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Abstract : In this note we introduce and investigate completely slightly com-
pressible modules as a generalization of compressible modules. It is shown that
if M is completely slightly compressible module and for any 0 6= x ∈ M , xR
is not isomorphic to any submodule of itself, then (1) every nonzero submodule
of M contains a nonzero simple direct summand and (2) M has a decomposition
M = M1⊕M2 where M1 is a semisimple submodule, M2 is a submodule which has
an essential socle. Every simple submodule of a completely slightly compressible
is a direct summand. Furthermore, an artinian completely slightly compressible
ring is semisimple.
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1 Introduction

All rings are associative with identity and all modules are unitary right mod-
ules. Let R be a ring M a R-module and N be a submodule of M , by N ≤
M(N ≤e M, N ≤d M) we usually mean that N is a submodule (essential sub-
module, direct summand respectively) of M . The injective hull of M is denoted
by E(M). The R-module M is called completely slightly compressible (CSC-, for
short)module if for each nonzero submodule N of M , there exists a nonzero ho-
momorphism f :M → N such that Kerf ∩N = 0. The ring R is called completely
slightly compressible(CSC-, for short)ring if RR is a completely slightly compress-
ible module. Following [1] and [2] a right R-module M is called compressible

Copyright c© 2012 by the Mathematical Association of Thailand.

All rights reserved.



138 Thai J. Math. 10 (2012)/ C. Çelik

(essentially compressible (EC)) if for each nonzero submodule (essential submod-
ule) N of M , there exists a monomorphism f : M → N . The right R-module M
is called slightly compressible or retractable as in [3](SC), if for each nonzero sub-
module N of M , there exists a nonzero homomorphism f :M → N . This modules
class have studied in [2–5]. Every semisimple module is a CSC-module but it need
not be a compressible module. A nonzero semisimple module M is compressible
if and only if it is simple [6]. In [2, 3], it has shown that any direct sum of slightly
compressible (essentially compressible) R-modules is slightly compressible (essen-
tially compressible). In [3] semi-essentially compressible modules are investigated.
It is called in [3] that an R-module M is semi-essentially compressible ((SEC),
briefly) if for each essential submodule N of M , M can be embedded in a direct
sum N (I) of copies of N for some set I. So every essentially compressible module
is semi-essentially compressible, and every semi-essentially compressible module is
slightly compressible. For any module M , we have the following implications:

compressible ⇒ completely slightly compressible ⇒ essentially compressible ⇒
semi essentially compressible ⇒ slightly. compressible

However, it is not known whether any direct sum of completely slightly com-
pressible modules is a completely slightly compressible module. An R-module
M is called subisomorphic to an R-module M ′ if there exist monomorphisms
f : M → M ′ and g : M ′ → M .

2 Completely Slightly Compressible Modules

Example 2.1. Let M be a semisimple (not simple) right R-module and N be
a nonzero simple submodule of M . It is clear that M is a completely slightly
compressible module. However, M is not a compressible module. Suppose that
M is compressible. Then there exists a monomorphism f :M → N . Since N is
simple, M is simple, a contradiction.

Example 2.2. Let R = (Z4, +, .). A = 2R = {0̄, 2̄} is a unique proper submodule
of RR. f : R → A; f(1̄) = 2̄ is a unique nonzero homomorphism and Kerf∩A 6= 0.
Hence RR is slightly compressible module, but not a completely slightly compressible
module.

Lemma 2.3. Every submodule of a completely slightly compressible module M is
completely slightly compressible.

Lemma 2.4. Let M be an essential compressible module such that every nonzero
submodule N of M is invariant under monomorphism α of M and α−1(N) ⊆
N . Then M and every factor module of M are completely slightly compressible
modules.

Proof. Let L and N be two nonzero submodules of M such that N ≤ L. Then
there exists a submodule K of M such that K ∩ L = 0 and K ⊕ L ≤e M . By
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hypothesis, there exists a monomorphism α:M → K ⊕ L such that α(L) ⊆ L.
β : M → L; β=πα is a nonzero homomorphism where π:K ⊕ L → L is a natural
projection map. Since α is a monomorphism, Kerβ ∩ L = 0 and so M is a
completely slightly compressible module.

