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Abstract : If T is an idempotent operator on a Hilbert space H such that
the spectrum of T contains two different points, then T has the representation

I ⊕
[

0 A
0 I

]

, where A is a unique, positive, and similar operator. Furthermore,

if T on ℑ = K ⊕H has the form

[

αI A
0 βI

]

, where α and β are scalars, then a

characterization of the norm of T in terms of the norm of A is proved. Examples of
such operators are also given. In particular, genetic operators are defined. Finally,
a necessary and a sufficient condition for similar operators is provided.
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1 Introduction

Throughout this article, H and K will denote Hilbert spaces, and ℑ = K⊕H .
The identity operator is denoted by I. We write Sp(T ) and r(T ) for the spectrum
and the spectral radius of an operator T respectively.

Let T1 and T2 be two operators in B(H) and B(K) respectively. Then, T1

is similar to T2 if there exists an invertible operator S from H onto K such that
T2S = ST1.

An operator T is called a contraction if the norm of T is less than one, [1].
Also, an operator on a Hilbert space is similar to a contraction if and only if its
spectrum is contained in the interior of the unit disc; see [1].
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Let H1 be a subset of H . Let T be a continuous map from H1 to H , then T is
called a t-contraction if there exists a constant t ≥ 0 such that for any nonempty
bounded subset H0 of H we have α(T (H0)) ≤ tα(H0), where α(T (H0)) is the
measure of noncompactness of T (H0) and α(T ) = inf{t > 0 : T is a t-contraction},
see [2].

We note that if Φ is a compact operator and Φ0 is a contraction such that
α(ϕ0) < 1, then an operator ψ = Φ + ϕ0 is a t-contraction with ||ψ|| < 1. W also
note that an operator A is a ||A||-contraction and α(A) ≤ ||A||.

2 Idempotent Operators

In this section, we prove some results on idempotent operators where the
spectrum contains two distinct points.

Theorem 2.1. Let T be an idempotent operator on H with Sp(T ) = {α, β},
where α and β are distinct scalars. Then T is similar to an operator of the form

I ⊕
[

0 A
0 I

]

, where A is a unique, positive (strict), and similar operator.

Proof. Let T be an idempotent operator with Sp(T ) = {α, β}, where α and β
are distinct scalars. Then (T−αI

β−α
) is idempotent. Let N(T ) and N(T ∗) denote

the null spaces of T and T ∗ respectively. If K0 is the orthogonal complement of
N(T ) ∩ N(T ∗) in H and T is idempotent, then T can be written as 0 ⊕ S on

H , where S =

[

0 A1

0 A2

]

on K0, see [3]. If R(S∗) denotes the range of S∗ then

K0 = N(S) ⊕R(S∗).
We also note that if S is idempotent (which is the case here), then A2 = I

and S has a better representation of the form I ⊕
[

0 D
0 I

]

on N(B) ⊕ [N(S) ⊕

(R(S∗)⊖N(B)] where ⊖ denotes the orthogonal complement of N(B). The R(D)
is dense (D is one to one) and A = U∗D, where U is the unitary operator. This
means the operator D can be decomposed so that D = UA. In this case, a simple
matrix multiplication yields:

[

0 U∗D
0 I

] [

U 0
0 I

]

=

[

0 A
0 I

]

.

Thus, by the definition of similar operators, the operator S is similar to I ⊕
[

0 A
0 I

]

, and the representation of T is valid.

For uniqueness, let T = 0 ⊕ I ⊕
[

0 A
0 I

]

on [N(T ) ∩N(T ∗)] ⊕ [N(T − I) ∩
N(T − I)∗]. In fact, the dimensions of these spaces are uniquely determined by T .

For two positive operators A0 and A, let

[

0 A
0 I

]

and

[

0 A0

0 I

]

be similar. If
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U is the unitary operator, then U

[

0 A
0 I

]

=

[

0 A0

0 I

]

U , and this gives us the

following equations:

A0U4 = U1A+ U2 and U3 = 0 where U =

[

U1 U2

U3 U4

]

.

Furthermore,

U∗

[

0 A0

0 I

]

=

[

0 A0

0 I

]

U∗ ⇒ U2 = 0 and A0U4 = U1A.

Also, A2
0 = (U∗

4A0)(A0U4) = (U∗
4A0)(U1A) = A2 ⇒ A0 and A are similar opera-

tors.

Theorem 2.2. Let T =

[

αI A
0 βI

]

on ℑ = K ⊕H, where A is the same as in

Theorem 1 above, and α and β are scalars. Then ||T || =

∣

∣

∣

∣

∣

∣

∣

∣

[

α ||A||
0 β

]∣

∣

∣

∣

∣

∣

∣

∣

.

