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Abstract: An identity is satisfied as a hyperidentity in a variety V of algebras if
after any replacement of the operation symbols occurring in this identity by terms
of the appropriate arity, one gets again identities of V. In a similar way one defines
the weaker concept of an M-hyperidentity. If every identity in a variety is satisfied
as an M-hyperidentity, the variety is said to be M-solid. Using the ultimately M-
hypersatisfaction of an identity filter by a class of algebras, these concepts can
be transferred to M-solid generalized varieties and M-solid pseudovarieties. We
study the corresponding Galois connections and the complete lattices of all M-
solid generalized varieties of a given type and of all M-solid pseudovarieties of this
type. We investigate mappings between these lattices and apply the results to
M -solid pseudovarieties of semigroups.
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1 Preliminaries

A generalized variety of type 7 is a class of algebras of type 7 that is
closed under formation of homomorphic images, subalgebras, finite direct
products, and arbitrary direct powers. For a class K of algebras of type
7, H(K),S(K),P(K),P¢(K),Pow(K) denote the classes of all homomor-
phic images, subalgebras, direct products, finite direct products, and direct
powers, respectively. Since varieties are classes of algebras of type 7 which
are closed under homomorphic images, subalgebras and arbitrary direct
products, every variety is a generalized variety. Equivalently, varieties are
classes of algebras of the same type 7 satisfying every equation from a set
> of equations as identities. To characterize generalized varieties by equa-
tions we need the concept of an identity filter. A filter in a lattice £ is the
universe /' of a sublattices of £ with the property that from X € /', Y € L
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and Y D X there follows Y € F. A filter F is called a principal filter if
there exists an X € L such that F' is generated by X: F = ({X}). In this
case we will skip one pair of brackets and simply write {(X).

Definition 1.1 Let (f;),.; be a sequence of operation symbols of type 7
where f; is n; - ary and let X be a set of variables. By W, (X) we denote
the set of all terms of type 7. An identity filter A of type 7 is a filter in the
power set lattice P(W,(X)?). By IF(r) we denote the class of all identity
filters of type 7.

Definition 1.2 We say that an algebra A := (A; (f{)ics) of type T ulti-
mately satisfies an identity filter A € T F(7) if there exists a set X € A such
that A satisfies each equation from X as identity, i.e.

A= Ao INeAAEY).

Uu.s.
Then one can prove:

Proposition 1.3 ([8]) Let A be a filter of identities, then the class of all
algebras which ultimately satisfy A is o generalized variety, and conversely,
for any generalized variety W, there exists an identity filter A such that W
consists precisely of all algebras which ultimately satisfy A.

We will now give another characterization of generalized varieties using
the Galois connection which is induced by the relation

= C Alg(r) x IF (7).

4.8,

For a class K C Alg(7) and for a set F C IF(7) we define

GMod F :={Ac Alg(r) | VA€ F (A = A)}

and
Filt K:={Ae€IF(r)| VAe K (A = A)}.

Uu.s.

Clearly, the pair (GMod, F'ilt) is a Galois connection between Alg(7) and
IF(7).

As usual for a Galois connection, we have two closure operators
GModFilt and FiltGMod and their sets of fix points, i.e. the sets

{F CIF(r)| FiltGMod F = F} and {K C Alg(r) | GModFilt K = K}
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form complete sublattices of the power set lattice of I F(7) and of the power
set lattice of Alg(7), respectively. Usually, instead of GMod {A} we write
simply GMod A, for A € TF(7).

Lemma 1.4 For every subset F C IF(7), the class GMod F is a gener-
alized variety.

Proof.Let F C IF(7). By definition we have

GMod F = {AcAlg(r)| VAeF (A E A)}

1.8

= {A€Alg(r) | VA€ F I € A(AE Tp)}

We form A’ = [ A. We want to show GMod F = GMod A'. Tet
AeF
A € GMod F. By definition, for all A € F there exists XA € A such that

A |= 3A. Then we have A = |J Xa. Since Tao C | Za and A € A,
A€eF A€F
we have |J XA € A for all A € F. This means that |J XA € A
AcF AcF

Now we have A u’:s A, ie A€ GMod A'. TFor the opposite inclusion.,

let A € GMod A'. By definition, there exists ¥ € A’ such that A | .
Since A’ C Aforall A e Fweget A E A, ie. Ae GMod F. Now we

1.8

have GMod F = GMod A’. By Proposition 1.3, GMod F is a generalized
variety. [l

Proposition 1.5 A class K of algebras of type T is a generalized variety
if and only if K = GModFilt K.

Proof. Let K be a generalized variety. Then by Proposition 1.3 there ex-
ists an identity filter A such that K = GMod A and then GModFilt K =
GModFiltGMod A = GMod A = K using a property of Galois connec-
tions. The converse follows from Lemma 1.4. O

By Proposition 1.5 and the property of a Galois connection, the class
of all generalized varieties of the same type 7 forms a complete lattice with
the intersection as meet operation.

