Online ISSN 1686-0209

Submersion of CR-Submanifolds of Nearly Trans-Sasakian Manifold ${ }^{1}$

Mohammed Jamali and Mohammad Hasan Shahid ${ }^{2}$
Department of Mathematics, Faculty of Natural Science Jamia Millia Islamia University, New Delhi-110025, India
e-mail: jamali_dbd@yahoo.co.in (M. Jamali) hasan_jmi@yahoo.com (M.H. Shahid)

Abstract

In this paper, we discuss the submersion of CR-submanifolds of a nearly trans-Sasakian manifold. We show that if $\pi: M \longrightarrow M^{\prime}$ is a submersion of CR-submanifold M of a nearly trans-Sasakian manifold \bar{M} then M^{\prime} is a nearly trans-Sasakian manifold. Also we derive some curvature relations by means of which we deduce the compactness of M^{\prime} under slight condition.

Keywords : CR-submanifolds; Nearly trans-Sasakian manifold; Submersion. 2010 Mathematics Subject Classification : 53C40; 53B25; 53D10.

1 Introduction

In 1981, Kobayashi [1] initiated the study of submersion of a CR-submanifolds of Sasakian manifold whereas Bejancu [2, 3] introduced the notion of CR-submanifolds of a Kaehler manifold. Moreover, Papaghuic [4] studied the submersion of semiinvariant submanifolds of a Sasakian manifold. Later in 1985, Oubina [5] gave a new class of almost contact Riemannian manifold known as trans-Sasakian manifold. A trans-Sasakian manifold is a generalization of both α-Sasakian and β Kenmotsu manifolds. Based on the fundamental equations of submersion given by O'Neill [6]. In [7], Matsumoto et al. studied the submersion of semi-invariant submanifolds of trans-Sasakian manifold. In 2002, Al-Solamy [8] obtained some

[^0]results regarding CR-submanifolds of nearly trans-Sasakian manifold. As nearly trans-Sasakian structure is a natural generalization of trans-Sasakian structure, in this article we study the submersion of CR-submanifolds of nearly trans-Sasakian manifold.

2 Preliminaries

Let \bar{M} be an n-dimensional almost contact metric manifold with almost contact metric structure $(\phi, \xi, \eta, g)[9]$.

$$
\begin{gathered}
\phi^{2}=-1+\eta \otimes \xi, \phi \circ \xi=0, \eta \circ \phi=0, \eta(\xi)=1, \\
g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y),
\end{gathered}
$$

for any vector fields X, Y on \bar{M}. An almost contact metric structure (ϕ, ξ, η, g) on \bar{M} is called nearly trans-Sasakian if

$$
\left(\bar{\nabla}_{X} \phi\right) Y+\left(\bar{\nabla}_{Y} \phi\right) X=\alpha[2 g(X, Y) \xi-\eta(Y) X-\eta(X) Y]-\beta[\eta(Y) \phi X+\eta(X) \phi Y]
$$

for functions α and β on \bar{M}, and we say that the trans-Sasakian structure is of type (α, β).

Definition 2.1. An m-dimensional Riemannian submanifold M of a nearly transSasakian manifold \bar{M} is called a contact $C R$-submanifold if ξ is tangent to M and there exist on M a differential distribution $D: x \longrightarrow D_{x} \subset T_{x} M$ such that (i) D_{x} is invariant under ϕ i.e. $\phi D_{x} \subset D_{x}$ for each $x \in M$, (ii) the orthogonal complementary distribution $D^{\perp}: x \longrightarrow D^{\perp} \subset T_{x} M$ of the distribution D on M is totally real, i.e. $\phi D^{\perp} \subset T_{x}^{\perp} M$ (iii) $T M=D \oplus D^{\perp} \oplus\{\xi\}$, where $T_{x} M, T_{x}^{\perp} M$ are the tangent space and the normal space of M at x respectively and \oplus denotes the orthogonal direct sum.

