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Abstract : In this paper we develop a technique to calculate the determinant
of the adjacency matrix of a graph that is formed by joining two distinct simple
graphs by two additional edges. The choice of the vertices at which the connection
is established is an arbitrary and naturally the result is a function of the choice,
so the technique is useful when the joined graphs are of special types - regular,
strongly regular, complete graphs, wheel graphs, paths. In the second half of the
paper we apply the technique to find the determinant of cycles joined by two edges
and complete graphs joined by two edges.
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1 Introduction

Let G and H be two distinct simple graphs and let G ≍ H denote the graph
that is obtained by joining G with H by two additional edges (see Figure 1 below).
We develop a procedure that allows us to compute the determinant of the con-
nected graph G ≍ H , where as usual, under determinant of a graph we understand
the determinant of the adjacency matrix of the graph.
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The choice of the pair of vertices on each of the graphs G and H at which the
connection is established is arbitrary and clearly the determinant of the resulting
connected graph is a function of that choice and subsequently of the properties of
those vertices. Without loss of generality, let us denote the connecting vertices of
the graph G by m − 1 and m and of the graph H by m + 1 and m + 2.

Figure 1.

To achieve the main goal of the work we employ a formula for computing the
determinant of an n × n matrix A called the Laplace expansion formula. Before
we formally state it, let us introduce some notations.

Let r = (r1, r2, . . . , rk) and c = (c1, c2, . . . , ck) be ordered k−tuples of row
indices and column indices respectively, for a square n by n matrix A, where
1 ≤ k < n, 1 ≤ r1 < r2 < · · · < rk ≤ n and 1 ≤ c1 < c2 < · · · < ck ≤ n.

We denote the submatrix obtained by selecting the rows indicated in r and the
columns indicated in c by S(A; r, c). We denote the submatrix obtained by deleting

the rows indicated in r and columns indicated in c by S∗(A; r, c).
If r = (ri) and c = (cj) where 1 ≤ i, j ≤ n, then we write S(A; r, c) as aij

and S∗(A; r, c) as M(A)ij . Observe, that aij is a single element matrix (a number)
and M(A)ij is a submatrix of A obtained by deleting the i-th row and the j-th
column. To better demonstrate the process let us consider the following example:

Example 1.1. Let

A =









1 5 0 −2
1 0 1 7
2 3 0 5
1 1 6 2









and r = (1, 3, 4), c = (1, 2, 3).

Then

S(A; r, c) =





1 5 0
2 3 0
1 1 6



 and S∗(A; r, c) =
(

7
)

.

Theorem 1.2 (the Laplace expansion formula [1]). Let A be an n × n matrix
and let r = (r1, r2, . . . , rk) be k−tuples of row indices, where 1 ≤ k < n and
1 ≤ r1 < r2 < · · · < rk ≤ n. Then

detA = (−1)σ(r)
∑

c

(−1)σ(c)|S(A; r, c)||S∗(A; r, c)| (1.1)

where σ(r) = r1 + r2 + · · · + rk, σ(c) = c1 + c2 + · · · + ck, and the summation is
over all k−tuples c = (c1, c2, . . . , ck) for which 1 ≤ c1 < c2 < · · · < ck ≤ n.
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Example 1.3. Let

A =









a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44









and r = (1, 2).

Then σ(r) = 3 and c = (c1, c2) for which 1 ≤ c1 < c2 ≤ 4. Hence,

detA

= (−1)3
∑

(c1,c2)

(−1)(c1+c2)|S(A; r, (c1, c2))||S
∗(A; r, (c1, c2))|

= |S(A; r, (1, 2))||S∗(A; r, (1, 2))| − |S(A; r, (1, 3))||S∗(A; r, (1, 3))|

+ |S(A; r, (1, 4))||S∗(A; r, (1, 4))| + |S(A; r, (2, 3))||S∗(A; r, (2, 3))|

− |S(A; r, (2, 4))||S∗(A; r, (2, 4))| + |S(A; r, (3, 4))||S∗(A; r, (3, 4))|

= det

(

a11 a12

a21 a22

)

det

(

a33 a34

a43 a44

)

− det

(

a11 a13

a21 a23

)

det

(

a32 a34

a42 a44

)

+ det

(

a11 a14

a21 a24

)

det

(

a32 a33

a42 a43

)

+ det

(

a12 a13

a22 a23

)

det

(

a31 a34

a41 a44

)

− det

(

a12 a14

a22 a24

)

det

(

a31 a33

a41 a43

)

+ det

(

a13 a14

a23 a24

)

det

(

a31 a32

a41 a42

)

.