Define β̄ : M
N

→ L
N

; β̄(m + N) = β(m) + N for each m ∈ M Let x ∈ L − N .

Then 0 6= x + N ∈ L
N

≤ M
N

. If x + N ∈ Kerβ̄, then 0 = β̄(x + N) = β(x) + N =
π(α(x)) +N = α(x) + N and so α(x) ∈ N . Since α−1(N) ⊆ N , x ∈ α−1(N) ⊆ N ,
a contradiction. Hence Kerβ̄ ∩ L

N
= 0.

Proposition 2.5. Let M be an R-module. Then the following statements are
equivalent.

(i) M is a completely slightly compressible module.

(ii) M is subisomorphic to a completely slightly compressible module.

Proof. (i)⇒(ii): M has an essential submodule N such that M ∼= N . By Lemma
2.3, N is completely slightly compressible module.

(ii)⇒(i): Let M
′

be a completely slightly compressible module and M be
subisomorphic to M

′

. Then there exist α : M → M
′

and β : M
′

→ M monomor-
phisms. Let N be a nonzero submodule of M . Then there exists a nonzero submod-
ule L of M

′

such that L = α(N) ≤ M
′

. Since M
′

is completely slightly compress-
ible module, there exists a homomorphism g : M

′

→ L such that Kerg ∩ L = 0.
Define γ : M → N by γ = fgα where f : L → N is an isomorphism. γ is a
nonzero homomorphism. Let 0 6= x ∈ N . Then α(x) 6= 0 and α(x) ∈ L. This
implies that g(α(x)) 6= 0 and also f(g(α(x))) 6= 0. Thus, Kerγ ∩N = 0 and so M
is completely slightly compressible module.

Lemma 2.6. Let M be a completely slightly compressible R-module and A =
annR(M). Let I, J be two proper ideals of R such that JI ⊆ A and J " A. Then
either I ⊆ A or MI ∩ MJ = 0.

Proof. Since J " A, MJ is a nonzero submodule of M . By hypothesis, there
exists a homomorphism f : M → MJ such that Kerf ∩ MJ = 0. f(MI) =
f(M)I ⊆ (MJ)I = (M)JI = 0 implies MI ⊆ Kerf . If Kerf = 0, then MI = 0
and so I ⊆ A. Assume that Kerf 6= 0. Then MI ∩ MJ = 0.

Theorem 2.7. Let M be an R-module such that it contains no infinite direct sum
of submodules. If E(M) is completely slightly compressible module, then M is an
injective module.

Proof. Since E(M) is completely slightly compressible module and M ≤e E(M),
there exists a monomorphism f : E(M) → M . This implies that M has a nonzero
submodule M1 such that E(M) ∼= f(E(M)) = M1 ≤ M . M1 is an injective
submodule of M and so E(M) = M1 ⊕ M2 and M = M1 ⊕ (M ∩ M2) for some
M2 ≤ E(M). If M ∩ M2 = 0, then M2 = 0 and so E(M) = M1 = M . Suppose
that M ∩ M2 6= 0. Again by the completely slightly compressible condition on
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E(M), there exists a nonzero homomorphism f1 : E(M) → M ∩ M2 such that
Kerf1 ∩ (M ∩ M2) = 0. Kerf1 ∩ (M ∩ M2) = (Kerf1 ∩ M2) ∩ M = 0 implies
Kerf1 ∩ M2 = 0. Therefore f2 = f1 |M2

: M2 → M ∩ M2 is a monomorphism.
Thus, M2

∼= f2(M2) = M3 ≤ M ∩ M2 and so M2 = M3 ⊕ M4, M = M1 ⊕ M3 ⊕
(M ∩ M4) for some M4 ≤ M2. After finite step, we have