We call $D\left(\right.$ resp. $\left.D^{\perp}\right)$ the horizontal (resp. vertical) distribution. We denote by g the metric tensor field of \bar{M} as well as that induced on M. Let $\bar{\nabla}$ (resp. ∇) be the covariant differentiation with respect to the Levi-Civita connection on \bar{M} (resp. M). The Gauss and Weingarten formulas for M are respectively given by

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{\nabla}_{X} N=-A_{N} X+\nabla_{X}^{\perp} N \tag{2.2}
\end{equation*}
$$

for $X, Y \in T M, N \in T^{\perp} M$, where $h(\operatorname{resp} . A)$ is the second fundamental form (resp. tensor) of M in \bar{M}, and ∇^{\perp} denotes the operator of the normal connection. Moreover, we have

$$
g(h(X, Y), N)=g\left(A_{N} X, Y\right) .
$$

The projection of $T M$ to D and D^{\perp} are denoted by h and v respectively i.e., for any $X \in T M$ we have

$$
X=h X+v X+\eta(X) .
$$

The normal bundle to M has the decomposition

$$
T^{\perp} M=\phi D^{\perp} \oplus n_{1} \text { and } g\left(\phi D^{\perp}, n_{1}\right)=\{0\} .
$$

For any $U \in T^{\perp} M$, we put

$$
\begin{equation*}
U=n U+m U \tag{2.3}
\end{equation*}
$$

where $n U \in \phi D^{\perp}, m U \in n_{1}$. From the above equation we have

$$
\begin{equation*}
\phi U=\phi n U+\phi m U, U \in T^{\perp} M, \phi n U \in D^{\perp}, \phi m U \in n_{1} . \tag{2.4}
\end{equation*}
$$

Definition 2.2. Let M be a contact $C R$-submanifold of a nearly trans-Sasakian manifold \bar{M} and M^{\prime} be an almost contact metric manifold with the almost contact metric structure $\left(\phi^{\prime}, \xi^{\prime}, \eta^{\prime}, g^{\prime}\right)$. Assume that there is a submersion $\pi: M \longrightarrow M^{\prime}$ such that:
(i) $D^{\perp}=\operatorname{ker} \pi_{*}$, where $\pi_{*}: T M \longrightarrow T M^{\prime}$ is the tangent mapping to π.
(ii) $\pi_{*}: D_{p} \oplus\{\xi\} \longrightarrow T_{\pi(p)} M^{\prime}$ is an isometry for each $p \in M$ which satisfies: $\pi_{*} \circ \phi=\phi^{\prime} \circ \pi_{*} ; \eta=\eta^{\prime} \circ \pi_{*} ; \pi_{*}\left(\xi_{p}\right)=\xi_{\pi(p)}^{\prime}$, where $T_{\pi(p)} M^{\prime}$ denotes the tangent space of M^{\prime} at $\pi(p)$.

A vector field X on M is said to be basic if $X \in D_{p} \oplus\{\xi\}$ and X is π-related to a vector field on M^{\prime} i.e., there exists a vector field $X_{*} \in T M^{\prime}$ such that $\pi_{*}\left(X_{p}\right)=X_{* \pi(p)}$ for each $p \in M$. Note that, by condition (ii) of the above definition we have that the structural vector field ξ is a basic vector field.

Lemma 2.3 ([4]). Let X, Y be basic vector fields on M. Then
(i) $g(X, Y)=g^{\prime}\left(X_{*}, Y_{*}\right) \circ \pi$;
(ii) the component $h([X, Y])+\eta([X, Y]) \xi$ of $[X, Y]$ is a basic vector field and corresponds to $\left[X_{*}, Y_{*}\right]$, i.e., $\pi_{*}(h([X, Y])+\eta([X, Y]) \xi)=\left[X_{*}, Y_{*}\right]$;
(iii) $[U, X] \in D^{\perp}$ for any $U \in D^{\perp}$;
(iv) $h\left(\nabla_{X} Y\right)+\eta\left(\nabla_{X} Y\right) \xi$ is a basic vector field corresponding to $\nabla_{X_{*}}^{*} Y_{*}$, where ∇^{*} denotes the Levi-Civita connection on M^{\prime}.

For basic vector fields on M, we define the operator $\tilde{\nabla}^{*}$ corresponding to ∇^{*} by setting $\tilde{\nabla}_{X}^{*} Y=h\left(\nabla_{X} Y\right)+\eta\left(\nabla_{X} Y\right) \xi$ for $X, Y \in(D \oplus\{\xi\})$.

