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1 Introduction

Let E be a Banach space with norm ‖ · ‖ and let J be the normalized duality
mapping from E into 2E∗

given by

Jx = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖‖x∗‖, ‖x‖ = ‖x∗‖}, ∀x ∈ C,

where E∗ denotes the dual space of E and 〈·, ·〉 denotes the generalized duality
pairing between E and E∗. In what follows, we denote a single valued normalized
duality mapping by j.

Let C be a nonempty closed convex subset of a Banach space E and T a
nonlinear mapping. From now on, we use F (T ) to denote the fixed point set of T .
Now we recall the following :

A mapping T is said to be pseudocontractive if there exists some j(x − y) ∈
J(x − y) such that 〈Tx − Ty, j(x − y)〉 ≤ ‖x − y‖2, ∀x, y ∈ C.

T is said to be strongly pseudocontractive if there exists a constant α ∈ (0, 1)
such that 〈Tx−Ty, j(x− y)〉 ≤ α‖x− y‖2, ∀x, y ∈ C for some j(x− y) ∈ J(x− y).

T is said to be Lipschitz if there exists a constant L > 0 such that ‖Tx−Ty‖ ≤
L‖x − y‖, ∀x, y ∈ C.

If L = 1, then T is said to be nonexpansive.

The class of pseudocontractions is one of most important classes of mappings
among nonlinear mappings. Many authors have been devoted to the existence and
convergence of fixed points for pseudocontractions. In 1974, Deimling [1] proved
the following existence result for continuous strong pseudocontractions in Banach
spaces.

Theorem 1.1 ([1]). Let E be a Banach space, C be a nonempty closed convex
subset of E and T : C → C be a continuous and strong pseudocontraction. Then
T has a unique fixed point in C.

A pseudocontraction semigroup is a family F = {T (t) : t ≥ 0} of self-mapping
of C such that

(i) T (0)x = x for all x ∈ C;

(ii) T (s + t) = T (s)T (t) for all s, t > 0;

(iii) limt→0+ T (t)x = x for all x ∈ C;

(iv) for each t > 0, T (t) is pseudocontractive; that is,

〈T (t)x − T (t)y, j(x − y)〉 ≤ ‖x − y‖2, ∀x, y ∈ C.

We use Ω to denote the set of common fixed points of F ; that is,

Ω := {x ∈ C : T (t)x = x, t > 0} = ∩t>0F (T (t)).
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Note that the class of pseudocontractive semigroups includes the class of non-
expansive semigroups as a special case. One classical way to study nonexpansive
mappings is to use contractions to approximate a nonexpansive mappings. More
precisely, take t ∈ (0, 1) and define a contraction Tt : C → C by

Tt = tu + (1 − t)Tx, ∀x ∈ C,

where u ∈ C is a fixed point. Banach’s Contraction Mapping Principle guarantees
that Tt has a unique fixed point xt in C. It is unclear, in general, what the
behavior of xt is as t → 0, even if T has a fixed point. However, in the case
of T having a fixed point, Browder [2] proved if E is a Hilbert spaces, then xt

converges strongly to a fixed point of T that is nearest to u. Reich [3] extended
Browder’s result to setting of Banach spaces and proved that if E is a uniformly
smooth Banach space, then xt converges strongly to a fixed point of T and the
limit defines the (unique)sunny nonexpansive retraction from C onto F (T ). It is
an interesting problem to extend Browder’s and Reich’s results to the contraction
semigroup case. In 2003, Suzuki [4] is the first to introduce in a Hilbert space the
following iteration process:

xn = αnu + (1 − αn)T (tn)xn, ∀n ≥ 1, (1.1)

where {T (t) : t ≥ 0} is a strongly continuous semigroup of nonexpansive mappings
on C such that ∩t≥0F (T (t)) 6= ∅ and {αn} and {tn} are appropriate sequences of
real numbers. Xu [5] extended Suzuki’s results from Hilbert spaces to uniformly
convex Banach spaces. In 2002, Benavides et al. [6] in a uniformly smooth Banach
space, showed that if F satisfies an asymptotic regularity condition and {αn} ful-
fills the control conditions limn→∞ αn = 0,