2 Determinant of Graphs Jointed by Two Edges

Now we are ready to address our main goal - the determinant of G ≍ H.

Let G and H be two distinct simple graphs of order greater than one and let us
formally denote the vertex sets of the two graphs as V (G) = {1, 2, . . . , m − 1, m}
and V (H) = {m + 1, m + 2, . . . , m + n}, with G and H connected by the edges
{m, m+ 1} and {m− 1, m+ 2} (see Figure 1 in Section 1). Clearly, the adjacency
matrix of the resulting (connected) graph G ≍ H has the following form:

detA(G ≍ H) =





























0 0 . . . 0 0
...

...
...

...
A(G) 0 1 . . . 0 0

1 0 . . . 0 0
0 0 . . . 0 1
0 0 . . . 1 0 A(H)
...

...
...

...
...

0 0 . . . 0 0





























.

To compute the determinant of A = A(G ≍ H) we are going to use the Laplace
formula (1.1) with minors of dimension m × m (see Theorem 1.2).
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Let us fix r = (1, 2, ..., m) and observe that any choice of c = (c1, c2, . . . , cm)
that is not of the form c = (1, . . . , cm−1, cm) would yield a submatrix S∗(A; r, c)
with a determinant 0. This is so by the definition of S∗ (see Section 1) and the
fact that all elements of A below the row m in columns from 1 to m − 2 are 0
(recall that G and H are disjointed).

Furthermore, with a similar argument, if the remaining two spots for c, namely
cm−1 and cm, are different from m − 1, m, m + 1 or m + 2 the determinant of the
submatrix S(A; r, c) would equal 0, because it would contain a column of elements
from rows 1 to m and some column to the right of column m + 2, but they are all
zeros. Thus in formula (1.1) only the six summands that correspond to

c = (1, 2, . . . , m − 2, m − 1, m), c = (1, 2, . . . , m − 2, m − 1, m + 1),

c = (1, 2, . . . , m − 2, m − 1, m + 2), c = (1, 2, . . . , m − 2, m, m + 1),

c = (1, 2, . . . , m − 2, m, m + 2), c = (1, 2, . . . , m − 2, m + 1, m + 2)

would yield a non-zero result. For the case c = (1, 2, . . . , m − 1, m), we have
S(A; r, c) = A(G), S∗(A; r, c) = A(H) and so

(−1)σ(c)|S(A; r, c)||S∗(A; r, c)| = (−1)sm det A(G) det A(H) (2.1)

where sm = 1 + 2 + · · · + m.

We consider the remaining five cases in the next series of lemmas. We adopt
the following notation - for a graph G with a vertex x ∈ V (G), we denote by G\x
the subgraph of G that is obtained by removing from G the vertex x and all edges
that are incident to x.

Lemma 2.1. Let A = A(G ≍ H), r = (1, 2, . . . , m) and c = (1, 2, . . . , m− 2, m−
1, m + 1). Then

(−1)σ(c)|S(A; r, c)||S∗(A; r, c)| = (−1)sm+1 detA(G\m) detA(H\m + 1),

where sm = 1 + 2 + · · · + m.

Proof. Clearly, σ(c) = 1 +2 + · · ·+ (m− 1)+ (m +1) = sm +1. Next we compute
|S(A; r, c)| :

|S(A; r, c)| = det















0
0

A(G\m)
...
0

am1 am2 . . . am(m−1) 1















= detA(G\m)
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and

|S∗(A; r, c)| = det















1 a(m+1)(m+2) a(m+1)(m+3) . . . a(m+1)(m+n)

0
... A(H\m + 1)
0
0















= detA(H\m + 1).

So (−1)σ(c)|S(A; r, c)||S∗(A; r, c)| = (−1)sm+1 detA(G\m) det A(H\m + 1).

