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1 Introduction

Let H be a real Hilbert space and K a nonempty, closed and convex subset
of H . Let T : K → K be a mapping. Then T is said to be nonexpansive if
‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ K. The fixed points set of T is denoted by
F (T ).
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In 1967, Halpern [1] introduced the following classical iteration for a nonex-
pansive mapping T : K → K in a real Hilbert space: x0 ∈ K and

xn+1 = αnu+ (1 − αn)Txn, n ≥ 0,

where {αn} ⊂ (0, 1) and u ∈ K is fixed.
Let f : K → K be a contraction (i.e. ‖f(x)−f(y)‖ ≤ α‖x−y‖ for all x, y ∈ K

and α ∈ [0, 1)). In 2000, Moudafi [2] introduced the viscosity approximation
method for a nonexpansive mapping T as follows: x0 ∈ K and

xn+1 = αnf(xn) + (1 − αn)Txn, n ≥ 0,

where {αn} ⊂ (0, 1). There have been researches concerning strong convergence
of viscosity approximation methods for nonexpansive mappings or nonexpansive
semigroups (see, for examples, [3–10]).

A viscosity approximation method with Meir-Keeler contractions was first
studied by Suzuki [11]. Very recently, Petrusel¸ and Yao [12] studied the following
viscosity approximation method with a generalized contraction: x0 ∈ K and

xn+1 = λn+1f(xn) + (1 − λn+1)Tn+1xn, n ≥ 0,

where {λn} ⊂ (0, 1) and {Tn}∞n=1 is a family of nonexpansive mappings on K.
In this paper, motivated by Moudafi [2], Saeidi [7], Suzuki [11] and Petrusel¸ and

Yao [12], we consider the following iterative scheme for a nonexpansive semigroup
S = {T (t) : t ∈ S} defined by x1 ∈ K and

xn+1 = αnf(xn) + βnxn + γnT (µn)xn, n ≥ 1,

where {αn}, {βn} and {γn} are real sequences in (0, 1) with αn +βn + γn = 1 and
f : K → K is a Meir-Keeler contraction.

2 Preliminaries and Lemmas

In this section, we give some preliminaries, definitions, lemmas and proposi-
tions which will be used in our main results.

Let S be a semigroup. We denote by ℓ∞(S) the Banach space of all bounded
real-valued functionals on S with supremum norm. For each s ∈ S, we define the
left and right translation operators l(s) and r(s) on ℓ∞(S) by

(l(s)f)(t) = f(st) and (r(s)f)(t) = f(ts)

for each t ∈ S and f ∈ ℓ∞(S), respectively. Let X be a subspace of ℓ∞(S)
containing 1. An element µ in the dual space X∗ of X is said to be a mean on X
if ‖µ‖ = µ(1) = 1. It is well-known that µ is a mean on X if and only if

inf
s∈S

f(s) ≤ µ(f) ≤ sup
s∈S

f(s)
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for each f ∈ X . We often write µt(f(t)) instead of µ(f) for µ ∈ X∗ and f ∈ X .
Let X be a translation invariant subspace of ℓ∞(S) (i.e. l(s)X ⊂ X and

r(s)X ⊂ X for each s ∈ S) containing 1. Then a mean µ on X is said to be left
invariant (resp. right invariant) if µ(l(s)f) = µ(f) (resp. µ(r(s)f) = µ(f)) for
each s ∈ S and f ∈ X . A mean µ on X is said to be invariant if µ is both left and
right invariant [13–15]. S is said to be left (resp. right) amenable if X has a left
(resp. right) invariant mean. S is a amenable if S is left and right amenable. In
this case, ℓ∞(S) also has an invariant mean. It is known that ℓ∞(S) is amenable
when S is commutative semigroup or solvable group. However, the free group or
semigroup of two generators is not left or right amenable (see [16, 17]). A net
{µα} of means on X is said to be left regular [16] if

lim
α

‖l∗sµα − µα‖ = 0

for each s ∈ S, where l∗s is the adjoint operator of ls.
Let K be a nonempty, closed and convex subset of H . A family S = {T (s) :

s ∈ S} is called a nonexpansive semigroup on K if for each s ∈ S, the mapping
T (s) : K → K is nonexpansive and T (st) = T (s)T (t) for each s, t ∈ S. We denote
by F (S) the set of common fixed points of S, i.e.