∑∞
n=1

αn = ∞, and limn→∞
αn

αn+1
= 0,

then {xn} generated by (1.1) converges to a point of Ω. Using Moudafi’s viscos-
ity approximation methods, Song and Xu [7] introduced the following iteration
process:

xn = αnf(xn) + (1 − αn)T (tn)xn, ∀n ≥ 1,

where {T (t) : t ≥ 0} is a nonexpansive semigroup from C into itself which satisfies
an asymptotic regularity condition and ∩t>0F (T (t)) 6= ∅, f : C → C is a fixed
contraction with the coefficient α ∈ (0, 1) and {αn} and {tn} are sequences of real
numbers such that 0 < αn < 1, tn > 0 and limn→∞ αn = 0 and limn→∞ tn = ∞.
It is proved in [7] that {xn} converges strongly to x∗ ∈ Ω with solves the following
variational inequality:

〈(I − f)x∗, j(x∗ − x)〉 ≤ 0, ∀x ∈ ∩t>0F (T (t)).

Furthermore, Moudafi’s viscosity approximation methods have been recently stud-
ies by many authors; see the well known results in [8, 9]. However, the involved
mapping f is usually considered as a contraction. Note that Suzuki [10] proved
the equivalence between Moudafi’s viscosity approximation with contractions and
Browder-type iterative processes (Halpern-type iterative processes); see [10] for
more details.
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In [11], Song and Chen considered the following iterative algorithm for a con-
tinuous pseudocontractive mapping T on C in a real reflexive and strictly convex
Banach space with a uniformly Gâteaux differentiable norm:

{

yn = βnf(xn−1) + (1 − βn)xn−1,

xn = αnyn + (1 − αn)Txn, for all n ≥ 1.
(1.2)

where f : C → C is a fixed contractive mapping, {αn} and {βn} are sequences
of real numbers such that {αn}, {βn} ⊆ (0, 1], tn > 0 with limn→∞ αn = 0 and
∑∞

n=0
βn = ∞. Then {xn} converges strongly to x∗ ∈ Ω with solves the following

variational inequality:

〈(I − f)x∗, j(x∗ − x)〉 ≤ 0, ∀x ∈ F (T ).

The purpose of this paper is to consider a pseudocontraction semigroup based
on Moudafi’s viscosity approximation with continuous strong pseudocontractions
in the framework of a reflexive strictly convex Banach space with a uniformly
Gâteaux differentiable norm. We also propose the modified implicit iteration for
a pseudocontraction semigroup and prove the strong convergence theorem. The
results presented in this paper mainly improved and extended the corresponding
results announced by Song and Xu [7] and Song and Chen [11] and many others.

2 Preliminaries

Throughout this paper, let E be a real Banach space and E∗ its dual space.
We write xn ⇀ x (respectively xn ⇀∗ x) to indicate that the sequence {xn}
weakly (respectively weak*) converges to x; as usual xn → x will symbolize strong
convergence. Let S(E) = {x ∈ E : ‖x‖ = 1} denote the unit sphere of a Banach
space E. A Banach space E is said to have a Gâteaux differentiable norm (we
also say that E is smooth), if the limit

lim
t→0

‖x + ty‖ − ‖x‖

t
(2.1)

exists for each x, y ∈ S(E). A Banach space E is said to have a uniformly Gâteaux
differentiable norm if for each y in S(E), the limit (2.1) is uniformly attained
for x ∈ S(E); a Fréchet differentiable norm if for each x ∈ S(E), the limit (2.1)
is attained uniformly for y ∈ S(E); a uniformly Fréchet differentiable norm (we
also say that E is uniformly smooth) if the limit (2.1) is attained uniformly for

(x, y) ∈ S(E) × S(E). A Banach space E is said to strictly convex if ‖x+y‖
2

< 1
for x, y ∈ S(E), x 6= y; uniformly convex if, for any ε ∈ (0, 2], there exists
δ > 0 such that, for any x, y ∈ S(E), ‖x − y‖ ≥ ε implies ‖x+y

2
‖ ≤ 1 − δ. It is

well known that the normalized duality mapping J in a Banach space E with a
uniformly Gâteaux differentiable norm is single-valued and strong-weak* uniformly
continuous on any bounded subset of E; each uniformly convex Banach space E
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is reflexive and strictly convex and has fixed point property for nonexpansive self-
mappings. Further, every uniformly smooth Banach space E is a reflexive Banach
space with a uniformly Gâteaux differentiable norm and has fixed point property
for nonexpansive self-mappings (see [12, 13]).