Lemma 2.2. Let A = A(G ≍ H), r = (1, 2, . . . , m) and c = (1, 2, . . . , m −
2, m, m + 2). Then

(−1)σ(c)|S(A; r, c)||S∗(A; r, c)| = (−1)sm+3 detA(G\m − 1) det A(H\m + 2),

where sm = 1 + 2 + · · · + m.

Proof. Clearly, σ(c) = 1 + 2 + · · ·+ (m− 2) + m + (m + 2) = sm + 3. Further, we
have

|S(A; r, c)| = det

















a1m 0

A(G\{m − 1, m}) a2m

...
... 0

a(m−1)1 . . . a(m−1)(m−2) a(m−1)m 1
am1 . . . am(m−2) amm 0

















= − det











a1m

A(G\{m − 1, m}) a2m

...
am1 am2 . . . amm











= − detA(G\m − 1)

and similarly

|S∗(A; r, c)|

= det















0 a(m+1)(m+1) a(m+1)(m+3) . . . a(m+1)(m+1)

1 a(m+2)(m+1) a(m+2)(m+1) . . . a(m+2)(m+n)

0 a(m+3)(m+1)

...
... A(H\{m + 1, m + 2})

0 a(m+n)(m+1)















= − det











a(m+1)(m+1) a(m+1)(m+3) . . . a(m+1)(m+n)

a(m+3)(m+1)

... A(H\{m + 1, m + 2})
a(m+n)(m+1)











= − detA(H\m + 2).
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So (−1)σ(c)|S(A; r, c)||S∗(A; r, c)| = (−1)sm+3 detA(G\m − 1) detA(H\m + 2).

For the fourth possible choice of c, we have

Lemma 2.3. Let A = A(G ≍ H), r = (1, 2, . . . , m) and c = (1, 2, . . . , m− 2, m +
1, m + 2). Then

(−1)σ(c)|S(A; r,c)||S∗(A; r, c)|

= (−1)sm+4 detA(G\{m − 1, m}) detA(H\{m + 1, m + 2})

where sm = 1 + 2 + · · · + m.

Proof. Straightforward σ(c) = 1+ 2+ · · ·+ (m− 2)+ (m +1)+ (m + 2) = sm +4.

Further,

|S(A; r, c)| = det















0 0

A(G\{m − 1, m})
...

...
0 0

a(m−1)1 . . . a(m−1)(m−2) 0 1
am1 . . . am(m−2) 1 0















= − det











0

A(G\{m − 1, m})
...
0

am1 . . . a(m)(m−2) 1











= − detA(G\{m − 1, m})

and

|S∗(A; r, c)| = det



















0 1 a(m+1)(m+3) . . . a(m+1)(m+n)

1 0 a(m+2)(m+3) . . . a(m+2)(m+n)

0 0
...

... A(H\{m + 1, m + 2})
0 0
0 0



















= − det















1 a(m+1)(m+3) . . . a(m+1)(m+n)

0
... A(H\{m + 1, m + 2})
0
0















= − detA(H\{m + 1, m + 2}).
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So

(−1)σ(c)|S(A;r, c)||S∗(A; r, c)|

= (−1)sm+4 detA(G\{m − 1, m}) detA(H\{m + 1, m + 2}).

For the remaining two cases for the m−tuples c let us introduce the following
notations.

Let A be a square p×p matrix. We denote by A∇ the (p−1)×(p−1) submatrix
of A, S(A; r, c), where r = (1, 2, . . . , p − 2, p) and c = (1, 2, . . . , p − 1). We denote
by A∆ the (p− 1)× (p− 1) submatrix of A, S(A; r, c), where r = (2, 3, . . . , p) and
c = (1, 3, . . . , p).

In the context of our discussion and notations the submatrix A∇(G) of the
adjacency matrix for the graph G is an (m − 1)× (m− 1) matrix which coincides
with A(G\m) with the last column and row of the matrix A(G\m) replaced by v

and t respectively, where

v =















a1(m−1)

a2(m−1)

...
a(m−2)(m−1)

am(m−1)















and t =
(

am1 am2 · · · am(m−1)

)

.

The matrix A∆(H) is an (n− 1)× (n− 1) matrix which coincides with the matrix
A(H\m + 1) with the first column and first row of matrix A(H\m + 1) replaced
by v and t respectively, where

v =











a(m+2)(m+1)

a(m+3)(m+1)

...
a(m+n)(m+1)











and t =
(

a(m+2)(m+1) a(m+2)(m+3) · · · a(m+2)(m+n)

)

.