Now we want to mention another characterization of generalized vari-
eties using the concept of a directed family of sets given by C.J. Ash. [1].
A family I' of sets or of classes is said to be directed if for all A, B € I’
there exists C' € I' with A C C and B C C.

Theorem 1.6 ([1]) For a class K of algebras of type 7 the following con-
ditions are equivalent:
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(i) K is a generalized variety.
(ii) K is the union of some directed family of varieties of type 7.

Later on we need also the concept of an ideal which is dual to the concept of
a filter. The universe I of a sublattice of a lattice L is called an ideal of L if
the following condition is satisfied: f X € I, Y € LandY C X then Y € [.

A pseudovariety K is a class of finite algebras which is closed under
homomorphic images, subalgebras and finite direct products. Clearly, if V
is a variety then its finite part V/** is a pseudovariety. But the converse is
wrong [2]. Pseudovarieties can be defined by identity filters as follows:

Proposition 1.7 (/8]) Let A be o filter of identities. Then the class of
all finite algebras which ultimately satisfy A is a pseudovariety and con-
versely, for any pseudovariety K there exists an identity filter /A such that
K consists precisely of all finite algebras which ultimately satisfy A.

We get one more characterization of pseudovarieties restricting the rela-
tion |[= to the class Algy;,(7) of all finite algebras from Alg(7). For this

ni.S.
restricted relation and the Galois connection we use the same denotations

= C Algpin(T)xIF(1), PMod F, Filt K for every K C Alggin(7), F C

IF(7). Then K is a pseudovarieties iff K = PModFilt K. For more details
see [4].

The fimportance of generalized varieties for pseudovarieties becomes
clear by the following proposition by C.J. Ash. For a generalized vari-
ety W we denote by W/ the set of all finite algebras in W. We remark
that W/ is the greatest pseudovariety contained in .

Proposition 1.8 ([1]) For every pseudovariety K there ezists a generalized
variety W such that K = W,

It is known that every variety is a generalized variety, since it is the
union of the directed family of itself. Now we consider the lattice £(7) of
all varieties of type 7 and the lattice £LY(7) of all generalized varieties of
type 7. Then we obtain that £(7) is a sublattice of £L%(7). To prove this
we need a well-known Lemma which is a consequence of some part of Ash’s

paper [1].
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Lemma 1.9 ([1]) Let K be a class of algebras of type 7. Then K is a
variety if and only if there exists a principal identity filter A such that
K =GMod A.

Also the following proposition should be well-known, but nevertheless
we will give a proof.

var var gen gen

Proposition 1.10 (L£(7); A, V) is a sublattice of (LE(1); N\, V).

Proof. Tt is clear that £(7) C LY(7). Let V1, V5 € L(7). We want to show
war gen war gen var
ViANVe=Vi AVoand Vi \/ Vo = Vi \/ Ve. Tt is clear that Vi A Vs
gen var gen var
ViAVeand Vi \/ Vo D Vi \/ V. It is left to show that V; \/ Vo C

gen
ViV Ve Let A ={Z C W,(X)?IdA; N IdA; C % for some A, €
Vi and Ay € Va}.

At first we show that A is a principal filter. Let ¥ € A, ¥/ C W, (X)?
and ¥ C Y. Since ¥ € A, there exists A, € V; and Ay € Vs such that
IdA; N IdA; C X C Y. Tt follows that X' € A. Let {¥;]i € I} C A. For all
i € I, there exist Ay; € V5 and Ag; € V5 such that IdA;NId Ay C %;, then
N (IdAy; N TdAy) C () X; implies that () IdAy,) N (N IdAg) C ) %
iel icl iel iel iel
Since (| IdA;; D IdV; = Id(Fy,(X)) for all j = 1,2 where Fy. (X) is

el ' ’
the free algebra generated by X with respect to V; and since Fy . (X) €

V; for all j € {1,2}, weget (] X; € A. Now we have that A is closed
el
under arbitrary intersections. Altogether, A is principal.
gen

The next step is to show Vi \/ Vo = GMod A. Clearly, Vi U Vs C
GMod A. Let W be an arbitrary generalized variety containing V; U Va.
Let W = GMod A’ for some A" € ITF(7). Let A € GMod A. Then
there exists ¥ € A such that A = ¥ implies that A = IdB; N IdBs C X
for some B; € Vl, By € V5. Since Bl., By € W, B |: 2’1 and By ‘: 2’2
for some ¥}, £ € A’ then ¥} C IdB; and ¥, C IdB; implies that
IdByNIdBy, C ¥\ NY, € A, then ¥ € A'. Therefore, A € W. Now we

gen gen
have V7 \/ Vo = GModA. Since A is principal and by Lemma 1.9, V7 \/ V5

var gen var gen

is a variety. Then Vi \/ Vo C Vi \/ Vo, Altogether, Vi \V Vo =11 \/ Vo O
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2 M-solid Generalized Varieties and a Second Ga-
lois Connection