M = M1 ⊕ M3 ⊕ · · · ⊕ M2n−1 ⊕ (M ∩ M2n)

where Mi is an injective submodules of M (i = 1, 3, ..., 2n − 1,), M2n ≤d E(M)
and n is a positive integer. We claim that M ∩ M2n must be a uniform injective
submodule of M for a positive integer n. In fact, if M ∩ M2n is not uniform,
then by the completely slightly compressible condition on E(M), there exists a
homomorphism g : E(M) → M ∩ M2n such that 0 = (Kerg) ∩ (M ∩ M2n) =
Kerg∩M2n. This implies that g1 = g |M2n

: M2n → M ∩ M2n is a monomorphism.
M2n

∼= g1(M2n) = M2n+1 ≤ M ∩ M2n. Hence M2n+1 is an injective submodule of
M2n and also M2n+1 ≤d M ∩ M2n. This proceed can be repeated infinitely many
times. So M contains infinite direct sum of submodules. This is a contradiction.
Since M ∩M2n is uniform, g1 is an isomorphism and so M2n+1 = M ∩M2n. Thus,

M = M1 ⊕ M3 ⊕ · · · ⊕ M2n−1 ⊕ (M ∩ M2n)

= M1 ⊕ M3 ⊕ · · · ⊕ M2n−1 ⊕ M2n+1

is injective.

Proposition 2.8. Let M be a completely slightly compressible module. Then every
simple submodule of M is a direct summand of M .

Proof. Let N be a simple submodule of M . Then there exists a nonzero homo-
morphism f :M → N such that Kerf ∩ N = 0. Two possibilities arise here. If
Kerf = 0, then M is isomorphic to simple module N . Hence the simple module
M is a direct summand of itself. Assume Kerf 6= 0. Then M/Kerf is isomorphic
to N and so Kerf is a maximal submodule of M . Since Kerf ∩ N = 0, we have
M = Kerf ⊕ N .

Lemma 2.9. Let M be a module such that for any 0 6= x ∈ M , xR is not
isomorphic to any submodule of itself. If M is a completely slightly compressible
module, then every nonzero submodule of M has a nonzero simple direct summand
of M .

Proof. Let N be a nonzero submodule of M and 0 6= x ∈ N . The submodule xR
is a cyclic submodule of N and so it has a maximal submodule Y . Since M is
a completely slightly compressible module, by Lemma 2.3 there exists a nonzero
homomorphism f : xR → Y such that Kerf ∩ Y = 0. Then K = Kerf 6= 0.
Otherwise xR would be isomorphic to a submodule of itself. That would be
a contradiction to the hypothesis. Hence Kerf is nonzero and it implies that
xR = K ⊕ Y since Y is maximal. K is a simple submodule of xR and also it is a
simple submodule of M . By the completely slightly compressible condition on M ,
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there exists a nonzero homomorphism g : M → K such that Kerg ∩K = 0. Since
K is simple, g is an epimorphism and so M/Kerg ∼= K. Thus, M = K ⊕ Kerg
and K ≤ N .

Corollary 2.10. Let M be a module such that for any 0 6= x ∈ M , xR is not
isomorphic to any submodule of itself. If M is a completely slightly compressible
module, then Soc(M) is an essential submodule of M .

Corollary 2.11. Let M be a module such that for any 0 6= x ∈ M , xR is not
isomorphic to any submodule of itself. If M is a completely slightly compressible
module, then M has no nonzero small submodule.

Proof. Suppose that K be a nonzero small submodule of M . By Lemma 2.9, K has
a simple submodule which is a direct summand of M . This is a contradiction.

Theorem 2.12. Let M be a module such that for any 0 6= x ∈ M , xR is not
isomorphic to any submodule of itself. If M is a completely slightly compressible
module, then M = M1 ⊕ M2 where M1 is a semisimple and M2 has an essential
socle.

Proof. By Corollary 2.10, Soc(M) is an essential submodule and by Corollary 2.11,
M has no nonzero small submodule. Then there exists a submodule M2 of M such
that M = Soc(M) + M2 and N = Soc(M2) = M2 ∩ Soc(M) ≤e M2. Soc(M) =
M1 ⊕ N and so M = M1 ⊕ N + M2 = M1 ⊕ M2 for some M1 ≤d Soc(M).