By (iv) of Lemma 2.3, $\tilde{\nabla}_{X}^{*} Y$ is a basic vector field, and we have

$$
\begin{equation*}
\pi_{*}\left(\tilde{\nabla}_{X}^{*} Y\right)=\nabla_{X_{*}}^{*} Y_{*} . \tag{2.5}
\end{equation*}
$$

Define the tensor field C by

$$
\begin{equation*}
\nabla_{X} Y=\tilde{\nabla}_{X}^{*} Y+C(X, Y), \quad X, Y \in(D \oplus\{\xi\}) \tag{2.6}
\end{equation*}
$$

where $C(X, Y)$ is the vertical part of $\nabla_{X} Y$. It is known that C is skew-symmetric and satisfies

$$
\begin{equation*}
C(X, Y)=\frac{1}{2} v[X, Y], \quad X, Y \in(D \oplus\{\xi\}) \tag{2.7}
\end{equation*}
$$

The curvature tensors R, R^{*} of the connection ∇, ∇^{*} on M and M^{\prime} respectively are related by [4]

$$
\begin{align*}
R(X, Y, Z, W)=R^{*}\left(X_{*}\right. & \left., Y_{*}, Z_{*}, W_{*}\right)-g(C(Y, Z), C(X, W)) \\
& +g(C(X, Z), C(Y, W))+2 g(C(X, Y), C(Z, W)) \tag{2.8}
\end{align*}
$$

$X, Y, Z, W \in(D \oplus\{\xi\})$, where $\pi_{*} X=X_{*}, \pi_{*} Y=Y_{*}, \pi_{*} Z=Z_{*}$ and $\pi_{*} W=W_{*} \in$ $\chi\left(M^{\prime}\right)$. First we have

Proposition 2.4. Let $\pi: M \longrightarrow M^{\prime}$ be a submersion of contact $C R$-submanifold of a nearly trans-Sasakian manifold \bar{M} onto an almost contact metric manifold M^{\prime}. Then we have
(i) $\left(\tilde{\nabla}_{X}^{*} \phi\right) Y+\left(\tilde{\nabla}_{Y}^{*} \phi\right) X=\alpha[2 g(X, Y) \xi-\eta(Y) X-\eta(X) Y]$ $-\beta[\eta(Y) \phi X+\eta(X) \phi Y]$,
(ii) $C(X, \phi Y)+C(Y, \phi X)=2 \phi n h(X, Y)$,
(iii) $n h(X, \phi Y)=-n h(Y, \phi X)$,
(iv) $\phi m h(X, Y)=h(X, \phi Y)$, if $m h(X, \phi Y)=m h(Y, \phi X)$.
for any $X, Y \in(D \oplus\{\xi\})$.
Proof. For any $X, Y \in(D \oplus\{\xi\})$ and by using Gauss formula (2.1), decomposition (2.3) and equation (2.6) we have

$$
\begin{align*}
\bar{\nabla}_{X} Y & =\nabla_{X} Y+h(X, Y) \\
& =\nabla_{X} Y+n h(X, Y)+m h(X, Y) \\
& =\tilde{\nabla}_{X}^{*} Y+C(X, Y)+n h(X, Y)+m h(X, Y) \tag{2.13}
\end{align*}
$$

Hence

$$
\begin{equation*}
\phi \bar{\nabla}_{X} Y=\phi \tilde{\nabla}_{X}^{*} Y+\phi C(X, Y)+\phi n h(X, Y)+\phi m h(X, Y) \tag{2.14}
\end{equation*}
$$

Putting $Y=\phi Y$ in equation (2.13), we obtain

$$
\begin{equation*}
\bar{\nabla}_{X} \phi Y=\tilde{\nabla}_{X}^{*} \phi Y+C(X, \phi Y)+n h(X, \phi Y)+m h(X, \phi Y) \tag{2.15}
\end{equation*}
$$

Similarly, we find

$$
\begin{equation*}
\phi \bar{\nabla}_{Y} X=\phi \tilde{\nabla}_{Y}^{*} X+\phi C(Y, X)+\phi n h(Y, X)+\phi m h(Y, X) \tag{2.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{\nabla}_{Y} \phi X=\tilde{\nabla}_{Y}^{*} \phi X+C(Y, \phi X)+n h(Y, \phi X)+m h(Y, \phi X) \tag{2.17}
\end{equation*}
$$