To define M-solid generalized varieties we need the concept of a hypersub-
stitution. Hypersubstitutions of type 7 are mappings from the set of all
operation symbols of type 7 into the set of all terms of type 7 which pre-
serve the arities. This means, to each n;-ary operation symbol of type 7 we
assign an n;-ary term from W, (X). Hypersubstitutions can be extended to
mappings 6 : W, (X) — W, (X) which are defined on the set W, (X) of all
terms of type 7 by the following inductive definition:

(i) 6[z] := x for every variable z € X.

(ii) 6[fi(t1, .-, tn,)] == o(fi)(6[t1],- .., 8][tn,]) for composite terms
fi(tla . 7tni)-

Let Hyp(7) be the set of all hypersubstitutions of type 7. On the set
Hyp(7) we may define a binary operation o by oy op 09 := 61 0 g9. Let
0iqd be the hypersubstitution which maps each operation symbol f; to the
term fi(x1, ..., Zp,). Then (Hyp(7);0p, 04q) is a monoid. Hypersubstitutions
can be applied to equations s = t of type 7. This gives new equations of
the form 6&[s] ~ 6[t]. For arbitrary sets ¥ C W,(X)2, X # 0 and for a
submonoid M C Hyp(7) we define

xSl = | | alsl = ot
sxteEX oe M

It is not difficult to prove that x% : P(W,(X)?) — P(W,(X)?) is a
closure operator which is called completely additive because of its definition
as union of singleton sets.

To apply hypersubstitutions to algebras we consider so-called derived
algebras. If A = (A;(f{)ics) is an algebra of type 7, then o(A) =
(A; (o(fi)Y)ier) is called algebra derived from A by o. Here o(f;)? is
the term operation induced on the algebra A by the term o(f;).

For the class K C Alg(7) and for a submonoid M C Hyp(7) we define

xulK]:= ) U o).
ceEM AcK

XAA/[ is also a completely additive closure operator. Between both operators

X‘;?// and XJ;I\E// there is a close interconnection given by

Al xls ~ 1] & XA E s ~t.
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Because of this property we call (x%;,x¥,) a conjugate pair of operators.
For more background on conjugate pairs of additive closure operators see
[6] and [7]. A variety V is called M — solid if x4,[V] = V. We may define
M-solid generalized varieties in a natural way.

Definition 2.1 A generalized variety W of algebras of type 7 is called
M — solid if x3,[W]=W.

Definition 2.2 Let A € IF(7) be an identity filter of type 7 and let
A € Alg(7) be an algebra of type 7. Then we say that A ultimately M-
hypersatisfies A if for every hypersubstitution o in M there exists a set >,
of equations in A such that A satisfies o(2,):

A | AeVoeMIE, e A(AREo(X)).
u. Mh.s.

The concept of ultimately hypersatisfaction (for M = Hyp(7)) was de-
fined in [8]. By HyGMod A for an identity filter A we denote the class of
all algebras of type 7 which ultimately M-hypersatisfy A. The characteri-
zation of solid generalized varieties given in [8] can be easily generalized to
M — solid generalized varieties.

Theorem 2.3 For a class W of algebras of type 7 the following conditions
are equivalent:

(1) W is an M — solid generalized variety.

(ii) W is a generalized variety and for each identity filter A € IF(7), W
ultimately M -hypersatisfies A whenever W ultimately satisfies A, i.e.

W E AeW = A
u. Mh.s. .8,

(111) There ezists an identity filler A € IF(7) such that W consists pre-
cisely of all algebras which ultimately M -hypersatisfy A, in this case
we write, W = HyyGMod A.

Proof. (i) = (i7). Assume that W is an M-solid generalized variety, i.e.
W = x3[W]. Let A € TF(r). We have

WE A e xuWl E A

& VUEMV.AEWHZEA(J(A) EX)
& VYoe MVAeW ¥ e A4 E o(X))
&

WA
u. Mh.s.
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(73) = (7i1). Assume that W is a generalized variety and for each identity
filter A € TF(7), W ultimately M-hypersatisfies A whenever W ultimately
satisfies A. Since by assumption W is a generalized variety, there exists
A € IF(7) such that W = GMod A, i.e. W |= A. Then by assumption

4.5.

W E  Aandthen W C HyyGMod A. Again by our assumption from
. Mh.s.