F (S) =
⋂

s∈S

F (T (s)) =
⋂

s∈S

{x ∈ K : T (s)x = x}.

Throughout this paper, we denote the open ball of radius r centered at 0 by
Br and also denote the closed convex hull of A ⊂ H by coA. For ε > 0 and a
mapping T : D → H , the set of ε-approximate fixed points of T will be denoted
by Fε(T,D), i.e. Fε(T,D) = {x ∈ D : ‖x− Tx‖ ≤ ε}.

The following lemmas are important in order to prove our main theorem.

Lemma 2.1 ([17–19]). Let f be a function of a semigroup S into a Banach space
E such that the weak closure of {f(t) : t ∈ S} is weakly compact and let X be a
subspace of ℓ∞(S) containing all the functions t 7→ 〈f(t), x∗〉 with x∗ ∈ E∗. Then,
for any µ ∈ X∗, there exists a unique element fµ in E such that

〈fµ, x
∗〉 = µt〈f(t), x∗〉

for all x∗ ∈ E∗. Moreover, if µ is a mean on X then
∫

f(t) dµ(t) ∈ co{f(t) : t ∈ S}.

We can write fµ by
∫

f(t) dµ(t).

Lemma 2.2 ([17–19]). Let K be a closed convex subset of a Hilbert space H, S =
{T (s) : s ∈ S} be a nonexpansive semigroup from K into K such that F (S) 6= ∅
and X be a subspace of ℓ∞(S) containing 1 and the mapping t 7→ 〈T (t)x, y〉 be an
element of X for each x ∈ K and y ∈ H, and µ be a mean on X. If we write
T (µ)x instead of

∫

Ttx dµ(t), then the following hold:
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(i) T (µ) is a nonexpansive mapping from K into K;

(ii) T (µ)x = x for each x ∈ F (S);

(iii) T (µ)x ∈ co{Ttx : t ∈ S} for each x ∈ K;

(iv) if µ is left invariant, then T (µ) is a nonexpansive retraction from K onto
F (S).

Let K be a nonempty, closed and convex subset of a real Hilbert space H .
Then, for any x ∈ H , there exists a unique nearest point in K, denoted by PK(x),
such that

‖x− PK(x)‖ ≤ ‖x− y‖

for all y ∈ K. Such a PK is called the metric projection of H onto K. We also
know that for x ∈ H and z ∈ K, z = PKx if and only if

〈x− z, y − z〉 ≤ 0, ∀y ∈ K.

Lemma 2.3 ([20]). Let K be a nonempty, closed and convex of a Hilbert space H
and let T : K → K be a nonexpansive mapping such that F (T ) 6= ∅. If {xn} is a
sequence in K weakly converging to x and if {(I − T )xn} converges strongly to y,
then (I − T )x = y.

A mapping ψ : R+ → R+ is said to be an L-function if ψ(0) = 0, ψ(t) > 0,
for each t > 0 and for every s > 0 there exists u > s such that ψ(t) ≤ s, for all
t ∈ [s, u]. As a consequence, every L-function ψ satisfies ψ(t) < t for each t > 0.

Definition 2.4. Let (X, d) be a metric space. A mapping f : X → X is said to
be

(i) (ψ,L)-contraction if ψ : R+ → R+ is an L-function and d(f(x), f(y)) <
ψ(d(x, y)) for all x, y ∈ X with x 6= y;

(ii) Meir-Keeler type mapping if for each ε > 0 there exists δ = δ(ε) > 0 such
that for each x, y ∈ X with d(x, y) < ε+ δ we have d(f(x), f(y)) < ε.

Remark 2.5. If ψ(t) = αt, α ∈ (0, 1), then we get the usual contraction mapping
with coefficient α. Other examples of L-functions are ψ(t) = t

1+t and ψ(t) =
ln(1 + t), t ∈ R+.

Theorem 2.6 ([21]). Let (X, d) be a complete metric space and f : X → X a
Meir-Keeler type mapping. Then f has a unique fixed point.

Lim [22] proved the following useful characterization of Meir-Keeler and (ψ,L)-
functions:

Theorem 2.7 ([22]). Let (X, d) be a metric space and f : X → X a mapping.
Then the following assertions are equivalent:

(i) f is a Meir-Keeler type mapping;
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(ii) there exists an L-function ψ : R+ → R+ such that f is a (ψ,L)-contraction.