Proof. Let ℑ = K ⊕ H and v be a unit vector in ℑ. If v1 and v2 are the unit
vectors in K and H respectively, then v = pv1 + qv2, where p and q are scalars
with |p|2 + |q|2 = 1. Then

Tv = (αpv1 + qAv2) ⊕ (βqv2)

⇒ ||Tv||2 = ||αpv1 + qAv2||2

= |α|2|p|2 + |β|2|q|2 + |q|2||Av2||2 + 2Re(αpq(Av, v1))

⇒
∣

∣

∣

∣

∣

∣

∣

∣

[

α (Av2, v1)
0 β

]

v

∣

∣

∣

∣

∣

∣

∣

∣

≤ ||Tv||2.

Let

η = sup

{∣

∣

∣

∣

∣

∣

∣

∣

[

α (Av2, v1)
0 β

]∣

∣

∣

∣

∣

∣

∣

∣

: v1 ∈ K, v2 ∈ H, and ||v1|| = 1 = ||v2||2
}

.

Then η ≤ ||T ||. Let the norm of tha matrix

[

α γ
0 β

]

for the first fixed α and

β be a monotonically increasing function of |γ|. Then ||A|| = sup{|(Av2, v1)| :

v1 ∈ K, v2 ∈ H, and ||v1|| = 1 = ||v2||} and

∣

∣

∣

∣

∣

∣

∣

∣

[

α ||A||
0 β

]∣

∣

∣

∣

∣

∣

∣

∣

≤ ||T ||. Let r be

a real number such that αpq||A||(cos r + i sin r) ≥ 0. Then, from above, we have

||T || ≤
∣

∣

∣

∣

∣

∣

∣

∣

[

α ||A||
0 β

]∣

∣

∣

∣

∣

∣

∣

∣

, which proves the theorem.

Corollary 2.3. ||Tv|| = ||T || ⇔ ||Av2|| = ||A||.
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Proof. Let v ∈ ℑ and ||Tv|| = ||T ||. Let q = 0. Then from Theorem 1, we have
||Tv|| = ||T || = ||αqv2|| = |α ≥ ||T ∗(v1 ⊕ 0)||| =

√

(|α|2 + ||A∗v1||2) ⇒ A = 0.
Next, let q 6= 0. Then from Theorem 2.1, it follows that ||Av2|| = ||A||. The other
implication is a straight forward application of Theorem 1 and the fact that if v1
is a unit vector in H , then v1 = Av2

||Av2||
with ||A|| = (Av2, v1).

Corollary 2.4. ||T − αI||2 = |α− β|2 + ||A||2.

Proof. The corollary is an easy consequence of Theorem 2.1.

Example 2.5. It is known that the boundary of the spectrum of an operator is
contained in the approximate spctrum of the operator. Since W (T )(W (T ) is the
numerical range of T ) is convex, we have coSp(T ) ⊂ W (T ). For more on nu-
merical ranges, refer to [4]. The equality does not hold in general. For example,

let H = C2, and let T =

[

0 1
0 0

]

. Then, Sp(T ) = {0}, although T is not

idempotent. On the other hand,

W (T ) = {zw∗ : z, w,∈ C, |z|2 + |w|2 = 1} =

{

λ ∈ C : |λ| ≤ 1

2

}

.

Remark 2.6. If T is a normal operator, then coSp(T ) = W (T ).

Example 2.7. Let T =

[

I 0
0 0

]

∈ B(C)2 be a hermitian operator such that

||(z, w)|| = max

{

|z|, |w|, |z − w|√
2

}

.

Then Sp(T ) contains two distinct points 0 and 1. Also, by Theorem 2.2, it follows
that W (T ) is either the closed line segment with two points α and β or the disc
with foci at α and β, where the major and minor axes are given by ||T − αI|| and
√

||T − αI||2 − |α− β|2, respectively. In fact, W (T ) = co{0, 1, 1+i
2
}.

Example 2.8. Let T = x1 ⊗ x2 with rank of T = 1. Then W (T ) is the closed
disc with foci (x1, x2) and zero. Major and monor axes are given by ||x1||||x2|| and
√

||x1||2||x2||2 − |(x1 − x2)|2, respectively. The numerical radius w(T ) is given by
1

2
(||x1||||x2|| + |(x1, x2)|). Compare this with [5] and [6].

Remark 2.9. If T =

[

α (Av2, v1)
0 β

]

, then W (T ) is the closed disc with foci at

α and β.