W E Aweget W = A and this means HyGMod A C GMod A =
u. Mh.s. .S

W. Altogether we have the equality W = Hy GMod A.

(#31) = (4). Assume there exists A € TF(7) such that W = Hy GMod A.
We have to show that W is an M-solid generalized variety. TLet A €
W = HyGMod A. By definition for all o € M, there exists 3 € A
such that A = o¢(X). Then subalgebras, homomorphic images and ar-
bitrary powers of A also satisfy o(X). Tt follows that W is closed under
these formations. Let A;, As € W. By definition for all 0 € M there
exist 31, Xg € A such that A; E 0(Z) and Ay = 0(32). Then we have
A] X AQ |: O’(El) N O’(Eg) - 0’(21 N 22) Since 21 N 22 € A, we get

A1 x Ay | A ie. A x Ay € W. This can be generalized for more
u. Mh.s.

than two algebras and W is closed under finite direct products. Therefore
W is a jgeneralized variety.

To prove that W is closed under the formation of derived algebras, let
o€ Mand A€ W = HyGMod A. We want to show that o(A) € W. With
6 € M, we have o0 oy, § € M. Since A € HyyGMod A, there exists ¥ € A
such that A |= (0 oy 6)(2) = 6(8()). By the conjugate pair property, we

have o(A) = §(2). Then o(A) | A, ie o(A) € HyGModA = W.
u. Mh.s.

Altogether, W is an M-solid generalized variety. 0

Now we will give a second characterization of M-solid generalized vari-

eties using the Galois connection which is induced by the relation | .
u.Mh.s.

For a class K C Alg(r) and for a set F C IF(7) we define
HyGMod F = {A€Alg(r)| VAeF (A E= A)}

u. Mh.s.
Hy Filt K = {Ae€lF(r)| VAe K (A E A)}

u. Mh.s.

Then tthe pair (HpyGMod, Hyy Filt) is the Galois connection induced by

= . It follows that the products HyGModH p Filt and Hp Filt Hy G Mod
u. Mh.s.
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are closure operators and that the seis

{K C Alg(1)|HyyGModHy Filt K = K}
and

{F CIF(T)|HyFiltHyyGMod F = F}

of their fixed points form complete lattices which are dually isomorphic.

Corollary 2.4 Let F C IF (7). Then every class of algebras of the form
HyGMod F is an M-solid generalized variety and conversely, for every
M-solid generalized variety W there is a set F C IF(7) of filters such that
W = HpyGMod F.

Proof. Let F C IF (7). Then

HuGMod F ={Ac Alg(r)| VA€ F (A = A)}
u. Mh.s.

= {A € Alg(r)| VA€ FV¥oeMIL € A (AR o(5%))}

We form A’ := [ A. We want to show that HyyGMod F = HyGMod A'.
AeF
Let A € HyyGMod F. Then by definition, for all A € F and for all 0 € M

there exists 4 € A such that A = o(2%). It follows that A= o( | £32).
AEF
Since ¥4 € |J X% and X% € A, one has |J X4 € A for every A € F.

AcF AcF
It follows that |J ¥4 € A’. Then we have A = A’. It means that
AEF u. Mh.s.

A€ HyGMod A, ie. HyGMod F C HyGMod A’. For the opposite
inclusion, suppose that A € HyGMod A’. By definition, for all 0 € M
there exists X, € A’ such that A = o(Z,). Since A’ C A for all A € F,

we have X, € A. Now we obtain A | A, then A€ HyMod F. ie.
u.Mh.s.

HyGMod F 2 HyyGMod A'. Altogether, HyGMod F = HyGMod A,
By Theorem 2.3, we get that HyyGMod F is an M-solid generalized va-
riety. The converse is clear by Theorem 2.3 if we set F = {A} for some
A € IF(r). O

Corollary 2.5 Let W be a class of algebras of type 7. Then the following
conditions are equivalent.

(1) W is an M-solid generalized variety.

(ii) Filt W = Hy Filt W
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(ii1) HyyGModH py Filt W =W,

Proof. (i) = (i7). Assume that W is an M-solid generalized variety. Then
we have:

AeFilt WeoVAeW (A E A)eVAeW (A E A
.8, u. Mh.s.

S Ae HyFilt W
by Theorem 2.3.

(74) = (441). Assume that Filt W = HpsFilt W. Then we have:
HyGMod(Hy Filt W) = HyGMod(Filt W) C GModFilt W = W, and
it is clear that Hp,GMod(Hy Filt W) D W.

(#4i) = (i). Obvious by Corollary 2.4. O

Now we know that the set of all M-solid generalized varieties of type
7 forms a complete lattice, denoted by S (7), which is contained in the
complete lattice of all generalized varieties of type 7. Our next aim is
to show that the lattice of all M-solid generalized varieties forms even a
complete sublattice of the set of all generalized varieties of the same type.
For tthe proof we will apply the characterization of complete sublattices via
so-called Galois closed subrelations.