The following results was proved in [11]:

Proposition 2.8 ([11]). Let K be a convex subset of a Banach space E. Let
f : K → K be a Meir-Keeler type mapping. Then for each ε > 0 there exists
r ∈ (0, 1) such that for each x, y ∈ K with ‖x− y‖ ≥ ε, we have

‖f(x) − f(y)‖ ≤ r‖x− y‖.

Proposition 2.9 ([11]). Let K be a convex subset of a Banach space E, let T :
K → K be a nonexpansive mapping, and let f : K → K be a Meir-Keeler type
mapping. Then the following hold:

(i) T ◦ f is a Meir-Keeler type mapping on K.

(ii) For each α ∈ (0, 1), the mapping x 7→ αf(x) + (1−α)T (x) is a Meir-Keeler
type mapping on K.

In the sequel, we need the following crucial lemmas.

Lemma 2.10 ([23]). Assume {an} is a sequence of nonnegative real numbers such
that

an+1 ≤ (1 − γn)an + γnδn, n ≥ 1,

where {γn} is a sequence in (0, 1) and {δn} is a sequence in R such that

(a)
∑∞

n=1 γn = ∞;

(b) lim supn→∞ δn ≤ 0 or
∑∞

n=1 |γnδn| <∞.

Then limn→∞ an = 0.

Lemma 2.11 ([24]). Let {xn} and {yn} be bounded sequences in a Banach space
E such that

xn+1 = (1 − βn)yn + βnxn, ∀n ≥ 1,

where {βn} is a real sequence in [0, 1] with 0 < lim infn→∞ βn ≤ lim supn→∞ βn <
1. If lim supn→∞

(

‖yn+1 − yn‖ − ‖xn+1 − xn‖
)

≤ 0, then limn→∞ ‖yn − xn‖ = 0.

3 Main result

In this section, we are now ready to prove our main theorem. In what follows,
we suppose that the L-function from the characterization theorem (see Theorem
2.7), as well as, the function ψ from the definition of the (ψ,L)-contraction is
continuous and strictly increasing, and limt→∞ η(t) = ∞, where η(t) = t − ψ(t),
t ∈ R+. In consequence, we have that η is a bijection on R+. It is remarked that
the functions ψ given in Remark 2.5 are all satisfy the above assumption.
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Theorem 3.1. Let K be a nonempty, closed and convex subset of a Hilbert space
H. Let S = {T (t) : t ∈ S} be a nonexpansive semigroup on K such that F (S) 6= ∅.
Let X be a left invariant subspace of ℓ∞(S) such that 1 ∈ X, and the function
t 7→ 〈T (t)x, y〉 is an element of X for each x, y ∈ K. Let {µn} be a left regular
sequence of means on X such that ‖µn+1 − µn‖ → 0, as n → ∞. Let f : K → K
be a Meir-Keeler contraction. Let {αn}, {βn} and {γn} be real sequences in (0, 1)
with αn + βn + γn = 1 which satisfy the following conditions:

(C1) limn→∞ αn = 0;

(C2)
∑∞

n=1 αn = ∞;

(C3) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.

Then the sequence {xn} generated by

xn+1 = αnf(xn) + βnxn + γnT (µn)xn, n ≥ 1,

converges strongly to p ∈ F (S) which also solves the following variational inequal-
ity:

〈f(p) − p, q − p〉 ≤ 0, ∀q ∈ F (S). (3.1)

Proof. First we show that {xn} is bounded. For each w ∈ F (S), we see that

‖xn+1 − w‖ ≤ αn‖f(xn) − w‖ + βn‖xn − w‖ + γn‖T (µn)xn − w‖

≤ αn (ψ(‖xn − w‖) + ‖f(w) − w‖) + (1 − αn)‖xn − w‖

=
(

‖xn − w‖ − αn

(

‖xn − w‖ − ψ(‖xn − w‖)
))

+ αn‖f(w) − w‖

=
(

‖xn − w‖ − αn

(

η(‖xn − w‖)
))

+ αnη
(

η−1(‖f(w) − w‖)
)

≤ max
{

‖xn − w‖, η−1(‖f(w) − w‖)
}

.

