Idempotents and Similar Operators

A.K. Gaur
Department of Mathematics, Duquesne University
Pittsburgh, PA 15282, U.S.A.
e-mail : gaura@duq.edu

Abstract

If T is an idempotent operator on a Hilbert space H such that the spectrum of T contains two different points, then T has the representation $I \oplus\left[\begin{array}{cc}0 & A \\ 0 & I\end{array}\right]$, where A is a unique, positive, and similar operator. Furthermore, if T on $\Im=K \oplus H$ has the form $\left[\begin{array}{cc}\alpha I & A \\ 0 & \beta I\end{array}\right]$, where α and β are scalars, then a characterization of the norm of T in terms of the norm of A is proved. Examples of such operators are also given. In particular, genetic operators are defined. Finally, a necessary and a sufficient condition for similar operators is provided.

Keywords : Idempotent; Spectrum; Essential spectrum; Similar operators. 2010 Mathematics Subject Classification : 46H05; 47A10.

1 Introduction

Throughout this article, H and K will denote Hilbert spaces, and $\Im=K \oplus H$. The identity operator is denoted by I. We write $\operatorname{Sp}(T)$ and $r(T)$ for the spectrum and the spectral radius of an operator T respectively.

Let T_{1} and T_{2} be two operators in $B(H)$ and $B(K)$ respectively. Then, T_{1} is similar to T_{2} if there exists an invertible operator S from H onto K such that $T_{2} S=S T_{1}$.

An operator T is called a contraction if the norm of T is less than one, [1]. Also, an operator on a Hilbert space is similar to a contraction if and only if its spectrum is contained in the interior of the unit disc; see [1].

Copyright © 2012 by the Mathematical Association of Thailand. All rights reserved.

Let H_{1} be a subset of H. Let T be a continuous map from H_{1} to H, then T is called a t-contraction if there exists a constant $t \geq 0$ such that for any nonempty bounded subset H_{0} of H we have $\alpha\left(T\left(H_{0}\right)\right) \leq t \alpha\left(H_{0}\right)$, where $\alpha\left(T\left(H_{0}\right)\right)$ is the measure of noncompactness of $T\left(H_{0}\right)$ and $\alpha(T)=\inf \{t>0: T$ is a t-contraction $\}$, see [2].

We note that if Φ is a compact operator and Φ_{0} is a contraction such that $\alpha\left(\varphi_{0}\right)<1$, then an operator $\psi=\Phi+\varphi_{0}$ is a t-contraction with $\|\psi\|<1$. W also note that an operator A is a $\|A\|$-contraction and $\alpha(A) \leq\|A\|$.

2 Idempotent Operators

In this section, we prove some results on idempotent operators where the spectrum contains two distinct points.

Theorem 2.1. Let T be an idempotent operator on H with $S p(T)=\{\alpha, \beta\}$, where α and β are distinct scalars. Then T is similar to an operator of the form $I \oplus\left[\begin{array}{cc}0 & A \\ 0 & I\end{array}\right]$, where A is a unique, positive (strict), and similar operator.

Proof. Let T be an idempotent operator with $\operatorname{Sp}(T)=\{\alpha, \beta\}$, where α and β are distinct scalars. Then $\left(\frac{T-\alpha I}{\beta-\alpha}\right)$ is idempotent. Let $N(T)$ and $N\left(T^{*}\right)$ denote the null spaces of T and T^{*} respectively. If K_{0} is the orthogonal complement of $N(T) \cap N\left(T^{*}\right)$ in H and T is idempotent, then T can be written as $0 \oplus$ on H, where $S=\left[\begin{array}{cc}0 & A_{1} \\ 0 & A_{2}\end{array}\right]$ on K_{0}, see [3]. If $R\left(S^{*}\right)$ denotes the range of S^{*} then $K_{0}=N(S) \oplus R\left(S^{*}\right)$.