Lemma 2.4. Let A = A(G ≍ H), r = (1, 2, . . . , m) and c = (1, 2, . . . , m− 2, m−
1, m + 2). Then

(−1)σ(c)|S(A; r, c)||S∗(A; r, c)| = (−1)sm+3 detA∇(G) det A∆(H),

where sm = 1 + 2 + · · · + m.

Proof. Clearly, σ(c) = 1 + 2 + · · · + (m − 1) + (m + 2) = sm + 2. Further, for the
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determinants of S(A; r, c) and S∗(A; r, c) we get

|S(A; r, c)| = det

















A(G\{m − 1, m})

a1(m−1) 0

a2(m−1)

...
... 0

a(m−1)1 a(m−1)2 · · ·
am1 am2 · · ·

a(m−1)(m−1) 1
am(m−1) 0

















= − det















A(G\{m − 1, m})

a1(m−1)

a2(m−1)

...
a(m−2)(m−1)

am1 am2 · · · am(m−1)















= − detA∇(G)

and

|S∗(A; r, c)| = det















1 a(m+1)(m+1)

0 a(m+2)(m+1)

a(m+1)(m+3) · · · a(m+1)(m+n)

a(m+2)(m+3) · · · a(m+2)(m+n)

0 a(m+3)(m+1)

...
...

0 a(m+n)(m+1)

A(H\{m + 1, m + 2})















= det











a(m+2)(m+1) a(m+2)(m+3) · · · a(m+2)(m+n)

a(m+3)(m+1)

...
a(m+n)(m+1)

A(H\{m + 1, m + 2})











= detA∆(H).

So, (−1)σ(c)|S(A; r, c)||S∗(A; r, c)| = (−1)sm+3 detA∇(G) det A∆(H).

Finally, we have

Lemma 2.5. Let A = A(G ≍ H), r = (1, 2, . . . , m) and c = (1, 2, . . . , m −
2, m, m + 1). Then

(−1)σ(c)|S(A; r, c)||S∗(A; r, c)| = (−1)sm+3 detA∇(G) detA∆(H),

where sm = 1 + 2 + · · · + m.

Proof. The result follows directly by mimicking the proof of Lemma 2.4, combined
with the observation that S(A; r, c) = (G∇)T , S∗(A; r, c) = (H∆)T and the fact
that the determinant of a matrix is the same as the determinant of its transpose.



Determinant of Graphs Joined by Two Edges 109

Combining the results of the discussion so far we obtain the central result for
the section.

Theorem 2.6. Let G and H be two disjoint graphs of order m > 1 and n > 1
respectively. Denote the vertex set of G by V (G) = {1, 2, . . . , m} and the vertex
set of H by V (H) = {m + 1, m + 2, . . . , m + n} and let G ≍ H be the joint of the
two graphs by the edges {m, m + 1} and {m− 1, m + 2} (See Figure 1). Then the
determinant of A(G ≍ H) can be computed as follows:

detA(G ≍ H) = detA(G) det A(H) − detA(G \ {m}) detA(H \ {m + 1})

− 2 detA∇(G) det A∆(H)

− det A(G \ {m − 1}) detA(H \ {m + 2})

+ det A(G \ {m − 1, m}) detA(H \ {m + 1, m + 2}).

Proof. Recall that r = (1, 2, . . . , m) and so σ(r) = 1 + 2 + · · · + m = sm. Thus,
substituting in the Laplace formula (1.1) the results from the formula (2.1) and
the Lemmas 2.1 - 2.5 we get:

detA(G ≍ H) = (−1)σ(r)
∑

c

(−1)σ(c)|S(A; r, c)||S∗(A; r, c)|

= (−1)sm [(−1)sm detA(G) det A(H)

+ (−1)sm+1 detA(G \ {m}) detA(H \ {m + 1})

+ (−1)sm+3 detA(G \ {m − 1}) detA(H \ {m + 2})

+ (−1)sm+4 detA(G \ {m − 1, m}) detA(H \ {m + 1, m + 2})

+ 2(−1)sm+3 detA∇(G) det A∆(H)].