On the other hand, using the definition of nearly trans-Sasakian manifold we have

$$
\begin{align*}
\left(\bar{\nabla}_{X} \phi\right) Y & +\left(\bar{\nabla}_{Y} \phi\right) X \\
& =\bar{\nabla}_{X} \phi Y-\phi \bar{\nabla}_{X} Y+\bar{\nabla}_{Y} \phi X-\phi \bar{\nabla}_{Y} X \tag{2.18}\\
& =\alpha[2 g(X, Y) \xi-\eta(Y) X-\eta(X) Y]-\beta[\eta(Y) \phi X+\eta(X) \phi Y]
\end{align*}
$$

Substituting equations (2.14), (2.15), (2.16) and (2.17) in equation (2.18) we get

$$
\begin{aligned}
& \tilde{\nabla}_{X}^{*} \phi Y+C(X, \phi Y)+n h(X, \phi Y)+m h(X, \phi Y)-\phi \tilde{\nabla}_{X}^{*} Y-\phi C(X, Y) \\
& -\phi n h(X, Y)-\phi m h(X, Y)+\tilde{\nabla}_{Y}^{*} \phi X+C(Y, \phi X)+n h(Y, \phi X)+m h(Y, \phi X) \\
& -\phi \tilde{\nabla}_{Y}^{*} X-\phi C(Y, X)-\phi n h(Y, X)-\phi m h(Y, X) \\
& \quad=\alpha[2 g(X, Y) \xi-\eta(Y) X-\eta(X) Y]-\beta[\eta(Y) \phi X+\eta(X) \phi Y] .
\end{aligned}
$$

Comparing components of $(D \oplus\{\xi\}), D^{\perp}, \phi D^{\perp}$ and n_{1} respectively on both sides we find

$$
\begin{gathered}
\left(\tilde{\nabla}_{X}^{*} \phi\right) Y+\left(\tilde{\nabla}_{Y}^{*} \phi\right) X=\alpha[2 g(X, Y) \xi-\eta(Y) X-\eta(X) Y]-\beta[\eta(Y) \phi X+\eta(X) \phi Y] \\
C(X, \phi Y)+C(Y, \phi X)=2 \phi n h(X, Y) \\
n h(X, \phi Y)=-n h(Y, \phi X) \\
\phi m h(X, Y)=h(X, \phi Y) \text { if } m h(X, \phi Y)=m h(Y, \phi X)
\end{gathered}
$$

Proposition 2.5. Let $\pi: M \longrightarrow M^{\prime}$ be a submersion of contact $C R$-submanifold of a nearly trans-Sasakian manifold \bar{M} onto an almost contact metric manifold M^{\prime}. Then M^{\prime} is also a nearly trans-Sasakian manifold.

Proof. Using (i) of the last proposition, we have

$$
\begin{aligned}
\left(\tilde{\nabla}_{X}^{*} \phi\right) Y+\left(\tilde{\nabla}_{Y}^{*} \phi\right) X=\alpha & {[2 g(X, Y) \xi-\eta(Y) X-\eta(X) Y] } \\
& -\beta[\eta(Y) \phi X+\eta(X) \phi Y]
\end{aligned}
$$

Applying π_{*} to the above equation and using Lemma 2.3, equation (2.5) and definition of submersion, we derive

$$
\begin{aligned}
\left(\tilde{\nabla}_{X_{*}}^{*} \phi^{\prime}\right) Y_{*}+\left(\tilde{\nabla}_{Y_{*}}^{*} \phi^{\prime}\right) X_{*}=\alpha[& \left.2 g^{\prime}\left(X_{*}, Y_{*}\right) \xi^{\prime}-\eta^{\prime}\left(Y_{*}\right) X_{*}-\eta^{\prime}\left(X_{*}\right) Y_{*}\right] \\
& -\beta\left[\eta^{\prime}\left(Y_{*}\right) \phi^{\prime} X_{*}+\eta^{\prime}\left(X_{*}\right) \phi^{\prime} Y_{*}\right]
\end{aligned}
$$

The above equation shows that M^{\prime} is a nearly trans-Sasakian manifold.
Proposition 2.6. Let $\pi: M \longrightarrow M^{\prime}$ be a submersion of contact $C R$-submanifold of a nearly trans-Sasakian manifold \bar{M} onto an almost contact metric manifold M^{\prime}. Then
(i) $n h(\phi X, \phi Y)=n h(X, Y)$,
(ii) $m h(\phi X, \phi Y)=-m h(X, Y)$,
(iii) $C(\phi X, \phi Y)=\frac{1}{2} C(X, Y)$.