The major and minor axes are given by
√

(Av2, v1)2 + |α− β|2 and |(Av2, v1)|
respectively. The numerical range W (T ) is closed by Corollary 2.4. In fact, W (T )
is closed if and only if ||A|| = |(Av2, v1)|.
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Example 2.10. This example has its roots in the biological sciences. We note that
genetic operators are idempotent. Let Γ = {x = (x0, . . . , xn−1) : h(x) = 1, xj ≥ 0}
be the set of all possible populations, where h(x) =

∑n−1

j=0
xj , x ∈ ℜn. Let P be

a population distribution in Γ from which the first parent is drawn and q ∈ Γ
for the second parent. Let L(p, q) ∈ Γ be the population distribution resulting
from crossing other random parents from p and q. Let ei be the vector with a 1 at
position i and zeroes elsewhere. Then ei represents a population comprised entirely
of copies of i. In this case, the other component (kth component) of L(ei, ej) equals
the probability that crossing i and j will produce k. Therefore,

L(p, q)k =
∑

piqjL(ei, ej)k

⇒ L(p, q) =
∑

k





∑

i,j

piqjL(ei, ej)k



 ek

=
∑

i,j

piqjL(ei, ej).

The sum L(p, q) is completely determined by vectors L(ei, ej), and this can be
extended to ℜn. We define the following operator:

Ψ : ℜn → ℜn by Ψ(x1, . . . , xn) =
∑

i,j

xixjL(ei, ej).

Then, Ψ defines an idempotent operator. These operators are nonlinear. For more
information on this topic, refer to [7].

Remark 2.11. It is easy to see that ||Ψ|| = 1. If A is a linear operator, then the
compositions A ◦ Ψ and Ψ ◦A are idempotent. This operator represents the effect
of applying crossover to a population vector.

3 Similar Operators

Definition 3.1. The essential spectrum of an operator A, denoted by Spe(A) is
the set of scalars λ such that at least one of the following conditions holds:

(a) Range of (λI −A) = R((λI −A)) is not closed.

(b)
⋃∞

n=1
N((ΛI −A))n is infinite dimensional.

The essential spectral radius is defined by re(A) = sup{|λ| : λ ∈ Spe(A)}.
Theorem 3.2. The essential spectra of two similar operators on a Hilbert space
H are the same.

Proof. Let P and Q be two similar operators on H . Suppose that S is an invertivle
operator on H such that Q = S−1PS. Then the essential spectra of P and
Q are equal since their spectra are the same. Furthermore, S−1[(λI − P )| =
(λI −Q) and R[(λI − P )] = S−1[R(λI − P )]. Also, for each positive interger n,
N(λI −Q)n = S−1[N(λI − P )n].
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Theorem 3.3. An operator T on H is similar to a contraction if and only if
re(T ) < 1.

Proof. Let S be a bounded and invertible operator onH . Then by Theorem 3.2, we
have the following inequality: re(T ) = re(S

−1TS) ≤ α(S−1TS), where α(S−1TS)
is a measure of noncompactness of (S−1TS). If S is linear and bijective, then
re(T ) ≤ inf{α(S−1TS)}. Now, let δ > 0. Then, for a finite dimensional operator
ψ, we have from Theorem 3.2, r(T + ψ) ≤ re(T ) + δ/m,m = 2, 3, 4, . . .. Hence,
||S−1(T + ψ)S|| ≤ re(T ) + δ. Furthermore, α is a seminorm and therefore the
following is true:

α(S−1TS) = α(S−1TS + S−1ψS) = α(S−1(T + ψ)S) ≤ ||S−1(T + ψ)S||,

which implies that α(S−1TS) ≤ re(T ) + δ. Since δ is arbitrarily chosen, the
theorem follows from Theorem 3.2.

Remark 3.4. We denote by X ′ the set of invertible elements of a unital C∗ algebra
X. Let x be an element of X such that the spectral radius r(x), of x is strictly less
than one. Then, the series

∑∞
n=0

||xn||2 is convergent and belongs to X. Also, if
x0 =

∑∞
n=0

||xn||∗xn, then x0 ≥ 1. Let y be an element of X such that y =
√
x0

and y ≥ 1, then y ∈ X ′. Hence,

||yxy−1|| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

y−1

∞
∑

n=1

(x∗)ny−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= r(1 − y−2) < 1 ⇒ ||yxy−1|| < 1.

Let M be a closed two sided ideal of X. If x is in X and X/M is a C∗-algebra,
then r(x +M) = infy∈M r(x + y), y ∈ X ′.

Remark 3.5. If κ(H) denotes the set of compact operators on H and if T ∈ κ(H),
then ||κ(H) + T || = α(T ).
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