Now, we present the concept of uniformly asymptotically regular semigroup
(also see [14, 15]). Let C be a nonempty closed convex subset of a Banach space
E, F = {T (t) : 0 ≤ t < ∞} a continuous operator semigroup on C. Then F is
said to be uniformly asymptotically regular (in short, u.a.r.) on C if for all h ≥ 0
and any bounded subset B of C,

lim
t→∞

sup
x∈B

‖T (h)(T (t)x) − T (t)x‖ = 0.

The examples of u.a.r. operator semigroup can be found in [14, Examples 17, 18]
and [16, Lemma 2.7].

Example 2.1 ([14, Example 17]). Let T be a linear firmly nonexpansive self-
operator on a nonempty convex conpact subset C of a Hilbert space H, let G = N,
and Γ = {T n : n ∈ G} be a semigroup of iterates of T . It is known [17] that if
C = −C and T is odd, then {T nx}n≥0 converges strongly for all x ∈ C. Fix ε > 0.

Then there exist x1, x2, . . . , xk ∈ C such that C ⊂
⋃k

i=1
B(xi, ε), where

B(xi, ε) = {x ∈ H : ‖x − xi‖ < ε},

for all i = 1, 2, . . . , k, and n0 such that

‖T nxi − T mxi‖ < ε,

for all n, m > n0, i = 1, 2, . . . , k, Take x ∈ C and xi such that ‖x− xi‖ ≤ ε. Then

‖T nx − T mx‖ ≤ ‖T n(x − xi)‖ + ‖(T n − T m)xi‖ + ‖T m(x − xi)‖ ≤ ε,

for all n, m > n0. That is, Γ is a uniformly asymptotically regular semigroup of
iterates of T .

Example 2.2 ([14, Example 18]). Let the following assumptions hold. C is a
nonempty bounded closed convex subset of a Hilbert space H, T : C → C is a
contraction operator with Lipschitz constant k < 1, G = N, and Γ = {T n : n ∈ G}
is a semigroup of iterates of T . For all n, m ∈ G we have

‖T m+nx − T nx‖ =

m−1
∑

i=0

‖T n+i+1x − T n+ix‖

=

m−1
∑

i=0

kn+i‖Tx − x‖

=
kn

1 − k
‖Tx− x‖,
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therefore,

lim
n→∞

(

sup
x∈C

‖T m+nx − T nx‖

)

= 0,

uniformly for all m ∈ G. That is, Γ is a uniformly asymptotically regular semi-
group of iterates of T .

In order to prove our main result, we need the following lemmas and definitions.
Let l∞ be the Banach space of all bounded real-valued sequences. Let µ be a
continuous linear functional on l∞ satisfying ‖µ‖ = 1 = µ(1). Then we know that
µ is mean on N if and only if

inf{an : n ∈ N} ≤ µ(a) ≤ sup{an : n ∈ N}

for every a = (a1, a2, . . . ) ∈ l∞. Occasionally, we shall use µn(an) instead of µ(a).
A mean µ on N is called a Banach limit if

µn(an) = µn(an+1)

for every a = (a1, a2, . . . ) ∈ l∞. Using the Hahn-Banach theorem, or the Tychonoff
fixed point theorem, we can prove the existence of a Banach limit. We know that
if µ is a Banach limit, then

lim inf
n→∞

an ≤ µn(an) ≤ lim sup
n→∞

an

for every a = (a1, a2, . . . ) ∈ l∞. Subsequently, the following result was showed in
[18, Lemma 1]

Lemma 2.1 ([18]). Let C be a nonempty closed convex subset of a Banach space
E with uniformly Gâteaux differentiable norm. Let {xn} be a bounded sequence of
E and let µ be a mean on N. Let z ∈ C. Then

µn‖xn − z‖2 = min
y∈C

µn‖xn − y‖2 ⇔ µn〈y − z, j(xn − z)〉 ≤ 0, ∀y ∈ C.

Proposition 2.2 ([7, Proposition 3.1]). Let E be a reflexive strictly convex Ba-
nach space with a uniformly Gâteaux differentiable norm, and C a nonempty
closed convex subset of E. Suppose {xn} is a bounded sequence in C such that
limn→∞ ‖xn − Txn‖ = 0, an approximation fixed point of nonexpansive self-mapping
T on C. Define the set

K =

{

x∗ ∈ C : µn‖xn − x∗‖2 = inf
y∈C

µn‖xn − y‖2

}

.

If F (T ) 6= ∅, then K ∩ F (T ) 6= ∅.