By a simple induction, we can show that

‖xn − w‖ ≤ max
{

‖x1 − w‖, η−1(‖f(w) − w‖)
}

, ∀n ≥ 1.

Hence the sequence {xn} is bounded. So are {f(xn)} and {T (µn)xn}.

We next show that
lim

n→∞
‖xn+1 − xn‖ = 0.

Observe that
lim

n→∞
‖T (µn+1)xn − T (µn)xn‖ = 0. (3.2)

Indeed,

‖T (µn+1)xn − T (µn)xn‖ = sup
‖z‖=1

|〈T (µn+1)xn − T (µn)xn, z〉|

= sup
‖z‖=1

|(µn+1)s〈T (s)xn, z〉 − (µn)s〈T (s)xn, z〉|

≤ ‖µn+1 − µn‖ sup
s∈S

‖T (s)xn‖.
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Since {xn} is bounded and limn→∞ ‖µn+1 − µn‖ = 0, (3.2) holds.

Put wn = xn+1−βnxn

1−βn
. Then

wn+1 − wn =
αn+1f(xn+1) + γn+1T (µn+1)xn+1

1 − βn+1
−
αnf(xn) + γnT (µn)xn

1 − βn

=
αn+1f(xn+1)

1 − βn+1
−
αnf(xn)

1 − βn
+

γn+1

1 − βn+1
[T (µn+1)xn+1 − T (µn+1)xn]

+ T (µn+1)xn − T (µn)xn +
αn

1 − βn
T (µn)xn −

αn+1

1 − βn+1
T (µn+1)xn

which implies

‖wn+1 − wn‖ ≤
αn+1

1 − βn+1
(‖T (µn+1)xn‖ + ‖f(xn+1)‖)

+
αn

1 − βn
(‖T (µn)xn‖ + ‖f(xn)‖) + ‖xn+1 − xn‖

+ ‖T (µn+1)xn − T (µn)xn‖.

From (3.2), (C1) and (C3) we have

lim sup
n→∞

(‖wn+1 − wn‖ − ‖xn+1 − xn‖) ≤ 0.

So by Lemma 2.11, we have limn→∞ ‖wn − xn‖ = 0. It also follows that

lim
n→∞

‖xn+1 − xn‖ = 0. (3.3)

We next show that

lim
n→∞

‖xn − T (t)xn‖ = 0, ∀t ∈ S. (3.4)

Let w ∈ F (S) and put

M = max{‖x1 − w‖, η−1(‖f(w) − w‖)}.

Set D = {y ∈ K : ‖y −w‖ ≤M}. It is easily seen that D is a nonempty bounded
closed convex set and {xn} ⊂ D. Further, D is invariant under S. To complete
our proof, we follow the proof line as in [25] (see also [17, 26, 27]). Let ε > 0.
From [28], there exists δ > 0 such that

co Fδ(T (t);D) +Bδ ⊆ Fε(T (t);D), ∀t ∈ S. (3.5)

From Corollary 1.1 in [28], there exists a natural number N such that

∥

∥

∥

∥

∥

1

N + 1

N
∑

i=0

T (tis)y − T (t)

(

1

N + 1

N
∑

i=0

T (tis)y

)∥

∥

∥

∥

∥

≤ δ, (3.6)



174 Thai J. Math. 10 (2012)/ S. Suantai et al.

for all t, s ∈ S and y ∈ D. Let t ∈ S. Since {µn} is left regular, there exists n0 ∈ N

such that

‖µn − l∗tiµn‖ ≤
δ

3(M + ‖w‖)

for all n ≥ n0 and i = 1, 2, ..., N . So we have for all n ≥ n0

sup
y∈D

∥

∥

∥

∥

∥

T (µn)y −

∫

1

N + 1

N
∑

i=0

T (tis)y dµn(s)

∥

∥

∥

∥

∥

= sup
y∈D

sup
‖z‖=1

∣

∣

∣

∣

∣

(µn)s〈T (s)y, z〉 − (µn)s

〈

1

N + 1

N
∑

i=0

T (tis)y, z

〉∣

∣

∣

∣

∣

≤
1

N + 1

N
∑

i=0

sup
y∈D

sup
‖z‖=1

|(µn)s〈T (s)y, z〉 − (l∗tiµn)s〈T (s)y, z〉|

≤ max
i=1,2,...,N

‖µn − l∗tiµn‖(M + ‖w‖) ≤
δ

3
. (3.7)