Definition 2.6 Let R and R’ be relations between sets A and B. Let (u, 1)
and (', ') be the Galois connections between A and B induced by R and

R/, respectively. The relation R’ is called a Galois — closed subrelation of
Rif,

(i) R' C R, and
(i) VT C A,¥S C B (W/(T) =S A /() =T) = (u(T) = S A «(S) = T).

From this definition we can prove the following characterization of complete
sublattices of a complete lattice.

Theorem 2.7 Let R C A x B be a relation between sets A and B, with
induced Galois connection (u,t). Let H,, be the corresponding lattice of
closed subsets of A .

(i) If R C A x B is a Galois-closed subrelation of R, then the class
Up = Hy is a complete sublattice of H,y,.
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(it) If U is a complete sublattice of H,,, then the relation

Ry := ULT % u(T)|T € U}

(111) For any Galois-closed subrelation R' of R and any complete sublattice
U of H,, we have Ug, =U and Ry, = R'.

For the proof and more background see [7]and [3].

Now we apply Theorem 2.7 to our situation and set A := Alg(7r), B :
IF(t),R := | , R := E o, () = (Filt, GMod), (u',) =
u.s. u.Mh.s.

(Hy Filt, HyGMod), H,y, == LE(7), Hyp = S5 (7).

Proposition 2.8 For every monoid M of hypersubstitutions the relation

=  C Alg(r) x IF(7) is a Galois-closed subrelation of the relation
u.Mh.s.

E  C Alg(r) x IF(r).

1.8

Proof. Tt is clear that = C E .

u. Mh.s. .5,
Let F C I'F(1) be a set of identity filters of type 7 and let K C Alg(7) be a
class of finite algebras of type 7 such that Hy Filt K = F and HyyGMod F =
K. The last equation means by Corollary 2.4 that K is an M-solid gener-
alized variety and then by Corollary 2.5 we have Filt K = Hy Filt K = F
and thus Filt K = F. It is left to show that GMod F = K. We have
GModF = GModH y Filt K = GModFilt K if we use again that K =
HpyGModF is an M-solid generalized variety and therefore Hy Filt K =
Filt K. Since every M-solid generalized variety is a generalized variety, we

have GMod F = GModFilt K = K. This shows that |  is a Galois
u.Mh.s.

closed subrelation of = . O
14.85.

Now we apply Theorem 2.7 and obtain:

Theorem 2.9 For every monoid M C Hyp(t) of hypersubstitutions the
lattice S$(7) is a complete sublattice of the lattice LO(T).

An M-solid pseudovariety K is a pseudovariety with x7;[K] = K. Let
Algyin(7) be the class of all finite algebras of type 7. Then we consider the
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restricted relation = C Alggn(7) x IF (1) which was defined first in
u. Mh.s.

[8]. The characterization given in [8] can be generalized easily to M-solid
pseudovarieties. M-solid pseudovarieties can be defined by identity filters
as follows:

Theorem 2.10 For a class K of finite algebras the following conditions
are equivalent:

(i) K is an M — solid pseudovariety.

(ii) K is a pseudovariety and for each identity filler A € IF (1), K ulti-
mately M -hypersatisfies A whenever K ultimately satisfies A, i.e.

K E AsK | A
u. Mh.s. .8,

(i1i) There exists an identity filter A € ITF(7) such that K consists pre-
cisely of all finite algebras which ultimately M -hypersatisfy A, in this
case we write, K = Hy PMod A.

The Galois connection (HyGMod, HyFilt) can be also restricted to a
Galois connection (HyrPMod, Hyy Filt) which is induced be the restricted
relation. Then K is an M-solid pseudovariety if and only if

K = HyPModH y Filt K.

In [4] was also proved that the lattice SL° (1) of all M-solid pseudovarieties
of type 7 is a complete sublattice of the lattice £7°(7) of all pseudovarieties
of type 7.

3 Mappings of the Lattice of all M-solid General-
ized Varieties

Let T be an ideal in the lattice £(7) of all varieties of type 7. From the
properties of an ideal it follows that [ is a directed family of varieties of
type 7. Therefore UI is a generalized variety. Let £!(7) be the lattice of
all ideals of £(7). Then we will find the interconnection between the lattice
L(7) and the lattice L%(7) of all generalized varieties of type 7.

