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Abstract : In this paper, we introduce a new type of difference operator △n
m for

fixed m, n ∈ N and define the sequence spaces

E(△n
m) = {x = (xk) : (△n

mxk) = (△nxk −△nxk+m) ∈ E, E ∈ {l∞, c, c0}}

and study some topological properties of these spaces. We also obtain some inclu-
sion relations involving these sequence spaces. With different choices of m and n

it is observed that these spaces include many known spaces as special cases.
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1 Introduction

Throughout the paper, ω, l∞, c and c0 denote the space of all, bounded, con-
vergent and null sequences x = (xk) with complex terms respectively, normed
by

‖x‖ = sup
k≥1

| xk | .

The zero sequence is denoted by θ = (0, 0, ...).
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Kizmaz [1] defined the difference sequence spaces Z(△) as follows

Z(△) = {x = (xk) ∈ ω : (△xk) ∈ Z}

where Z ∈ {l∞, c, c0} and △xk = xk − xk+1. The above sequence spaces are
Banach spaces normed by

‖x‖△ =| x1 | + sup
k≥1

| xk | .

The idea of Kizmaz [1] was applied to introduce the different type of sequence
spaces by several authors (see [2–7]) who studied their different properties.

Serigol [8] defined the sequence spaces

X(△q) = {x = (xk) : △qx = kq(xk − xk+1) ∈ X, q < 1},

where X ∈ {l∞, c, c0}. Serigol proved that the above spaces are Banach spaces
with respect to the norm

‖x‖△q
=| x1 | + sup

k≥1
| kq(xk − xk+1) |

and studied some properties.
Et and Colak [9, 10] defined the sequence spaces

X(△m) = {x = (xk) : (△mxk) ∈ X},

where m ∈ N,△mxk = △m−1xk −△m−1xk+1 and X ∈ {l∞, c, c0} so that

△mxk =

m
∑

ν=0

(−1)ν

(

m

ν

)

xk+ν .

They showed that the spaces l∞(△n
m), c(△n

m) and c0(△
n
m) are Banach spaces with

respect to the norm

‖x‖△m =
m
∑

i=1

| xi | + sup
k≥1

| △mxk | .

Bektas and Colak [3] defined and studied the sequence spaces

X(△m
r ) = {x = (xk) : (kr△mxk) ∈ X},

where m ∈ N, r ∈ R and X ∈ {l∞, c, c0}. They showed that the spaces are Banach
spaces with respect to the norm

‖x‖△m

r
=

m
∑

i=1

| xi | + sup
k

kr | △mxk | .
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Esi et al. [11] introduced the difference operator △q
p for fixed p, q ∈ N and

defined the sequence spaces

X(△q
p) = {x = (xk) : (△q

pxk) ∈ X},

where △q
pxk = △q−1

p xk−△q−1
p xk+p and X ∈ {l∞, c, c0} and proved that the spaces

are Banach spaces with respect to the norm

‖x‖△q

p
=

pq
∑

i=1

| xi | + sup
k≥1

| △q
pxk | .

2 Definitions and Preliminaries

A sequence X is said to be solid (normal) if (xk) ∈ X implies (αkxk) ∈ X

for all sequences of the scalars (αk) with |αk| ≤ 1 for all k ∈ N. A sequence X is
said to be monotonic if it contains the canonical preimage of all its step spaces.
A sequence X is said to be convergence free if (yk) ∈ X whenever (xk) ∈ X and
yk = 0 whenever xk = 0. A sequence X is said to be symmetric, if (xπ(k)) ∈ X

whenever (xk) ∈ X where π(k) is permutation of N , the set of natural numbers.

Let m, n ≥ 1 be fixed positive integers, then we introduce a new type of
difference operators △n

m where △n
mxk = △nxk −△nxk+m and define the sequence

spaces Z(△n
m) as

Z(△n
m) = {x = (xk) : (△n

mxk) = (△nxk −△nxk+m) ∈ Z}

where Z ∈ {l∞, c, c0}. So that

△n
mxk = △nxk −△nxk+m

=

n
∑

ν=0

(−1)ν

(

n

ν

)

(xk+ν − xk+m+ν ).