Lemma 2.3. Let C be a nonempty closed convex subset of a real Banach space
E and T : C → C be a continuous pseudocontractive map. We denote A =
(2I − T )−1. Then
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(i) [19, Theorem 6] The map A is a nonexpansive self-mapping on C.

(ii) [11, Lemma 1.1] If limn→∞ ‖xn − Txn‖ = 0, then limn→∞ ‖xn − Axn‖ = 0.

In the following, we also need the following lemma that can be found in the
existing literature [5, 9].

Lemma 2.4 ([5, Lemma 2.1]). Let {an} be a sequence of non-negative real number
satisfying the property

an+1 ≤ (1 − γn)an + γnβn, n ≥ 0,

where {γn} ⊆ (0, 1) and {βn} ⊆ R such that
∑∞

n=0
γn = ∞ and lim supn→∞ βn ≤

0. Then {an} converges to zero, as n → ∞.

3 Viscosity Iterative Algorithm

Now, we are a position to state and prove our main results.

Theorem 3.1. Let E be a real reflexive strictly convex Banach space with a uni-
formly Gâteaux differentiable norm, and C a nonempty closed convex subset of E.
Let {T (t) : t ≥ 0} be an u.a.r. continuous L-Lipschitz pseudocontraction semigroup
on C such that Ω 6= ∅. Let f : C → C be a fixed Lipschitz strong pseudocontraction
with pseudocontractive coefficient α ∈ (0, 1). Let {αn} and {tn} be sequences of
real numbers such that 0 < αn < 1, tn > 0, limn→∞ αn = 0 and limn→∞ tn = ∞.
Let {xn} be a sequence generated in the following manner:

xn = αnf(xn) + (1 − αn)T (tn)xn, ∀n ≥ 1. (3.1)

Then {xn} converges strongly to x∗ ∈ Ω with solves the following variational in-
equality:

〈(I − f)x∗, j(x∗ − x)〉 ≤ 0, ∀x ∈ Ω. (3.2)

Proof. First, we show that the sequence {xn} generated in (3.1) is well defined.
For any n ≥ 1, define a mapping Tn as follows

Tnx = αnf(x) + (1 − αn)T (tn)x, ∀x ∈ C.

Notice that

〈Tnx − Tny, j(x − y)〉

= 〈αnf(x) + (1 − αn)T (tn)x − αnf(y) − (1 − αn)T (tn)y, j(x − y)〉

= αn〈f(x) − f(y), j(x − y)〉 + (1 − αn)〈T (tn)x − T (tn)y, j(x − y)〉

≤ αnα‖x − y‖2 + (1 − αn)‖x − y‖2

= (1 − αn(1 − α))‖x − y‖2, ∀x, y ∈ C.
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Hence Tn is continuous and strong pseudocontraction with the coefficient 1−αn(1−
α). From Theorem 1.1, one sees that Tn has a unique fixed point, denoted as xn,
which uniquely solves the fixed point equation xn = αnf(xn) + (1 − αn)T (tn)xn.
That is, (3.1) is well defined. Next, we show that {xn} is bounded. Indeed, for
any fixed q ∈ Ω,

‖xn − q‖2 = αn〈f(xn) − f(q), j(xn − q)〉 + αn〈f(q) − q, j(xn − q)〉

+ (1 − αn)〈T (tn)xn − T (tn)q, j(xn − q)〉

≤ αnα‖xn − q‖2 + αn〈f(q) − q, j(xn − q)〉 + (1 − αn)‖xn − q‖2.

Therefore

‖xn − q‖2 ≤
1

1 − α
〈f(q) − q, j(xn − q)〉 ≤

1

1 − α
‖f(q) − q‖‖xn − q‖. (3.3)

Thus ‖xn − q‖ ≤ 1

1−α
‖f(q) − q‖. This implies that {xn} is bounded. Since f is

Lipschitz, we also have {f(xn)} is bounded. Since limn→∞ αn = 0, there exists
N0 and a ∈ (0, 1) such that α ≤ a for all n ≥ N0. By xn = αnf(xn) + (1 −
αn)T (tn)xn, ∀n ≥ 1, we obtain

T (tn)xn =
1

1 − αn

xn −
αn

1 − αn

f(xn).

Thus,

‖T (tn)xn‖ ≤
1

1 − αn

‖xn‖ −
αn

1 − αn

‖f(xn)‖

≤
1

1 − a
‖xn‖ −

αn

1 − a
‖f(xn)‖.