Lemma 3.1 Let C be a directed family of varieties of type T and let (C)
be the ideal generated by C. Then U(C) = UC.
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Proof. Let C be a directed family of varieties of type 7. Let D = {W €
L(T)|W CV; for some V; € C'}. We want to show that D is an ideal. Let
W' C W € D. Then W C W C V; for some V; € C. Then we obtain
W' e D. Let Wi, Wy € D. Then we have W7 C V4 and Wy C Vs for
some Vi, Vo € C. Since Vi, Vo € (. there exists a variety V4 such that
Vi, Vo C V3,80 Wi VW, C Vs, then Wy V Wy € D. Now we have that D is
an ideal. The next step is to show (C) = D. It is clear that C C D. Let
J be an arbitrary ideal of varieties of type 7 containing C. For showing
D C J, let W € D, then there exists V; € C such that W C V;. Since C C .J
and .J is an ideal we get W C V; € J, i.e. D C .J. Now we have (C) = D
and it is left to show UC = U(C). Tt is easy to see that UC C U(C). For
the opposite inclusion, let A € U{C). Then there exists a variety W € (C)
such that A € W. Since (C) = {W € L(7)|[W C V; for some V; € C},
there exists a variety V; € C such that A € W C V;. Then A € UC, i.e.
uC 2 U(C). Altogether, UC' = U(C). O

Lemma 3.2 Let I and J be ideals of varieties of type 7. Then U(IV J) =
(UI) v (UJ).

Proof. Clearly, (UI) Vv (UJ) C U(I V J). For the opposite inclusion, we
want first to show that (UI)V (UJ) = UC where C = {V (A1) VV (A2)|A; €
UI and Ay € UJ} where V(A) is the variety generated by A. We have to
show that C is directed. Let A;, By € UI, As, By € UJ and V(A;) V
V(A2),V(B1) VV(By) € C. Since I and J are ideals, V(A4,),V(By) € I,
V(A2). V(B2) € J, then V(A;) VV(B)) = V(A1 x By) € I and V(Ag) V
V(Bg) = V(AQ X Bg) € J. We obtain V(A1) \% V(Bl),V(AQ) V V(Bg) -
V(Al X 81) V V(AQ X 82) Since A] X B] € UI and AQ X 82 € UJ., C
is directed. By definition of C, we have (UI) U (UJ) C UC. Let Z be an
arbitrary generalized variety containing (UI) U (UJ). Then there exists a
directed family of varieties, say Cz, such that Z = UC%. To show UC C Z,
let A € UC. Then A € V(A1) VV(Ay) for some A, € UI and for some
A € UJ. Since Z contains (UI) U (UJ), we have 4 and Ay € Z. So A, €
Wi, Ay € W for some Wy, Wy € Cy. Since C'z is directed, there exists W €
Cz such that W1, Wy CW. So A€ V(A1) VV(As) C W, then A € UCy =
7. Now we have (UI)V(UJ) = UC. Recall that IVJ = {W C W;vW;|W; €
Iand Wy € J}. We get U V) = U{Wr Vv W;|Wr el and Wy € J}.
Let A € UV J). Then A € Wy v W, for some Wy € I, W; € J.
Since Wy and W are varieties, W; = V{(Fw, (X)) and W; = V(Fw,(X)).
Because Fw,(X) € Wy and Fy,(X) € W,. we get Fw,(X) € Ul and
Fw,(X) € UJ. Tt follows that W v W; = V(Fw, (X)) VV(Fw, (X)) € C.
Therefore, A € (UI) V (UJ), i.e.(UI) VvV (UJ) DU V J). O
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Theorem 3.3 The lattice L1 (1) of ideals of varieties of type T is isomor-
phic to the lattice LE(T) of generalized varieties of type T.

Proof. We define a mapping ¢ : £/(7) — LY () by T ~ UI for every
IeLli(r).

It is clear that ¢ is well-defined and (I A J) = o(I) A p(J), for every
I,J € L1(7). By Lemma 3.2, we have o(I V J) = o(I) V ¢(J). And by
Lemma 3.1 ¢ is onto.

Next we want to show that ¢ is injective. Let I,J € L/() such that
Ul = UJ. Let W € I. Since W is a variety , W = V(Fw (X)) and
Fw(X) € W CUI =UJ. Then there exists V € J such that Fiy(X) € V,
so V(Fw (X)) CV implies V(Fw (X)) =W € J, i.e. T C J. The opposite
inclusion can be proved similarly. Therefore, o is injective. Altogether,
L1(r) = £%(1). O

Since all M-solid varieties of type 7 form a complete lattice Sy (7), we
can consider the lattice of all ideals of this lattice.

im im

Lemma 3.4 Let (S, (1); A\, V) be the lattice of all ideals of M -solid vari-
mg mg

eties of type T and let (S$(7); \, /) be the lattice of all M -solid generalized
m mg

varieties of type 7. Then U(I\/ J) = (UI) \/ (UJ) for all I,J € Si.(7).

