is said to be 7y-inverse strongly monotone. It follows immediately that if A is
~v-inverse strongly monotone, then A is monotone and Lipschitz continuous, that
is, ||Az — Ay|| < %Hx —9||. The pseudo-contractive mapping and strictly pseudo-
contractive mapping are strongly related to the monotone mapping and inverse
strongly monotone mapping, respectively. It is well known that

1. A is monotone <= T := (I — A) is pseudo-contractive.

2. Aisinverse strongly monotone <= T := (I—A) is strictly pseudo-contractive.

Indeed, for (ii), we notice that the following equality always holds in a real Hilbert
space

|(I=A)a—(I-A)y|]2 = |o—y|*+]| Av—Ay|2—2(z—y, Az—Ay) Va,y € H, (3.15)
with out loss of generality we can assume that v € (0, %] and then it yields

(x —y, Az — Ay) > || Az — Ay||®
— —2(x —y, Ax — Ay) < —29|| Az — Ay||2
= (I - Az — I - Apyl? <z —yl* + (1 - 27)[| Az — Ay|]* (via (3.15))
= |Ta—Ty|?> <l —y|* + &lI(I - T)z - (I = T)yl
(where T:= (I — A) and k:=1—27).

Corollary 3.3. Let A: H — H be L-Lipschitz monotone mapping and F be a
bifunction of C x C into R satisfying (A1) — (A4) which A=Y (0)NEP(F) # @. Let
x9 € H. For Cy = C and 1 = Pc, (x0), define a sequence {x,} of C as follows:
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Yn = T — an(Ty, — 2) — @ Azy,

Zn = (1 - ﬁn)xn + Brin,

un € Csuch that F(uy,y) + %(y — Up, Uy — Tpy) >0,

Crng1 = {U € Cn t lanAyal® + (1 = 28,) |20 — un?
< 20 (xy — v, Ayn) + 2(xn — 0, (I = Ty, )2 + (Tn — up))
+200 B0 Ll| 7 — unl|||yn — Tn + anAynll},

Tnt1 = Po,,, (z0).

(3.16)
Assume0 <a<a, <b< %ﬁ <1 foralln eN, {6,} and {r,} be as in Theorem
3.1. Then {x,} converges strongly to Pa—1(0ynp(r)(To)-

Proof. Let T := (I — A). Then T is pseudo-contractive and (L + 2)-Lipschitz.
Hence, it follows from Theorem 3.1, we have the desired result. o
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