Proof. From part (iii) of Proposition 2.4 we may write $n h(X, \phi Y)=-n h(Y, \phi X)$. Putting $X=\phi X$, we obtain part (i) of the proposition.

Now let $m h(X, \phi Y)=m h(Y, \phi X)$. Then using part (iv) of the Proposition 2.4 we write $m h(X, \phi Y)=\phi m h(X, Y)$. Putting $X=\phi X$ in this relation gives

$$
m h(\phi X, \phi Y)=-m h(X, Y) .
$$

Making similar computations as in [10] we find easily (iii).

3 Curvature Relations

Proposition 3.1. Let $\pi: M \longrightarrow M^{\prime}$ be a submersion of contact $C R$-submanifold of a nearly trans-Sasakian manifold \bar{M} onto an almost contact metric manifold M^{\prime} such that $m h(X, \phi Y)=m h(Y, \phi X)$. Then the ϕ-bisectional curvature of \bar{M} and M^{\prime} are related by

$$
\begin{aligned}
\bar{B}(X, Y)= & B^{\prime}\left(X_{*}, Y_{*}\right)-\frac{25}{9}\|n h(X, Y)\|^{2}-\frac{17}{9}\|n h(X, \phi Y)\|^{2} \\
& -\frac{32}{9} g(n h(X, X), n h(Y, Y))+2\|m h(X, Y)\|^{2}
\end{aligned}
$$

for all $X, Y \in(D \oplus\{\xi\})$.
Proof. We know $\bar{B}(X, Y)=\bar{R}(X, \phi X, \phi Y, Y)$. Put $Y=\phi X, Z=\phi Y, W=Y$ in Gauss equation

$$
\bar{R}(X, Y, Z, W)=R(X, Y, Z, W)-g(h(X, W), h(Y, Z))+g(h(X, Z), h(Y, W))
$$

we get

$$
\bar{R}(X, \phi X, \phi Y, Y)=R(X, \phi X, \phi Y, Y)-g(h(X, Y), h(\phi X, \phi Y))+g(h(X, \phi Y), h(\phi X, Y)) .
$$

Substituting $h=n h+m h$, in the above equation, we obtain

$$
\begin{aligned}
\bar{R}(X, \phi X, \phi Y, Y)= & R(X, \phi X, \phi Y, Y) \\
& -g(n h(X, Y)+m h(X, Y), n h(\phi X, \phi Y)+m h(\phi X, \phi Y)) \\
& +g(n h(X, \phi Y)+m h(X, \phi Y), n h(\phi X, Y)+m h(\phi X, Y))
\end{aligned}
$$

$$
\begin{align*}
&=R(X, \phi X, \phi Y, Y)-g(n h(X, Y), n h(\phi X, \phi Y)) \\
& \quad-g(n h(X, Y), m h(\phi X, \phi Y))-g(m h(X, Y), n h(\phi X, \phi Y)) \\
& \quad-g(m h(X, Y), m h(\phi X, \phi Y))+g(n h(X, \phi Y), n h(\phi X, Y)) \\
& \quad+g(n h(X, \phi Y), \operatorname{mh}(\phi X, Y))+g(m h(X, \phi Y), n h(\phi X, Y)) \\
& \quad+g(m h(X, \phi Y), m h(\phi X, Y)) \\
&=R(X, \phi X, \phi Y, Y)-g(n h(X, Y), n h(\phi X, \phi Y)) \\
& \quad \quad-g(m h(X, Y), m h(\phi X, \phi Y))+g(n h(X, \phi Y), n h(\phi X, Y)) \\
& \quad+g(m h(X, \phi Y), m h(\phi X, Y)) \\
&=R(X, \phi X, \phi Y, Y)-g(n h(X, Y), n h(X, Y)) \\
& \quad+g(m h(X, Y), m h(X, Y))-g(n h(X, \phi Y), n h(X, \phi Y)) \\
& \quad+g(\phi m h(X, Y), \phi m h(X, Y)) \\
&=R(X, \phi X, \phi Y, Y)-\|n h(X, Y)\|^{2}+2\|m h(X, Y)\|^{2}-\|n h(X, \phi Y)\|^{2} . \tag{3.1}
\end{align*}
$$