So finally we have

detA(G ≍ H) = detA(G) det A(H) − detA(G \ {m}) detA(H \ {m + 1})

− 2 detA∇(G) det A∆(H)

− detA(G \ {m − 1}) detA(H \ {m + 2})

+ detA(G \ {m − 1, m}) detA(H \ {m + 1, m + 2}),

as needed.

3 The Determinant of Cm ≍ Cn and Km ≍ Kn

In this section we apply the main result of Section 2 to calculate the determi-
nant of cycles joined by two edges and complete graphs joined by two edges. Before
we implement the formula from Theorem 2.6, recall that for the determinant of a
cycle Cn we have (see also [2])

det(A(Cn)) =







0 if n ≡ 0(mod 4),
−4 if n ≡ 2(mod 4),
2 otherwise.

(3.1)
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and for the determinant of a path graph Pn we have (see also [2])

det(A(Pn)) =







(−1)k if n = 2k for some k ∈ Z
+,

0 otherwise.
(3.2)

Next, we calculate the determinants of A∇(Cm) and A∆(Cm).

Lemma 3.1. Let Cm be a cycle graph with m vertices. Then

detA∇(Cm) = detA∆(Cm) = detA(Pm−2) + (−1)m.

Proof. By definition, the matrix A∇(Cm) has the form

A∇(Cm) =















0

A(Cm\m − 1, m})
...
0
1

1 0 . . . 0 1















.

Observe that A(Cm\{m − 1, m}) = A(Pm−2). Observe, further, that if we remove
the first column from the adjacency matrix of a path graph, the resulting matrix
is in a lower triangular form, with ones on the main diagonal and zeros above it.
Thus, computing the determinant of A∇(Cm) by adding the cofactors expanded
on the last row we have

det A∇(Cm) = detA(Pm−2) + (−1)m.

Next, by definition A∆(Cm) is in the form

A∆(Cm) =















1 1 0 . . . 0
0
... A(Cm\{1, 2})
0
1















and computing the cofactors along the first column we get

detA∆(Cm) = detA(Pm−2) + (−1)m.

Theorem 3.2. Let Cm and Cn be two cycles with m and n vertices, respectively.
Then for the determinant of the graph Cm ≍ Cn we have

det A(Cm ≍ Cn) =







































1 if m ≡ 0(mod 4) and n ≡ 0(mod 4),
−1 if [m ≡ 0(mod 4) and n ≡ 2(mod 4)]

or [m ≡ 2(mod 4) and n ≡ 0(mod 4)],
−4 if [m ≡ 1(mod 4) and n ≡ 2(mod 4)]

or [m ≡ 2(mod 4) and n ≡ 1(mod 4)],
9 if m ≡ 2(mod 4) and n ≡ 2(mod 4),
0 otherwise.
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Proof. Substituting the result of Lemma 3.1 into the formula of Theorem 2.6 we
obtain directly the following result:

detA(Cm ≍ Cn) = detA(Cm) · detA(Cn) − 2 detA(Pm−1) detA(Pn−1)

− 2[(detA(Pm−2) + (−1)m)(det A(Pn−2) + (−1)n)]

+ detA(Pm−2) detA(Pn−2).

Finally, substituting the results from equations (3.1) and (3.2) into the result above
we obtain the conclusion of the theorem.

Now consider Km ≍ Kn, the joined of the complete graphs Km and Kn,

m, n ≥ 2. Recall that for the determinant of a complete graph Ks we have (see
[2])

detA(Ks) = (−1)s−1(s − 1)

and observe that

detA∇(Ks) = detA∆(Ks) = (−1)s−2, for any s ≥ 2.

Thus, using the results above into the general formula from Theorem 2.6, for the
determinant of the graph Km ≍ Kn we have:

detA(Km ≍ Kn) = det A(Km) detA(Kn) − 2 detA(Km−1) detA(Kn−1)

− 2[(detA∇(Km)(det A∆(Kn))] + detA(Km−2) detA(Kn−2)

= 0.

So we proved the following result:

Theorem 3.3. The adjacency matrix of the graph Km ≍ Kn obtained by joining
two complete graphs Km and Kn, m, n ≥ 2 by two edges is always singular.
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