We also note that if S is idempotent (which is the case here), then $A_{2}=I$ and S has a better representation of the form $I \oplus\left[\begin{array}{cc}0 & D \\ 0 & I\end{array}\right]$ on $N(B) \oplus[N(S) \oplus$ $\left.\overline{\left(R\left(S^{*}\right)\right.} \ominus N(B)\right]$ where \ominus denotes the orthogonal complement of $N(B)$. The $R(D)$ is dense (D is one to one) and $A=U^{*} D$, where U is the unitary operator. This means the operator D can be decomposed so that $D=U A$. In this case, a simple matrix multiplication yields:

$$
\left[\begin{array}{cc}
0 & U^{*} D \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
U & 0 \\
0 & I
\end{array}\right]=\left[\begin{array}{cc}
0 & A \\
0 & I
\end{array}\right]
$$

Thus, by the definition of similar operators, the operator S is similar to $I \oplus$ $\left[\begin{array}{cc}0 & A \\ 0 & I\end{array}\right]$, and the representation of T is valid.

For uniqueness, let $T=0 \oplus I \oplus\left[\begin{array}{cc}0 & A \\ 0 & I\end{array}\right]$ on $\left[N(T) \cap N\left(T^{*}\right)\right] \oplus[N(T-I) \cap$ $\left.N(T-I)^{*}\right]$. In fact, the dimensions of these spaces are uniquely determined by T. For two positive operators A_{0} and A, let $\left[\begin{array}{cc}0 & A \\ 0 & I\end{array}\right]$ and $\left[\begin{array}{cc}0 & A_{0} \\ 0 & I\end{array}\right]$ be similar. If
U is the unitary operator, then $U\left[\begin{array}{cc}0 & A \\ 0 & I\end{array}\right]=\left[\begin{array}{cc}0 & A_{0} \\ 0 & I\end{array}\right] U$, and this gives us the following equations:

$$
A_{0} U_{4}=U_{1} A+U_{2} \text { and } U_{3}=0 \text { where } U=\left[\begin{array}{cc}
U_{1} & U_{2} \\
U_{3} & U_{4}
\end{array}\right]
$$

Furthermore,

$$
U^{*}\left[\begin{array}{cc}
0 & A_{0} \\
0 & I
\end{array}\right]=\left[\begin{array}{cc}
0 & A_{0} \\
0 & I
\end{array}\right] U^{*} \Rightarrow U_{2}=0 \text { and } A_{0} U_{4}=U_{1} A
$$

Also, $A_{0}^{2}=\left(U_{4}^{*} A_{0}\right)\left(A_{0} U_{4}\right)=\left(U_{4}^{*} A_{0}\right)\left(U_{1} A\right)=A^{2} \Rightarrow A_{0}$ and A are similar operators.

Theorem 2.2. Let $T=\left[\begin{array}{cc}\alpha I & A \\ 0 & \beta I\end{array}\right]$ on $\Im=K \oplus H$, where A is the same as in Theorem 1 above, and α and β are scalars. Then $\|T\|=\left\|\left[\begin{array}{cc}\alpha & \|A\| \\ 0 & \beta\end{array}\right]\right\|$.

Proof. Let $\Im=K \oplus H$ and v be a unit vector in \Im. If v_{1} and v_{2} are the unit vectors in K and H respectively, then $v=p v_{1}+q v_{2}$, where p and q are scalars with $|p|^{2}+|q|^{2}=1$. Then

$$
\begin{aligned}
T v & =\left(\alpha p v_{1}+q A v_{2}\right) \oplus\left(\beta q v_{2}\right) \\
& \Rightarrow\|T v\|^{2}=\left\|\alpha p v_{1}+q A v_{2}\right\|^{2} \\
& =|\alpha|^{2}|p|^{2}+|\beta|^{2}|q|^{2}+|q|^{2}\left\|A v_{2}\right\|^{2}+2 \operatorname{Re}\left(\overline{\alpha p q}\left(A v, v_{1}\right)\right) \\
& \Rightarrow\left\|\left[\begin{array}{cc}
\alpha & \left(A v_{2}, v_{1}\right) \\
0 & \beta
\end{array}\right] v\right\| \leq\|T v\|^{2} .
\end{aligned}
$$

Let

$$
\eta=\sup \left\{\left\|\left[\begin{array}{cc}
\alpha & \left(A v_{2}, v_{1}\right) \\
0 & \beta
\end{array}\right]\right\|: v_{1} \in K, v_{2} \in H, \text { and }\left\|v_{1}\right\|=1=\left\|v_{2}\right\|^{2}\right\}
$$