Therefore, the set {T (tn)xn} is bounded. This implies that

lim
n→∞

‖xn − T (tn)xn‖ = lim
n→∞

αn‖T (tn)xn − f(xn)‖ = 0.

Since {T (t)} is u.a.r. L-Lipschitz semigroup and limn→∞ tn = ∞, then for all
h > 0,

lim
n→∞

‖T (h)(T (tn)xn) − T (tn)xn‖ ≤ lim
n→∞

sup
x∈B

‖T (h)(T (tn)x) − T (tn)x‖ = 0

where B is any bounded subset of C containing {xn}. Hence

‖xn − T (h)xn‖ ≤ ‖xn − T (tn)xn‖ + ‖T (tn)xn − T (h)(T (tn)xn)‖

+ ‖T (h)(T (tn)xn) − T (h)xn‖

≤ (1 + L)‖T (tn)xn − xn‖ + ‖T (tn)xn − T (h)(T (tn)xn)‖.

Therefore

lim
n→∞

‖xn − T (h)xn‖ = 0 for all h > 0. (3.4)
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By Lemma 2.3, we get that the mapping A(h) := (2I−T (h))−1 : C → C is nonex-
pansive such that F (A(h)) = F (T (h)) and so ∩h>0F (A(h)) = ∩h>0F (T (h)) 6= ∅
and limn→∞ ‖xn − A(h)xn‖ = 0, ∀h > 0, where I denotes the identity operator.
We claim that the set {xn} is sequentially compact. Indeed, define the set

K =

{

x ∈ C : µn‖xn − x‖2 = inf
y∈C

µn‖xn − y‖2

}

.

By Proposition 2.2, there exists x∗ ∈ K such that A(h)x∗ = x∗ for all h > 0. It
implies that x∗ ∈ ∩h>0F (T (h)). Thus µn‖xn − x∗‖2 = infy∈C µn‖xn − y‖2. By
Lemma 2.1,

µn〈y − x∗, j(xn − x∗)〉 ≤ 0, for all y ∈ C.

From (3.3), we have µn‖xn − x∗‖2 ≤ 1

1−α
µn〈f(x∗) − x∗, j(xn − x∗)〉 ≤ 0. That

is, µn‖xn − x∗‖ = 0. Hence, there exists a subsequence {xnk
} of {xn} such that

xnk
→ x∗ as k → ∞. Next, we show that x∗ is a solution in Ω to the variational

inequality (3.2). In fact, for any fixed x ∈ Ω, we have

〈xn − f(xn), j(xn − x)〉

= (1 − αn)〈T (tn)xn − xn, j(xn − x)〉

= (1 − αn)[〈T (tn)xn − x, j(xn − x)〉 − 〈xn − x, j(xn − x)〉]

= (1 − αn)[〈T (tn)xn − T (tn)x, j(xn − x)〉 − 〈xn − x, j(xn − x)〉]

≤ (1 − αn)[‖xn − x‖2 − ‖xn − x‖2] = 0. (3.5)

In particular, we have

〈xnk
− f(xnk

), j(xnk
− x)〉 ≤ 0. (3.6)

Since E has a uniformly Gâteaux differential norm, we know that j is norm-to-
weak∗ uniformly continuous on any bounded subset of E. Taking limit in (3.6),
one can obtain that

〈x∗ − f(x∗), j(x∗ − x)〉 ≤ 0, ∀x ∈ Ω. (3.7)

Let {xnj
} be another subsequence of {xn} such that xnj

→ y∗. From (3.4), we
have

‖T (h)xnj
− y∗‖ ≤ ‖T (h)xnj

− xnj
‖ + ‖xnj

− y∗‖ → 0.

That is, y∗ ∈ Ω. It follows from (3.7) that

〈x∗ − f(x∗), j(x∗ − y∗)〉 ≤ 0. (3.8)

On the other hand, one sees from (3.5) that

〈xnj
− f(xnj

), j(xnj
− x∗)〉 ≤ 0. (3.9)
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Taking limit in (3.9), one can obtain that

〈y∗ − f(y∗), j(y∗ − x∗)〉 ≤ 0. (3.10)

Adding up (3.8) and (3.10), one arrives at

〈x∗ − y∗ + f(y∗) − f(x∗), j(x∗ − y∗)〉 ≤ 0,

which yields that

‖x∗ − y∗‖2 ≤ 〈f(x∗) − f(y∗), j(x∗ − y∗)〉 ≤ α‖x∗ − y∗‖2.