3 Main Results

Proposition 3.1. The spaces l∞(△n
m), c(△n

m) and c0(△
n
m) are normed linear

spaces normed by

‖x‖△n
m

=

m+n
∑

r=1

| xr | + sup
k≥1

| △n
mxk | . (1.1)

Proof. Let α, β be scalars and x, y ∈ l∞(△n
m). Then supk≥1 | △n

mxk |< ∞ and
supk≥1 | △n

myk |< ∞. This gives

sup
k≥1

| △n
m(αxk + βyk) | ≤ | α | sup

k≥1
| △n

mxk | + | β | sup
k≥1

| △n
myk |< ∞.
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Hence l∞(△n
m) is a linear space. Similarly, it can be shown that c(△n

m) and c0(△
n
m)

are linear spaces. To show that l∞(△n
m) is a normed linear space. It is clear that

if x = θ. Then
‖x‖△n

m
= ‖θ‖△n

m
= 0.

Conversely, suppose that‖x‖△n

m
= 0. This gives

m+n
∑

r=1

| xr | + sup
k≥1

| △n
mxk |= 0,

which implies xr = 0 ∀r = 1, 2, ..., m + n and supk≥1 | △n
mxk |= 0, ∀k ∈ N, which

further implies
n
∑

ν=0

(−1)ν

(

n

ν

)

(xk+ν − xk+m+ν) = 0.

This gives

∣

∣

∣

∣

∣

(

n

0

)

(xk − xk+m) −

(

n

1

)

(xk+1 − xk+m+1) + · · ·

+(−1)n−1

(

n

n − 1

)

(xk+n−1 − xk+m+n−1) + (−1)n

(

n

n

)

(xk+n − xk+m+n)

∣

∣

∣

∣

∣

= 0.

Put k = 1, we get
∣

∣

∣

∣

∣

(

n

0

)

(x1 − xm+1) −

(

n

1

)

(x2 − xm+2) + · · ·

+(−1)n−1

(

n

n − 1

)

(xn − xm+n) + (−1)n

(

n

n

)

(xn+1 − xm+n+1)

∣

∣

∣

∣

∣

= 0,

which implies
∣

∣

∣

∣

∣

(−1)n

(

n

n

)

xm+n+1

∣

∣

∣

∣

∣

= 0.

This gives x(m+n)+1 = 0. Proceeding in this way, we have xk = 0, ∀k ∈ N. Thus,
‖x‖△n

m
= 0 ⇐⇒ x = θ. Further

‖x‖△n

m
=

m+n
∑

r=1

| xr + yr | + sup
k≥1

| △n
m(xk + yk) |

≤ ‖x‖△n

m
+ ‖y‖△n

m
.

Finally, we have

‖λx‖△n

m
=

m+n
∑

r=1

| λxr | + sup
k≥1

| △n
m(λxk) |=| λ | ‖x‖△n

m
.
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Hence l∞(△n
m) is a normed linear space. Similarly, it can be shown that c(△n

m)
and c0(△

n
m) are normed linear spaces.

The following proposition is easily obtained.

Proposition 3.2.

(1) c0(△
n
m) ⊂ c(△n

m) ⊂ l∞(△n
m) and the inclusions are proper.

(2) Z(△i
m) ⊂ Z(△n

m) for Z ∈ {l∞, c, c0}, 1 ≤ i < n and the inclusions are
strict.

Theorem 3.3. The spaces l∞(△n
m), c(△n

m) and c0(△
n
m) are Banach spaces under

the norm defined in (1.1).

Proof. Let (xi) be a Cauchy sequence in l∞(△n
m) where xi = (xi

k) = (xi
1, x

i
2, ...).

Then for given ǫ > 0, we can find a positive integer n0 such that

‖xi − xj‖ < ǫ, ∀i, j ≥ n0.