Then $\eta \leq\|T\|$. Let the norm of tha matrix $\left[\begin{array}{ll}\alpha & \gamma \\ 0 & \beta\end{array}\right]$ for the first fixed α and β be a monotonically increasing function of $|\gamma|$. Then $\|A\|=\sup \left\{\left|\left(A v_{2}, v_{1}\right)\right|\right.$: $v_{1} \in K, v_{2} \in H$, and $\left.\left\|v_{1}\right\|=1=\left\|v_{2}\right\|\right\}$ and $\left\|\left[\begin{array}{cc}\alpha & \|A\| \\ 0 & \beta\end{array}\right]\right\| \leq\|T\|$. Let r be a real number such that $\overline{\alpha p q}\|A\|(\cos r+i \sin r) \geq 0$. Then, from above, we have $\|T\| \leq\left\|\left[\begin{array}{cc}\alpha & \|A\| \\ 0 & \beta\end{array}\right]\right\|$, which proves the theorem.

Corollary 2.3. $\|T v\|=\|T\| \Leftrightarrow\left\|A v_{2}\right\|=\|A\|$.

Proof. Let $v \in \Im$ and $\|T v\|=\|T\|$. Let $q=0$. Then from Theorem 1, we have $\|T v\|=\|T\|=\left\|\alpha q v_{2}\right\|=\mid \alpha \geq\left\|T^{*}\left(v_{1} \oplus 0\right)\right\| \|=\sqrt{\left(|\alpha|^{2}+\left\|A^{*} v_{1}\right\|^{2}\right)} \Rightarrow A=0$. Next, let $q \neq 0$. Then from Theorem 2.1, it follows that $\left\|A v_{2}\right\|=\|A\|$. The other implication is a straight forward application of Theorem 1 and the fact that if v_{1} is a unit vector in H, then $v_{1}=\frac{A v_{2}}{\left\|A v_{2}\right\|}$ with $\|A\|=\left(A v_{2}, v_{1}\right)$.

Corollary 2.4. $\|T-\alpha I\|^{2}=|\alpha-\beta|^{2}+\|A\|^{2}$.
Proof. The corollary is an easy consequence of Theorem 2.1.
Example 2.5. It is known that the boundary of the spectrum of an operator is contained in the approximate spctrum of the operator. Since $W(T)(W(T)$ is the numerical range of T) is convex, we have $\operatorname{coSp}(T) \subset \overline{W(T)}$. For more on numerical ranges, refer to [4]. The equality does not hold in general. For example, let $H=C^{2}$, and let $T=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$. Then, $S p(T)=\{0\}$, although T is not idempotent. On the other hand,

$$
W(T)=\left\{z w^{*}: z, w, \in C,|z|^{2}+|w|^{2}=1\right\}=\left\{\lambda \in C:|\lambda| \leq \frac{1}{2}\right\}
$$

Remark 2.6. If T is a normal operator, then $\operatorname{coSp}(T)=\overline{W(T)}$.
Example 2.7. Let $T=\left[\begin{array}{ll}I & 0 \\ 0 & 0\end{array}\right] \in B(C)^{2}$ be a hermitian operator such that

$$
\|(z, w)\|=\max \left\{|z|,|w|, \frac{|z-w|}{\sqrt{2}}\right\} .
$$

Then $\operatorname{Sp}(T)$ contains two distinct points 0 and 1. Also, by Theorem 2.2, it follows that $W(T)$ is either the closed line segment with two points α and β or the disc with foci at α and β, where the major and minor axes are given by $\|T-\alpha I\|$ and $\sqrt{\|T-\alpha I\|^{2}-|\alpha-\beta|^{2}}$, respectively. In fact, $W(T)=c o\left\{0,1, \frac{1+i}{2}\right\}$.