So (1 − α)‖x∗ − y∗‖2 ≤ 0. Since α ∈ (0, 1), we get that ‖x∗ − y∗‖ = 0. Thus
x∗ = y∗. Hence {xn} converge strongly to x∗ ∈ Ω, which is the unique solution to
the variational inequality (3.2). This completes the proof.

If {T (t) : t ≥ 0} is an u.a.r. nonexpansive semigroup from C into itself and
f : C → C is a fixed contractive mapping, then we obtain the following result.

Corollary 3.2 ([7, Theorem 3.2]). Let E be a real reflexive strictly convex Banach
space with a uniformly Gâteaux differentiable norm, and C a nonempty closed
convex subset of E, and {T (t) : t ≥ 0} an u.a.r. nonexpansive semigroup from
C into itself such that Ω 6= ∅ and f : C → C a fixed contractive mapping with
contractive coefficient k ∈ (0, 1). Suppose limn→∞ tn = ∞ and αn ∈ (0, 1) such
that limn→∞ αn = 0. If {xn} is defined by

xn = αnf(xn) + (1 − αn)T (tn)xn, ∀n ≥ 1.

Then as n → ∞, {xn} converges strongly to some common fixed point x∗ of Ω
which is the unique solution in Ω to the following variational inequality:

〈(I − f)x∗, j(x∗ − x)〉 ≤ 0, ∀x ∈ Ω.

4 Modified Implicit Iteration Scheme

Theorem 4.1. Let E be a real reflexive strictly convex Banach space with a uni-
formly Gâteaux differentiable norm, and C a nonempty closed convex subset of E.
Let {T (t) : t ≥ 0} be an u.a.r. continuous L-Lipschitz pseudocontraction semigroup
of C into itself such that Ω 6= ∅. Let f : C → C be a fixed contractive mapping with
the coefficient k ∈ (0, 1). Let {αn}, {βn} and {tn} be sequences of real numbers
such that {αn}, {βn} ⊆ (0, 1], tn > 0 with limn→∞ αn = 0, limn→∞ tn = ∞ and
∑∞

n=0
βn = ∞. For x0 ∈ C, let the sequence {xn} be generated by:

{

yn = βnf(xn−1) + (1 − βn)xn−1,

xn = αnyn + (1 − αn)T (tn)xn, for all n ≥ 1.
(4.1)

Then {xn} converges strongly to x∗ ∈ Ω with solves the following variational in-
equality (3.2).
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Proof. Firstly, we prove that {xn} is well defined. In fact, for each n ∈ N, define
the mapping Gn : C → C by

Gnx = αn(βnf(xn−1) + (1 − βn)xn−1) + (1 − αn)T (tn)x,

for all x ∈ C. Then, for any y, z ∈ C,

〈Gny − Gnz, j(y − z)〉

= 〈αn(βnf(xn−1) + (1 − βn)xn−1) + (1 − αn)T (tn)y

− αn(βnf(xn−1) + (1 − βn)xn−1) − (1 − αn)T (tn)z, j(y, z)〉

= 〈(1 − αn)(T (tn)y − T (tn)z), j(y − z)〉 ≤ (1 − αn)‖y − z‖2.

Hence Gn is continuous and strong pseudocontraction. From Theorem 1.1, there
exists a unique fixed point, denoted as xn, which uniquely solves the fixed point
equation

xn = αn(βnf(xn−1) + (1 − βn)xn−1) + (1 − αn)T (tn)xn, for all n ≥ 1.

That is, {xn} is well defined. Next, we show that {xn} is bounded. Let q ∈ Ω, we
have

‖xn − q‖2 = 〈αnyn + (1 − αn)T (tn)xn − q, j(xn − q)〉

= (1 − αn)〈T (tn)xn − T (tn)q, j(xn − q)〉 + αn〈yn − q, j(xn − q)〉

≤ (1 − αn)‖xn − q‖2 + αn‖yn − q‖‖xn − q‖,

and hence ‖xn − q‖2 ≤ ‖yn − q‖‖xn − q‖. Therefore

‖xn − q‖ ≤ ‖yn − q‖ ≤ βn‖f(xn−1) − q‖ + (1 − βn)‖xn−1 − q‖

≤ βn(‖f(xn−1) − f(q)‖ + ‖f(q) − q‖) + (1 − βn)‖xn−1 − q‖

= (1 − (1 − k)βn)‖xn−1 − q‖ + βn‖f(q) − q‖

≤ max

{

‖xn−1 − q‖,
1

1 − k
‖f(q) − q‖

}

.