We observe by Lemma 2.2 that

∫

1

N + 1

N
∑

i=0

T (tis)y dµn(s) ∈ co

{

1

N + 1

N
∑

i=0

T (t)i(T (s)y) : s ∈ S

}

. (3.8)

Combining (3.6)-(3.8) we have

T (µn)y =

∫

1

N + 1

N
∑

i=0

T (tis)y dµn(s) +

(

T (µn)y −

∫

1

N + 1

N
∑

i=0

T (tis)y dµn(s)

)

∈ co

{

1

N + 1

N
∑

i=0

T (t)i(T (s)y) : s ∈ S

}

+Bδ/3

⊆ co Fδ(T (t);D) +Bδ/3, (3.9)

for all y ∈ D and n ≥ n0. Let t ∈ S and ε > 0. Then there exists δ > 0 which
satisfies (3.5). From (C3), there exist a, b ∈ (0, 1) such that 0 < a ≤ βn ≤ b < 1.
Put L = ψ(M) + ‖f(w)−w‖+M . From (3.3) and (C1), there exists k0 ∈ N such

that ‖xn − xn+1‖ <
(1−b)δ

3b and αn <
δ(1−b)

3L for all n > k0. It follows that

αn

1 − βn
‖f(xn) − T (µn)xn‖ ≤

αn

1 − b
(‖f(xn) − f(w)‖ + ‖f(w) − w‖ + ‖w − T (µn)xn‖)

≤
αn

1 − b
(ψ(‖xn − w‖) + ‖f(w) − w‖ + ‖xn − w‖)

≤
αn

1 − b
(ψ(M) + ‖f(w) − w‖ +M)

≤
δ(1 − b)

3(1 − b)L
L =

δ

3
, (3.10)
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for all n > k0. Moreover,

βn

1 − βn
‖xn − xn+1‖ ≤

b

1 − b
‖xn − xn+1‖ ≤

δ

3
. (3.11)

So from (3.5) and (3.9)-(3.11) we have

xn+1 = T (µn)xn +
βn

1 − βn
(xn − xn+1) +

αn

1 − βn
(f(xn) − T (µn)xn)

∈ co Fδ(T (t);D) +Bδ/3 +Bδ/3 +Bδ/3

⊆ co Fδ(T (t);D) +Bδ ⊆ Fε(T (t);D),

for all n > k0. Hence lim supn→∞ ‖xn − T (t)xn‖ ≤ ε. Since ε > 0 is arbitrary,

lim
n→∞

‖xn − T (t)xn‖ = 0.

Since the sequence {xn} is bounded, there exists a subsequence {xnj
} of {xn} such

that xnj
⇀ z ∈ K. From Lemma 2.3, we conclude that z ∈ F (S). On the other

hand, by Proposition 2.9 (i), we know that PF (S)f is a Meir-Keeler contraction.
So, by Theorem 2.6, there exists a unique element p such that PF (S)f(p) = p
which is also equivalent to

〈f(p) − p, q − p〉 ≤ 0, ∀q ∈ F (S).

So we have

lim sup
n→∞

〈f(p) − p, xn − p〉 = lim
j→∞

〈f(p) − p, xnj
− p〉

= 〈f(p) − p, z − p〉 ≤ 0. (3.12)

We finally show that xn → p as n → ∞. Suppose {xn} does not converge
strongly to p ∈ F (S). Then there exists ε > 0 and a subsequence {xnk

} of {xn}
such that ‖xnk

− p‖ > ε, for all k ∈ {0, 1, ...}. By Proposition 2.8, for this ε there
exists r ∈ (0, 1) such that ‖f(xnk

) − f(p)‖ ≤ r‖xnk
− p‖. So we have

‖xnk+1 − p‖2 = ‖αnk
(f(xnk

) − p) + βnk
(xnk

− p) + γnk
(T (µnk

)xnk
− p)‖2

≤ ‖βnk
(xnk

− p) + γnk
(T (µnk

)xnk
− p)‖2

+ 2αnk
〈f(xnk

) − p, xnk+1 − p〉

≤ (βnk
‖xnk

− p‖ + γnk
‖T (µnk

)xnk
− p‖)2

+ 2αnk
〈f(xnk

) − p, xnk+1 − p〉

≤ (1 − αnk
)2‖xnk

− p‖2 + 2αnk
〈f(xnk

) − f(p), xnk+1 − p〉

+ 2αnk
〈f(p) − p, xnk+1 − p〉

≤ (1 − αnk
)2‖xnk

− p‖2 + 2αnk
‖f(xnk

) − f(p)‖‖xnk+1 − p‖

2αnk
〈f(p) − p, xnk+1 − p〉

≤ (1 − αnk
)2‖xnk

− p‖2 + αnk
r
(

‖xnk
− p‖2 + ‖xnk+1 − p‖2

)