var var

Proof. Let (L(7); A\, V) be the lattice of all varieties of type 7, (Sar(7);

mv mu gen gen

A, V) be the lattice of all M-solid varieties of type 7 and (LZ(7); A, V)
be the lattice of all generalized varieties of type 7. Let I,J be ideals

im mg
of M-solid varieties of type 7. It is clear that U(I\/ J) D (UI) \/ (UJ).
Since, by Theorem 2.9, the lattice S$/(7) is a complete sublattice of the

myg

lattice £Y(7) and since in the proof of Lemma 3.2, we have (UI) \/ (UJ) =

gen var
(UI) V (UJ) =UC where C ={V(A) V V(B) | A€ Ul and B € UJ}. Be-
canse [ \/ J = {W € Sy(r) | W C Wy \/ Wy for some Wy € I and W; €

J}, we have UIV J) = U{Wr VW; | Wr € I and Wy € J}. Let
m mu
A€ U(I\ J). There exist Wy € T and W € J such that Ae Wy \V W, =

var

Wi N Wy, since the lattice Sp(7) is a complete sublattice of the lat-
tice L£(r). Since W = V(Fw, (X)) and W; = V(Fw,(X)). we have

var

A e V(Fw, (X)) V V(Fw,(X)). Every relatively free algebra with respect
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var

to a variety is contained in the variety, so V(Fw, (X)) V V(Fw, (X)) € C.
my im my
It means that A € UC = (UI) \/ (UJ), i.e. U(T/ J) C (UI) \/ (UJ). Alto-
j myg

gether, U(T\/ J) = (UT) \/ (UJ) O

Now we want to consider the mapping between the lattice S,{/,(T) of
ideals of M-solid varieties of type 7 and the lattice S$/(7) of M-solid gen-
eralized varieties of type 7. [Gra-V-P;97] proved that not every solid gener-
alized variety of type 7 is the union of a directed family of solid varieties of
type 7. Therefore not every M-solid generalized variety is the union of an
ideal of M-solid varieties. That means the restriction of the mapping used
in the proof of Theorem 3.3 to ideals of M-solid varieties is not onto the
lattice of all M-solid generalized varieties. As a consequence of this fact
and Lemma 3.4, we have:

Corollary 3.5 The lattice SI (1) can be embedded into the lattice S$,(7).

4 The Lattice of all M-solid Pseudovarieties

In this section we start with some basic knowledge of the concept of locally
finite varieties. We will use locally finiteness of varieties to consider the
mapping between the lattice of all M-solid generalized varieties and the
lattice of all M-solid pseudovarieties. At the end of this section we apply
the results to M-solid pseudovarieties of semigroups.

Definition 4.1 An algebra A of type 7 is said to be locally finite if all its
finitely generated subalgebras are finite. A class K of algebras of the same
type 7 is said to be locally finite if all its elements are locally finite.

It is well-known that a variety V is locally finite if and only if all finitely
generated free algebras with respect to V' are finite.

Lemma 4.2 Let V) and Vo be locally finite varieties of type 7. If Vlfm _
VQfm then V1 = V5.

Proof. Let V; for every i = 1,2 be locally finite varieties of type 7. Then
Vif " contains all finitely generated free algebras with respect to V; for every
i =1,2. From V™ = V/™ we have {Fy, (n)|n € N,n > 1} = {F,(n)|n €
N,n > 1}. Since a variety is uniquely determined by all finitely generated
free algebras Fy (n) for n € Nyn > 1, we get V| = V. O
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Theorem 4.3 Let V be a locally finite variety of type 7, L(V') be the lattice
of all subvarieties of V' and LTS (V™) the lattice of all subpseudovarieties
of VI Then L(V) is isomorphic to LTS (V).

Proof. We define a mapping ¢ : L(V) — LS (V™) by W — W/ for
every W € L(V). It is clear that ¢ is well-defined and (W A Wy) =
o(W1) A p(Ws), for every Wi, Wy € L(V). By Lemma 4.2, ¢ is one-to-
one. Since £(7) is a sublattice of LZ(7) and by [Alm; 94] (Exercise 3.2.9),
(W1 v Wo)in = W™ v W™ ie. o(Wi VW) = o(W1) V o(Ws,). The
next step is to show that ¢ is onto. Let K be a subpseudovariety of V /%,
We form W = V(K) - the variety generated by K. We want to show
Win = K. Let A € W/, Then A is a homomorphic image of a free
algebra Fy (n) for some n > 1. Since Fy/(n) is isomorphic to a subdirect
product of algebras in K and V is locally finite, Fy (n) is isomorphic to
finite subdirect product of K. Tt follows that Fi(n) € K, ie. A € K.
That means W/ C K. The opposite inclusion is obvious. Altogether,
L(V) is isomorphic to £F% (V). O

The proof shows that every subpseudovariety of a locally finite variety
is the finite part of a subvariety. We know that the lattice Sys(7) of M-solid
varieties of type 7 is a complete sublattice of the lattice £(7) and [4] proved
that the lattice ST9(7) is a complete sublattice of the lattice £L7°(7). The
restriction of the mapping used in the proof of Theorem 4.3 to the lattice
Su (V) of all M-solid subvarieties of V' gives the following isomorphism:

Corollary 4.4 Let V be a locally finite variety of type 7, Spr (V') be the lat-
tice of all M-solid subvarieties of V and SﬁS(me) be the lattice of all M -
solid subpseudovarieties of V™. Then Syr(V) is isomorphic to SES (V™).