Now put $Y=\phi X, Z=\phi Y, W=Y$ in equation (2.8) we find

$$
\begin{aligned}
R(X, \phi X, \phi Y, Y)=R^{*} & \left(X_{*}, \phi^{\prime} X_{*}, \phi^{\prime} Y_{*}, Y_{*}\right)-g(C(\phi X, \phi Y), C(X, Y)) \\
& +g(C(X, \phi Y), C(\phi X, Y))+2 g(C(X, \phi X), C(\phi Y, Y))
\end{aligned}
$$

or

$$
\begin{align*}
R(X, \phi X, \phi Y, Y)= & R^{*}\left(X_{*}, \phi^{\prime} X_{*}, \phi^{\prime} Y_{*}, Y_{*}\right)-g(C(\phi X, \phi Y), C(X, Y)) \\
& -g(C(X, \phi Y), C(Y, \phi X))-2 g(C(X, \phi X), C(Y, \phi Y)) \tag{3.2}
\end{align*}
$$

From (ii) of Proposition 2.4 and (iii) of Proposition 2.6 we derive

$$
\begin{equation*}
C(Y, \phi X)=\frac{4}{3} \phi n h(X, Y) \tag{3.3}
\end{equation*}
$$

Therefore equation (3.2) implies, jointly with (2.19) and (3.3), that

$$
\begin{align*}
R(X, \phi X, \phi Y, Y)=R^{*}\left(X_{*},\right. & \left.\phi^{\prime} X_{*}, \phi^{\prime} Y_{*}, Y_{*}\right)-\frac{16}{9}\|n h(X, Y)\|^{2} \\
& -\frac{1}{2}\|C(X, Y)\|^{2}-\frac{32}{9} g(n h(X, X), n h(Y, Y)) . \tag{3.4}
\end{align*}
$$

Further equation (3.3) yields

$$
\begin{equation*}
C(X, Y)=-\frac{4}{3} \phi n h(X, \phi Y) \tag{3.5}
\end{equation*}
$$

Making use of the last equation in equation (3.4) we see

$$
\begin{aligned}
R(X, \phi X, \phi Y, Y)= & R^{*}\left(X_{*}, \phi^{\prime} X_{*}, \phi^{\prime} Y_{*}, Y_{*}\right)-\frac{16}{9}\|n h(X, Y)\|^{2} \\
& -\frac{8}{9}\|n h(X, \phi Y)\|^{2}-\frac{32}{9} g(n h(X, X), n h(Y, Y))
\end{aligned}
$$

Put this value of $R(X, \phi X, \phi Y, Y)$ in equation (3.1) we get

$$
\begin{gathered}
\bar{R}(X, \phi X, \phi Y, Y)=R^{*}\left(X_{*}, \phi^{\prime} X_{*}, \phi^{\prime} Y_{*}, Y_{*}\right)-\frac{16}{9}\|n h(X, Y)\|^{2}-\frac{8}{9}\|n h(X, \phi Y)\|^{2} \\
\quad-\frac{32}{9} g(n h(X, X), n h(Y, Y))-\|n h(X, Y)\|^{2} \\
\\
+2\|m h(X, Y)\|^{2}-\|n h(X, \phi Y)\|^{2} \\
=R^{*}\left(X_{*}, \phi^{\prime} X_{*}, \phi^{\prime} Y_{*}, Y_{*}\right)-\frac{25}{9}\|n h(X, Y)\|^{2}-\frac{17}{9}\|n h(X, \phi Y)\|^{2} \\
\quad-\frac{32}{9} g(n h(X, X), n h(Y, Y))+2\|m h(X, Y)\|^{2}
\end{gathered}
$$

which implies that

$$
\begin{aligned}
& \bar{B}(X, Y)=B^{\prime}\left(X_{*}, Y_{*}\right)-\frac{25}{9}\|n h(X, Y)\|^{2}-\frac{17}{9}\|n h(X, \phi Y)\|^{2} \\
& \quad-\frac{32}{9} g(n h(X, X), n h(Y, Y))+2\|m h(X, Y)\|^{2}
\end{aligned}
$$

Corollary 3.2. Let $\pi: M \longrightarrow M^{\prime}$ be a submersion of contact $C R$-submanifold of a positively curved nearly trans-Sasakian manifold \bar{M} onto an almost contact metric manifold M^{\prime} such that the second fundamental form $h(X, Y)$ lies entirely in ϕD^{\perp}. Then M^{\prime} has positive ϕ-holomorphic sectional curvature.