Theorem 2.13. Let M be an R-module which has a finitely generated essential
socle. Then M is completely slightly compressible if and only if M is semisimple.

Proof. Suppose that M is a completely slightly compressible module. Let Soc(M) =
S1 ⊕ S2 ⊕ · · · ⊕ Sn ≤e M . By Proposition 2.8, Si is direct summand of M for all
i = 1, 2, ..., n. We assume n = 2. Soc(M) = S1 ⊕ S2 ≤e M . Since S1 is a direct
summand of M , M = S1 ⊕ L for some submodule L of M and S = Soc(L) is
simple. By Lemma 2.3, there exists a monomorphism f : L → S. Being S simple
implies L ∼= S and also L is simple. Thus, M is semisimple.

3 Completely Slightly Compressible Rings

In this section we investigate completely slightly compressible rings. We start
with an example. As we have noted there are right essentially compressible rings
but not right completely slightly compressible.

Example 3.1. Let R =

(

Z Z
0 Z

)

. Since Z is an integral domain, Z is a (right)

essentially compressible ring. By [2, Corollary 5.7], R is a (right) essentially
compressible ring. Assume that R is a right completely slightly compressible ring

and we get a contradiction. Let I =

(

0 2Z
0 0

)

. Then I is a right ideal of R. By
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assumption there exists a nonzero homomorphism R
f
→ I such that Ker(f)∩I = 0.

But

(

0 2
0 0

)

∈ Ker(f) ∩ I. This is the required contradiction.

Proposition 3.2. Let R be a ring and I a minimal right (left) ideal of R. If R
is a completely slightly compressible ring, then there exists e2 = e ∈ R such that
I = eR(I = Re).

Proof. Let I be a minimal right ideal of a completely slightly compressible ring R.
Then I = aR for some a ∈ I and there exists a homomorphism f : R → aR such
that Kerf ∩ aR = 0. Let f(1R) = ar(r ∈ R). Then f(ar) = f(1R)ar = (ar)2 6= 0.
So I2 6= 0. This implies that there exists e2 = e ∈ I such that I = eR.

Corollary 3.3. Let R be a completely slightly compressible ring. Then for any
right (left) ideal I of R there exists a nonzero element x ∈ I such that r.ann(x) ∩
I = 0 (l.ann(x) ∩ I = 0).

Proof. Let I be a right (left) ideal of R. Since R is a completely slightly com-
pressible ring, there exists a homomorphism f : R → I such that Kerf ∩ I = 0.
Let f(1R) = x ∈ I. For any 0 6= y ∈ I, f(y) 6= 0. Thus, 0 6= f(y) = xy and
r.ann(x) ∩ I = 0.

Lemma 3.4. Let R be a completely slightly compressible ring. Then

(1) R has no nonzero nilpotent ideal.

(2) If R is commutative, then R has no nonzero nilpotent element.

Proof. (1) : Let I be a nilpotent ideal of R and In = 0 for some positive integer
n. If In−1 = 0, there is nothing to do. Otherwise there exists a nonzero homo-

morphism R
f
→ In−1. Let f(1) = x ∈ In−1. Then f(x) = x2 = 0 since x ∈ In−1

and (In−1)2 = 0. Hence x ∈ Kerf ∩ (In−1) = 0. Thus In−1 = 0. By induction on
n we may have I = 0.

(2) : Let a be a nilpotent element of R with an = 0 for some positive integer
n. There exists a homomorphism f : R → Ra such that Kerf ∩ Ra = 0. Let
f(1) = ra for some r ∈ R. Then f(an−1) = ran = 0. Since an−1 ∈ Ra and
Kerf ∩Ra = 0, an−1 ∈ Kerf ∩Ra = 0. By induction on n we may conclude that
a = 0. Thus R has no nonzero nilpotent elements.

Recall that a module M is semisimple if every submodule of M is a direct
summand. The ring R is semisimple if the right R-module R is semisimple, equiv-
alently every R-module is semisimple. According to the Wedderburn-Artin Theo-
rem a ring R is semisimple if and only if it is isomorphic to a finite direct sum of
full matrix rings over division rings.