By induction, we get that

‖xn − q‖ ≤ max

{

‖x0 − q‖,
‖f(q) − q‖

1 − k

}

, ∀n ≥ 0.

Hence {xn} is bounded, so are {yn}, {f(xn)} and {T (tn)xn}. This implies that

lim
n→∞

‖xn − T (tn)xn‖ = lim
n→∞

αn‖yn − T (tn)xn‖ = 0.

Since {T (t)} is u.a.r. and limn→∞ tn = ∞, then for all h > 0,

lim
n→∞

‖T (h)(T (tn)xn) − T (tn)xn‖ ≤ lim
n→∞

sup
x∈B

‖T (h)(T (tn)x) − T (tn)x‖ = 0,
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where B is any bounded subset of C containing {xn}. Hence

‖xn − T (h)xn‖ ≤ ‖xn − T (tn)xn‖ + ‖T (tn)xn − T (h)(T (tn)xn)‖

+ ‖T (h)(T (tn)xn) − T (h)xn‖

≤ (1 + L)‖T (tn)xn − xn‖ + ‖T (h)(T (tn)xn) − T (tn)xn‖ → 0.

(4.2)

For each m ∈ N, putting zm = αmf(zm) + (1 − αm)T (tm)zm, where {tm} and
{αm} satisfies the condition of Theorem 3.1. It follows from Theorem 3.1 that as
m → ∞, {zm} converges strongly to some fixed point x∗ in Ω which is the unique
solution to the variational inequality (3.2). Next, we show that

lim
n→∞

sup 〈f(x∗) − x∗, j(xn − x∗)〉 ≤ 0. (4.3)

‖zm − xn‖
2 = 〈αm(f(zm) − xn) + (1 − αm)(T (tm)zm − xn), j(zm − xn)〉

= (1 − αm)〈T (tm)zm − xn, j(zm − xn)〉 + αm〈f(zm) − xn, j(zm − xn)〉

= (1 − αm)〈T (tm)zm − T (tm)xn, j(zm − xn)〉

+ (1 − αm)〈T (tm)xn − xn, j(zm − xn)〉

+ αm〈f(zm) − zm − (f(x∗) − x∗), j(zm − xn)〉

+ αm〈f(x∗) − x∗, j(zm − xn)〉 + αm〈zm − xn, j(zm − xn)〉

≤ ‖xn − zm‖2 + ‖T (tm)xn − xn‖M + αm〈f(x∗) − x∗, j(zm − xn)〉

+ Mαm(‖f(zm) − f(x∗)‖ + ‖zm − x∗‖),

≤ ‖xn − zm‖2 + ‖T (tm)xn − xn‖M + αm〈f(x∗) − x∗, j(zm − xn)〉

+ Mαm(1 + k)‖zm − x∗‖,

and hence

〈f(x∗) − x∗, j(xn − zm)〉 ≤
‖T (tm)xn − xn‖

αm

M + M(1 + k)‖zm − x∗‖, (4.4)

where M is a constant satisfying M ≥ ‖xn − zm‖ for all n, m ∈ N. Therefore,
taking upper limit as n → ∞ firstly, and then as m → ∞ in (4.4), we have

lim sup
m→∞

lim sup
n→∞

〈f(x∗) − x∗, j(xn − zm)〉 ≤ 0

by the inequality (4.2). On the other hand, since limm→∞ zm = x∗ due to the fact
the duality mapping J is norm-to-weak∗ uniformly continuous on bounded subset
of E, it follows that as m → ∞,

〈f(x∗) − x∗, j(xn − zm)〉 → 〈f(x∗) − x∗, j(xn − x∗)〉 uniformly.

Then for any given ε > 0, there exists a natural number N such that for each
m ≥ N ,

〈f(x∗) − x∗, j(xn − x∗)〉 < 〈f(x∗) − x∗, j(xn − zm)〉 + ε.
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Taking upper limit as n → ∞ firstly, and then as m → ∞ in the last inequality,
we have

lim sup
n→∞

〈f(x∗) − x∗, j(xn − x∗)〉 ≤ lim sup
m→∞

lim sup
n→∞

〈f(x∗) − x∗, j(xn − zm)〉 + ε ≤ ε.