Example 2.8. Let $T=x_{1} \otimes x_{2}$ with rank of $T=1$. Then $W(T)$ is the closed disc with foci $\left(x_{1}, x_{2}\right)$ and zero. Major and monor axes are given by $\left\|x_{1}\right\|\left\|x_{2}\right\|$ and $\sqrt{\left\|x_{1}\right\|^{2}\left\|x_{2}\right\|^{2}-\left|\left(x_{1}-x_{2}\right)\right|^{2}}$, respectively. The numerical radius $w(T)$ is given by $\frac{1}{2}\left(\left\|x_{1}\right\|\left\|x_{2}\right\|+\left|\left(x_{1}, x_{2}\right)\right|\right)$. Compare this with [5] and [6].

Remark 2.9. If $T=\left[\begin{array}{cc}\alpha & \left(A v_{2}, v_{1}\right) \\ 0 & \beta\end{array}\right]$, then $W(T)$ is the closed disc with foci at α and β.

The major and minor axes are given by $\sqrt{\left(A v_{2}, v_{1}\right)^{2}+|\alpha-\beta|^{2}}$ and $\left|\left(A v_{2}, v_{1}\right)\right|$ respectively. The numerical range $W(T)$ is closed by Corollary 2.4. In fact, $W(T)$ is closed if and only if $\|A\|=\left|\left(A v_{2}, v_{1}\right)\right|$.

Example 2.10. This example has its roots in the biological sciences. We note that genetic operators are idempotent. Let $\Gamma=\left\{x=\left(x_{0}, \ldots, x_{n-1}\right): h(x)=1, x_{j} \geq 0\right\}$ be the set of all possible populations, where $h(x)=\sum_{j=0}^{n-1} x_{j}, x \in \Re^{n}$. Let \bar{P} be a population distribution in Γ from which the first parent is drawn and $q \in \Gamma$ for the second parent. Let $L(p, q) \in \Gamma$ be the population distribution resulting from crossing other random parents from p and q. Let e_{i} be the vector with a 1 at position i and zeroes elsewhere. Then e_{i} represents a population comprised entirely of copies of i. In this case, the other component (k th component) of $L\left(e_{i}, e_{j}\right)$ equals the probability that crossing i and j will produce k. Therefore,

$$
\begin{aligned}
L(p, q)_{k} & =\sum p_{i} q_{j} L\left(e_{i}, e_{j}\right)_{k} \\
& \Rightarrow L(p, q)=\sum_{k}\left(\sum_{i, j} p_{i} q_{j} L\left(e_{i}, e_{j}\right)_{k}\right) e_{k} \\
& =\sum_{i, j} p_{i} q_{j} L\left(e_{i}, e_{j}\right)
\end{aligned}
$$

The sum $L(p, q)$ is completely determined by vectors $L\left(e_{i}, e_{j}\right)$, and this can be extended to \Re^{n}. We define the following operator:

$$
\Psi: \Re^{n} \rightarrow \Re^{n} \text { by } \Psi\left(x_{1}, \ldots, x_{n}\right)=\sum_{i, j} x_{i} x_{j} L\left(e_{i}, e_{j}\right)
$$

Then, Ψ defines an idempotent operator. These operators are nonlinear. For more information on this topic, refer to [7].

Remark 2.11. It is easy to see that $\|\Psi\|=1$. If A is a linear operator, then the compositions $A \circ \Psi$ and $\Psi \circ A$ are idempotent. This operator represents the effect of applying crossover to a population vector.

3 Similar Operators

Definition 3.1. The essential spectrum of an operator A, denoted by $S p_{e}(A)$ is the set of scalars λ such that at least one of the following conditions holds:
(a) Range of $(\lambda I-A)=R((\lambda I-A))$ is not closed.
(b) $\bigcup_{n=1}^{\infty} N((\Lambda I-A))^{n}$ is infinite dimensional.

The essential spectral radius is defined by $r_{e}(A)=\sup \left\{|\lambda|: \lambda \in S p_{e}(A)\right\}$.
Theorem 3.2. The essential spectra of two similar operators on a Hilbert space H are the same.
Proof. Let P and Q be two similar operators on H. Suppose that S is an invertivle operator on H such that $Q=S^{-1} P S$. Then the essential spectra of P and \underline{Q} are equal since their spectra are the same. Furthermore, $S^{-1} \overline{[(\lambda I-P) \mid}=$ $\overline{(\lambda I-Q)}$ and $R[(\lambda I-P)]=S^{-1}[R(\lambda I-P)]$. Also, for each positive interger n, $N(\lambda I-Q)^{n}=S^{-1}\left[N(\lambda I-P)^{n}\right]$.