Theorem 3.5. Let R be a right artinian ring. Then R is a right completely slightly
compressible ring if and only if R is semisimple.
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Proof. (⇒:) Assume that R is a right completely slightly compressible ring. By
Lemma 3.4(1), R does not has a nonzero nilpotent ideal. By hypothesis Jacobson
radical J(R) of R is nilpotent. Hence J(R) = 0. So by Proposition 15.17 in [7], R
is semisimple.

4 Retractability and Related concepts

In this section we investigate module properties under assumption of retractabil-
ity. Let M be a right R-module with S = EndR(M). The following results are
proved in [8].

1. If the module M is retractable and has a semisimple endomorphism ring,
then it is semisimple artinian.

2. If M is a retractable K-nonsingular, then S is right nonsingular.

3. If M is a S-(quasi-)Baer module, then S is a (quasi-)Baer ring. Converse
holds if M is retractable.

The module M is called principally S-Baer if for any m ∈ M , lS(m) = Se (which
is equal to lS(mR)) for some e2 = e ∈ S [6]. An R- module M is said to be
S-quasi-Baer if the right annihilator in M of any ideal of S is generated by an
idempotent of S(or equivalently, for all fully invariant R-submodules N of M ,
lS(N) = Se with e2 = e ∈ S), while M is called a principally S-quasi-Baer module
if the right annihilator in M of any principal right ideal of S is generated by an
idempotent of S. A module M is called principally retractable if for any nonzero

cyclic submodule N of M , there exists a nonzero M
f
→ N(or, equivalently, for any

nonzero f ∈ S f(M) is contained in a cyclic submodule of M). In [9], principally
retractable module is called quasi-retractable.

Proposition 4.1 ([9]). If M is principally S-quasi-Baer module, then S is a right
principally quasi-Baer ring. The converse holds if M is a principally retractable
module.

Let M be a right R-module with S = EndR(M). In [6], The module M is called
a principally S-Baer if for any m ∈ M , lS(m) = Se (which is equal to lS(mR)) for
some e2 = e ∈ S. Note that a ring R is called right principally projective(or a right
Rickart ring) if every cyclic right ideal of R is a projective right R-module(see
namely [10]). Then the module RR is principally Baer if and only if the ring R is
left principally projective.

Let M be a right R-module with S = EndR(M). In [11], the module M is
called S-Rickart if for any f ∈ S, rM (f) = eM for some e2 = e ∈ S. Then the
ring R is right Rickart if and only if the module RR is Rickart. S-Rickart rings are
studied in detail in [6]. Left S-Rickart rings are defined in a symmetric way.

Theorem 4.2. If M is a S-Rickart module, then S is a right Rickart ring. The
converse is true if M is principally retractable.
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Proof. Let M be a S-Rickart module. In [6], it is proved that S is a right Rickart
ring. Assume now that M is principally retractable and S is a right Rickart
ring. Let f ∈ S. We prove rM (f) = eM for some e2 = e ∈ S. There exists
e2 = e ∈ S such that rS(f) = eS. So fe = 0 and feM = 0. It follows that
eM ≤ rM (f). For the inverse inclusion let m ∈ rM (f). By modularity rM (f) =
eM ⊕ ((1− e)M)∩ (rM (f)). Write m = em1 + (1− e)m2 where m1, m2 ∈ M with
(1 − e)m2 ∈ rM (f). Assume that (1 − e)m2 is nonzero and get a contradiction.

Now by hypothesis there exists a nonzero homomorphism M
g
→ (1 − e)m2R.

Then we have gM ≤ (1 − e)m2R and it implies g = (1 − e)g ∈ (1 − e)S. Since
(1 − e)m2 ∈ rM (f), fg = 0. Hence g ∈ rS(f) = eS, and then eg = g ∈ eS. Thus
g ∈ (eS) ∩ ((1 − e)S) = 0. This is the required contradiction.
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