Since ε > 0 is arbitrary, (4.3) is proved. Finally we show that xn → x∗(n → ∞).
Indeed, we get that

‖xn − x∗‖2 = (1 − αn)〈T (tn)xn − x∗, j(xn − x∗)〉 + αn〈yn − x∗, j(xn − x∗)〉

≤ (1 − αn)‖xn − x∗‖2 + αn(1 − βn)〈xn−1 − x∗, j(xn − x∗)〉

+ αnβn〈f(xn−1) − x∗, j(xn − x∗)〉.

Therefore,

‖xn − x∗‖2 ≤ (1 − βn)‖xn−1 − x∗‖‖j(xn − x∗)‖ + βn〈f(x∗) − x∗, j(xn − x∗)〉

+ βn〈f(xn−1) − f(x∗), j(xn − x∗)〉

≤ (1 − βn)‖xn−1 − x∗‖‖xn − x∗‖ + βn〈f(x∗) − x∗, j(xn − x∗)〉

+ βn‖f(xn−1) − f(x∗)‖‖xn − x∗‖

≤ (1 − βn)
‖xn−1 − x∗‖2 + ‖xn − x∗‖2

2
+ βn〈f(x∗) − x∗, j(xn − x∗)〉

+ (1 − βn)
k2‖xn−1 − x∗‖2 + ‖xn − x∗‖2

2
.

Hence

‖xn − x∗‖2 ≤ (1 − γn)‖xn−1 − x∗‖2 + γnθn, (4.5)

where γn = (1−k2)βn and θn = 2

1−k2 〈f(x∗)−x∗, j(xn−x∗)〉. Since
∑∞

n=0
βn = ∞

and inequality (4.3), we obtain that
∑∞

n=1
γn = +∞, lim supn→∞ θn ≤ 0. Now

we apply Lemma 2.4 to (4.5), we have that limn→∞ ‖xn − x∗‖ = 0. The proof is
complete.

Corollary 4.2. Let E be a real reflexive strictly convex Banach space with a
uniformly Gâteaux differentiable norm, and C a nonempty closed convex subset of
E. Let {T (t) : t ≥ 0} be an u.a.r. nonexpansive semigroup on C such that Ω 6= ∅.
Let f : C → C be a fixed contractive mapping with the coefficient k ∈ (0, 1).
Let {αn}, {βn} and {tn} be sequences of real numbers such that {αn}, {βn} ⊆
(0, 1], tn > 0 with limn→∞ αn = 0, limn→∞ tn = ∞ and

∑∞
n=0

βn = ∞. For
x0 ∈ C, let the sequence {xn} be generated by:

{

yn = βnf(xn−1) + (1 − βn)xn−1,

xn = αnyn + (1 − αn)T (tn)xn, for all n ≥ 1.
(4.6)

Then {xn} converges strongly to x∗ ∈ Ω with solves the following variational in-
equality (3.2).
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For each t ≥ 0, setting T (t) := T a continuous pseudocontractive mapping
in Theorem 4.1. Furthermore, the requirement that {T (t) : t ≥ 0} is uniformly
asymptotically regular (u.a.r) and L-Lipschitz are not necessary. In fact, the fol-
lowing can be obtain from Theorem 4.1 immediately.

Corollary 4.3 ([11, Thorem 3.1]). Let E be a real reflexive and strictly convex
Banach space with a uniformly Gâteaux differentiable norm, and C a nonempty
closed convex subset of E. Let T be a continuous pseudocontraction semigroup on
C such that F (T ) 6= ∅. Let f : C → C be a fixed contractive mapping with the
coefficient k ∈ (0, 1). Let {αn} and {βn} be sequences of real numbers such that
{αn}, {βn} ⊆ (0, 1], tn > 0 with limn→∞ αn = 0 and

∑∞
n=0

βn = ∞. For x0 ∈ C,
let the sequence {xn} be generated by:

{

yn = βnf(xn−1) + (1 − βn)xn−1,

xn = αnyn + (1 − αn)Txn, for all n ≥ 1.
(4.7)

Then {xn} converges strongly to x∗ ∈ Ω with solves the following variational in-
equality:

〈(I − f)x∗, j(x∗ − x)〉 ≤ 0, ∀x ∈ F (T ).
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