Proof. Putting $X=Y$ in the above expression of $\bar{B}(X, Y)$ we obtain

$$
\begin{aligned}
\bar{B}(X, X)=\bar{H}(X)= & H^{\prime}\left(X_{*}\right)-\frac{25}{9}\|n h(X, X)\|^{2}-\frac{17}{9}\|n h(X, \phi X)\|^{2} \\
& \quad-\frac{32}{9} g(n h(X, X), n h(X, X))+2\|m h(X, X)\|^{2} \\
= & H^{\prime}\left(X_{*}\right)-\frac{57}{9}\|n h(X, X)\|^{2}-\frac{17}{9}\|n h(X, \phi X)\|^{2}+2\|m h(X, X)\|^{2}
\end{aligned}
$$

From equation (3.5) we deduce that $n h(X, \phi X)=0$. Also since $h(X, Y)$ lies entirely in $\phi D^{\perp}, m h(X, X)=0$. Thus the last expression of $\bar{H}(X)$ turns out to be

$$
\bar{H}(X)=H^{\prime}\left(X_{*}\right)-\frac{57}{9}\|n h(X, X)\|^{2}
$$

Now from hypothesis \bar{M} is positively curved which implies that $\bar{H}(X)>0$. Using this inequality in the above equation gives $H^{\prime}\left(X_{*}\right)>0$ which is the required result.

We now come to the main theorem of the article giving the compactness of M^{\prime}.

Theorem 3.3. Let $\pi: M \longrightarrow M^{\prime}$ be a submersion of contact $C R$-submanifold of a positively curved nearly trans-Sasakian manifold \bar{M} onto a complete almost contact metric manifold M^{\prime} such that the second fundamental form $h(X, Y)$ lies entirely in ϕD^{\perp}. Then M^{\prime} is compact.
Proof. The theorem follows from a theorem in [11] and the last corollary.
Acknowledgement : This work was supported by UGC Major Research Project No. 33-112/2007(SR).

References

[1] M. Kobayashi, CR-submanifolds of a Sasakian manifold, Tensor N.S. 35 (1981) 297-307.
[2] A. Bejancu, CR-submanifolds of Kaehler manifold I, Proc. Am. Math. Soc. 69 (1978) 135-142.
[3] A. Bejancu, CR-submanifolds of Kaehler manifold II, Trans. Am. Math. Soc. 250 (1979) 333-345.
[4] N. Papaghuice, Submersions of semi-invariant submanifolds of a Sasakian manifold, An. Stint. Univ. Al. I. Cuza, Iasi, Sect I-a, Mat. 35 (1989) 281-288.
[5] J.A. Oubina, New classes of almost contact metric structures, Publ. Math. Debrecen 32 (1985) 187-193.
[6] B. O'Neill, The fundamental equations of submersions, Mich. Math. J. 13 (1966) 459-469.
[7] K. Matsumoto, M.H. Shahid, I. Mihai, Semi-invariant submanifolds of almost contact metric manifold, Bull. Yamagata Univ. 13 (3) (1994) 183-192.
[8] F. Al-Solamy, CR-submanifold of nearly trans-Sasakian manifold, Internat. J. Math. and Math. Sci. 31 (3) (2002) 167-175.
[9] D.E. Blair, Contact manifolds in Riemannian geometry, Lecture notes in Math., Vol. 509, Springer-Verlag, New-York, 1978.
[10] S. Ali, S.I. Hussain, Submersions of CR-submanifolds of a nearly Kaehler manifold I, Radovi Matematicki 7 (1991) 197-205.
[11] A. Gray, Nearly Kaehler manifolds, J. Differential Geometry 4 (1970) 283309.
(Accepted 22 December 2011)

Thai J. Math. Online @ http://www.math.science.cmu.ac.th/thaijournal

[^0]: ${ }^{1}$ This research work was supported by UGC Major Research Project No. 33$112 / 2007$ (SR)
 ${ }^{2}$ Corresponding author email: jamali_dbd@yahoo.co.in (M. Jamali)
 Copyright (c) 2012 by the Mathematical Association of Thailand. All rights reserved.