This gives

m+n
∑

r=1

| xi
r − xj

r |< ǫ and sup
k≥1

| △n
m(xi

k − x
j
k) |< ǫ, ∀i, j ≥ n0,

which gives

| xi
r − yj

r |< ǫ, ∀i, j ≥ n0 and r = 1, 2, ..., m + n.

This shows that (xi
k) is a Cauchy sequence for 1 ≤ k ≤ m + n. Let limi→∞ xi

k =

xk for 1 ≤ k ≤ m+n. Also, since supk≥1 | △n
m(xi

k−x
j
k) |< ǫ, ∀i, j ≥ n0, and k ∈ N.

This shows that (△n
mxi

k) is also a Cauchy sequence ∀k ∈ N. Let limi→∞ △n
mxi

k =
yk, ∀k ∈ N. This gives

lim
i→∞

[

n
∑

ν=0

(−1)ν

(

n

ν

)

(xi
k+ν − xi

k+m+ν)

]

= yk.

Put k = 1, we get

lim
i→∞

[

n
∑

ν=0

(−1)ν

(

n

ν

)

(xi
1+ν − xi

1+m+ν)

]

= y1.

This gives

lim
i→∞

[(

n

0

)

(xi
1 − xi

m+1) −

(

n

1

)

(xi
2 − xi

m+2) + · · ·
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+(−1)n

(

n

n

)

(xi
1+n − xi

m+n+1)

]

= y1,

which implies by using limi→∞ xi
k = xk for 1 ≤ k ≤ m + n that

[(

n

0

)

(x1 − xm+1) −

(

n

1

)

(x2 − xm+2) + · · ·

+(−1)n

(

n

n

)

(

x1+n − lim
i→∞

xi
m+n+1

)

]

= y1.

This gives
lim

i→∞
xi

(m+n)+1 = x(m+n)+1,

where

x(m+n)+1 = +

[

y1 −

{(

n

0

)

(x1 − xm+1) −

(

n

1

)

(x2 − xm+2) + · · ·

+(−1)n

(

n

n

)

(x1+n)

}]

.

Proceeding similarly, we get

lim
i→∞

xi
k = xk, ∀k ≥ 1.

Now
∑m+n

r=1 | xi
k − xj

r |< ǫ, ∀i, j ≥ n0. This gives

lim
j→∞

m+n
∑

r=1

| xi
r − xj

r |< ǫ, ∀i ≥ n0,

which implies
m+n
∑

r=1

| xi
r − xr |< ǫ, ∀i ≥ n0.

Also, we have
| △n

mxi
k −△n

mx
j
k |< ǫ, ∀i, j ≥ n0 and k ≥ 1.

This gives
lim

j→∞
| △n

mxi
k −△n

mx
j
k |< ǫ, ∀i ≥ n0 and k ≥ 1,

which gives

∣

∣

∣

∣

∣

△n
mxi

k − lim
j→∞

n
∑

ν=0

(−1)ν

(

n

ν

)

(xj
k+ν − x

j
k+m+ν)

∣

∣

∣

∣

∣

< ǫ ∀i ≥ n0 and k ≥ 1,
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which further gives
∣

∣

∣

∣

∣

△n
mxi

k −

n
∑

ν=0

(−1)ν

(

n

ν

)

(xk+ν − xk+m+ν)

∣

∣

∣

∣

∣

< ǫ ∀i ≥ n0 and k ≥ 1.

This gives
| △n

mxi
k −△n

mxk |< ǫ, ∀i ≥ n0 and k ≥ 1.

Hence
m+n
∑

r=1

| xi
r − xr | + sup

k≥1
| △n

m(xi
k − xk) |< 2ǫ, ∀i ≥ n0.