2αnk
〈f(p) − p, xnk+1 − p〉 .
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It follows that

‖xnk+1 − p‖2 ≤
1 − (2 − r)αnk

+ α2
nk

1 − αnk
r

‖xnk
− p‖2 +

2αnk

1 − αnk
r
〈f(p) − p, xnk+1 − p〉

=
1 − αnk

r − 2(1 − r)αnk

1 − αnk
r

‖xnk
− p‖2 +

α2
nk

1 − αnk
r
‖xnk

− p‖2

+
2αnk

1 − αnk
r
〈f(p) − p, xnk+1 − p〉

=

(

1 −
2(1 − r)αnk

1 − αnk
r

)

‖xnk
− p‖2

+
2(1 − r)αnk

1 − αnk
r

(

1

1 − r
〈f(p) − p, xnk+1 − p〉 +

αnk

2(1 − r)
‖xnk

− p‖2

)

.

Using (3.12), (C1) and (C2), we can conclude, by Lemma 2.10, that xnk
→ p as

k → ∞. This is a contradiction and hence the sequence {xn} converges strongly
to p ∈ F (S). We thus complete the proof.

Remark 3.2. A Meir-Keeler contraction in Theorem 3.1 can also be replaced by
a (ψ,L)-contraction (see Petrusel¸ and Yao [12], Lim [22] and Reich [29]).

Using the results proved in [20] (see also [26]), we obtain the following corol-
laries:

Corollary 3.3. Let K be a nonempty, closed and convex subset of a Hilbert space
H. Let S and T be nonexpansive mappings on K with ST = TS such that F :=
F (S) ∩ F (T ) 6= ∅. Let f : K → K be a Meir-Keeler contraction. Let {αn}, {βn}
and {γn} be real sequences in (0, 1) with αn + βn + γn = 1 satisfying (C1)-(C3).
Then the sequence {xn} defined by

xn+1 = αnf(xn) + βnxn + γn





1

n2

n−1
∑

i=0

n−1
∑

j=0

SiT jxn



 , n ≥ 1,

converges strongly to p ∈ F which also solves the variational inequality (3.1).

Corollary 3.4. Let K be a nonempty, closed and convex subset of a Hilbert space
H and S = {T (t) : t ∈ R+} a strongly continuous nonexpansive semigroup on K
such that F (S) 6= ∅. Let f : K → K be a Meir-Keeler contraction. Let {αn}, {βn}
and {γn} be real sequences in (0, 1) with αn + βn + γn = 1 satisfying (C1)-(C3).
Then the sequence {xn} defined by

xn+1 = αnf(xn) + βnxn + γn

(

1

tn

∫ tn

0

T (s)xn d(s)

)

, n ≥ 1,

where {tn} is an increasing sequence in (0,∞) such that limn→∞ tn = ∞ and
limn→∞ tn/tn+1 = 1, converges strongly to p ∈ F (S) which also solves the varia-
tional inequality (3.1).
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Corollary 3.5. Let K be a nonempty, closed and convex subset of a Hilbert space
H and S = {T (t) : t ∈ R+} a strongly continuous nonexpansive semigroup on K
such that F (S) 6= ∅. Let f : K → K be a Meir-Keeler contraction. Let {αn}, {βn}
and {γn} be real sequences in (0, 1) with αn + βn + γn = 1 satisfying (C1)-(C3).
Then the sequence {xn} defined by

xn+1 = αnf(xn) + βnxn + γn

(

an

∫ ∞

0

exp(−ans)T (s)xn d(s)

)

, n ≥ 1,

where {an} is a decreasing sequence in (0,∞) such that limn→∞ an = 0, converges
strongly to p ∈ F (S) which also solves the variational inequality (3.1).
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