Proof. Let W be an M-solid subvariety of V. Then W/ ¢ SPS(v/in)
since the finite part of W is closed under the operator Xﬁ- Conversely if
K € SIS (V™) then V(K) is M-solid since K is closed under the oper-
ator Xﬁ- In a similar way as in the proof of Theorem 3.4 we show that
V(K)/" = K. O

Corollary 4.4 and its proof show that every M-solid subpseudovariety
of a locally finite variety is the finite part of an M- solid variety.

Proposition 4.5 Let V be a locally finite generalized wvariety of type 7.
Then the lattice LFS (V™) of all subpseudovarieties of VI is isomorphic
to a homomorphic image of the lattice LE (V') of all generalized subvarieties

of V.
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Proof. We define a mapping ¢ : LG (V) — LES(V/™) by (W) = W/,
for all W € £%(7). At first, we have to show that ¢ is a surjective lattice
homomorphism.

It is clear that ¢ is well-defined and (W1 A Wy) = p(W1) A o(W3). By [2]
(Exercise 3.2.9), (W, VW)™ = W] vWI™ ie. oW VW) = o(Wi)V
©(W3). Now we have that ¢ is a lattice homomorphism. The next step is
to show that ¢ is onto. Let P € LPS(V/). We form C = {V(A)|A € P}.
Since if A1, Ay € P, then A4; x As € P and V(A1) VV(A4s) = V(A1 x As),
it means that C is directed. Tt is clear that P C (UC)f™. On the other
hand, for every A € (UC)™, there exists an algebra B € P such that
A€ V(B) e C. Since (V(B))"™ C P, it follows that A € P. Now we have
proved that ¢ is a surjective lattice homomorphism. By the homomorphic
image theorem, the proposition is proved. [l

Corollary 4.6 Let V be a locally finite generalized variety of type 7. Then
the lattice S,\Ij,S(me) s isomorphic to a homomorphic image of the lattice
S (V) of all M-solid generalized subvarieties of V.

Proof. We define a mapping ¢ : S (V) — S5 (V") by (W) = W/in,
for all W € S$ (7). By Theorem 2.9, the lattice S$ (V) is a complete
sublattice of the lattice £L9(7) and by [4], the lattice ST°(7) is a complete
sublattice of the lattice £79(7). By Proposition 4.5, we obtain that ¢ is
a lattice homomorphism. The next step is to show that ¢ is onto. Let
P e SPS(VIm). We denote by Vis(A) the M-solid variety generated by
{A}. We form C = {Vj;(A) | A € P}. Tt is clear that C is directed. i.e.
UC € SG(V) and P C (UC)/™. Since Vi (A) = HSP (xh[A]), x4 [A] is a
class of finite algebras and x1\[A] C P for all A € P, we have (Vi (A))/™ =
HSP¢(x7[A]) C P. It follows that (UC)/™ C P.Therefore, ¢ is onto. By
the homomorphic image theorem, the corollary is proved. |

Finally we want to apply these results to M-solid pseudovarieties of
semigroups. Since locally finiteness is an important condition for the results
in this section, we have to characterize locally finite M-solid varieties of
semigroups. This was done in [Den-P;03]. We need the definition of a
proper hypersubstitution with respect to a variety V.

Definition 4.7 Let V be a variety of type 7. Then a hypersubstitution
o € Hyp(7) is called proper if for every s ~ t € IdV we have 6[s] ~ 6[t] €
1dV.
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Theorem 4.8 ([Den-P;03] Let M C Hyp(t) be a monoid of hypersubstitu-
tions of type 7 = (2). Then V = HyMod{z(zex3) = (x129)x3} is locally
finite if and only if 04, 4or, OT Ozox iz, 1S G proper hypersubstitution of V.

Note that if V = HyyMod{xi(xoxs) = (x1x2)x3} is locally finite, then
every M-solid variety of semigroups is locally finite, since V- = Hyy Mod{x1(xox3)
~ (r1x9)x3} is the greatest one.

Theorem 4.9 If 04, 2,2, O Ogyziz, 15 @ proper hypersubstitution of V. =
HyMod{xi(xox3) = (x129)x3} then the lattice of all M-solid pseudovari-
eties of semigroups is isomorphic to the lattice of all M-solid varieties of
SEeMAgroups.

Proof. This directly follows from Corollary 4.4 and Theorem 4.8. O
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