This shows that xi → x as i → ∞. Also since

|△n
mxk| =

∣

∣

∣

∣

∣

n
∑

ν=0

(−1)ν

(

n

ν

)

(xk+ν − xk+m+ν)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

n
∑

ν=0

(−1)ν

(

n

ν

)

[

xk+ν − xk+m+ν − (xn0

k+ν − xn0

k+m+ν) + (xn0

k+ν − xn0

k+m+ν)
]

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

n
∑

ν=0

(−1)ν

(

n

ν

)

[

(xn0

k+ν − xn0

k+m+ν) − (xk+ν − xk+m+ν )
]

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

n
∑

ν=0

(−1)ν

(

n

ν

)

(xn0

k+ν − xn0

k+m+ν )

∣

∣

∣

∣

∣

≤ ‖xn0 − x‖△n
m

+ ‖△n
mxn0‖ = O(1).

Hence x ∈ l∞(△n
m). This shows that l∞(△n

m) is a Banach space. Similarly, it can
be shown that c(△n

m) and c0(△
n
m) are Banach spaces.

Corollary 3.4. The spaces c(△n
m) and c0(△

n
m) are nowhere dense subsets of

l∞(△n
m).

Proof. From Proposition 3.1, the inclusion c(△n
m) ⊂ l∞(△n

m) and c0(△
n
m) ⊂

l∞(△n
m) are strict. Further from Theorem 3.3, it follows that the spaces c(△n

m)
and c0(△

n
m) are closed. Hence the spaces c(△n

m) and c0(△
n
m) are nowhere dense

subsets of l∞(△n
m).

Theorem 3.5. The spaces l∞(△n
m), c(△n

m) and c0(△
n
m) are not solid in general.

Proof. To show that the above spaces are not solid in general. Let m = n = 2 and
consider the sequence (xk) defined as

x1 = 1 and xk+1 = xk + k + 2, ∀k ∈ N.

Then (xk) ∈ c0(△
2
2) ⊂ c(△2

2) ⊂ l∞(△2
2). Now consider the sequence of scalars (αk)

defined by

αk =







1, if k = 3i, i ∈ N,

0, otherwise.
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Then (αkxk) 6∈ l∞(△2
2). Hence, the space l∞(△n

m) are not solid in general. Simi-
larly, we can show that c(△n

m) and c0(△
n
m) are not solid in general.

Theorem 3.6. The spaces l∞(△n
m), c(△n

m) and c0(△
n
m) are not symmetric in

general.

Proof. To show that the above spaces are not symmetric in general let m = n = 2
and consider the sequence (xk) defined in Theorem 3.5. Then (xk) ∈ c0(△

2
2) ⊂

c(△2
2) ⊂ l∞(△2

2). Now consider the rearrangement (yk) of (xk) as

yk =























1, if k = 3n − 2, n ∈ N,

xk+1, if k is even, k 6= 3n − 2, n ∈ N,

xk−1, if k is odd, k 6= 3n − 2, n ∈ N.

Then (yk) 6∈ l∞(△2
2). Hence, the space l∞(△2

2) is not symmetric in general.
Similarly, we can show that c(△n

m) and c0(△
n
m) are not symmetric in general.

Theorem 3.7. The spaces l∞(△n
m), c(△n

m) and c0(△
n
m) are not convergence free

in general.

Proof. To show that the above spaces are not convergence free in general let m = 2
and n = 1 and consider the sequence (xk) defined by xk = 1, ∀k ∈ N . Then
(xk) ∈ c0(△

1
2). Now consider the sequence (yk) as yk = k2, ∀k ∈ N . Then

yk 6∈ c0(△
1
2). Hence, c0(△

n
m) is not convergence free in general. Similarly we can

show that l∞(△n
m) and c(△n

m) are not convergence free in general.

Theorem 3.8. Theorem 3.8. The spaces l∞(△n
m), c(△n

m) and c0(△
n
m) are not

monotonic in general.

Proof. Let m = 3 and n = 2 and consider the sequence (xk) defined as

x1 = 1, and xk+1 = xk + k + 1, ∀k ∈ N.

Then xk ∈ c0(△
2
3). Now consider the sequence (yk) in its preimage as

yk =







1, if k odd,

0, if k even.

Then (yk) neither belongs to c0(△
n
m) nor c(△2

3). Hence c(△2
3) and c0(△

n
m) are not

monotonic in general. Similarly, we can show that l∞(△n
m) is not monotonic in

general.
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