Theorem 3.3. An operator T on H is similar to a contraction if and only if $r_{e}(T)<1$.

Proof. Let S be a bounded and invertible operator on H. Then by Theorem 3.2, we have the following inequality: $r_{e}(T)=r_{e}\left(S^{-1} T S\right) \leq \alpha\left(S^{-1} T S\right)$, where $\alpha\left(S^{-1} T S\right)$ is a measure of noncompactness of $\left(S^{-1} T S\right)$. If S is linear and bijective, then $r_{e}(T) \leq \inf \left\{\alpha\left(S^{-1} T S\right)\right\}$. Now, let $\delta>0$. Then, for a finite dimensional operator ψ, we have from Theorem 3.2, $r(T+\psi) \leq r_{e}(T)+\delta / m, m=2,3,4, \ldots$. Hence, $\left\|S^{-1}(T+\psi) S\right\| \leq r_{e}(T)+\delta$. Furthermore, α is a seminorm and therefore the following is true:

$$
\alpha\left(S^{-1} T S\right)=\alpha\left(S^{-1} T S+S^{-1} \psi S\right)=\alpha\left(S^{-1}(T+\psi) S\right) \leq\left\|S^{-1}(T+\psi) S\right\|
$$

which implies that $\alpha\left(S^{-1} T S\right) \leq r_{e}(T)+\delta$. Since δ is arbitrarily chosen, the theorem follows from Theorem 3.2.

Remark 3.4. We denote by X^{\prime} the set of invertible elements of a unital C^{*} algebra X. Let x be an element of X such that the spectral radius $r(x)$, of x is strictly less than one. Then, the series $\sum_{n=0}^{\infty}\left\|x^{n}\right\|^{2}$ is convergent and belongs to X. Also, if $x_{0}=\sum_{n=0}^{\infty}\left\|x^{n}\right\|^{*} x^{n}$, then $x_{0} \geq 1$. Let y be an element of X such that $y=\sqrt{x_{0}}$ and $y \geq 1$, then $y \in X^{\prime}$. Hence,

$$
\left\|y x y^{-1}\right\|=\left\|y^{-1} \sum_{n=1}^{\infty}\left(x^{*}\right)^{n} y^{-1}\right\|=r\left(1-y^{-2}\right)<1 \Rightarrow\left\|y x y^{-1}\right\|<1
$$

Let M be a closed two sided ideal of X. If x is in X and X / M is a C^{*}-algebra, then $r(x+M)=\inf _{y \in M} r(x+y), y \in X^{\prime}$.

Remark 3.5. If $\kappa(H)$ denotes the set of compact operators on H and if $T \in \kappa(H)$, then $\|\kappa(H)+T\|=\alpha(T)$.

References

[1] P.R. Halmos, A Hilbert Space Problem Book, 2nd ed., revised and enlarged, Springer Verlag, New York, 1983.
[2] R.D. Nussbaum, The radius of the essential spectrum, Duke Math. J. 38 (1970) 473-478.
[3] R.G. Douglass, Banach Algebra Techniques in Operator Theory, Academic Press, Inc., 1972.
[4] F.F. Bonsall, J. Duncan, Numerical ranges, in R.G. Bartle (ed.), Studies in functional analysis, American Mathematical Association, 1980, pp. 1-49.
[5] M. Fujii, F. Kubo, Buzanois inequality and bounds for roots of algebraic equations, Proc. Amer. Math Soc. 117 (1993) 359-362.
[6] A.K. Gaur, T. Husain, Relative Numerical Ranges, Math. Japonica 36 (1991) 127-135.
[7] A.H. Wright, G.L. Bidwell, A search for counterexamples to two conjectures on the simple genetic algorithm, in R. K. Belew and M. D. Vose, editors, Foundations of Genetic Algorithms (FOGA-4), pages 73-84. Morgan Kaufmann, 1997.
(Accepted 22 December 2011)

Thai J. Math. Online @ http://www.math.science.cmu.ac.th/thaijournal

