Thai Journal of Mathematics Volume 10 (2012) Number 1 : 25–34

www.math.science.cmu.ac.th/thaijournal Online ISSN 1686-0209

Chromaticity of Complete 5-Partite Graphs with Certain Star or Matching Deleted

Ameen Shaman Ameen[†], Yee Hock Peng[‡], Haixing Zhao[§], Gee Choon Lau[‡] and Roslan Hasni^{†,1}

[†]School of Mathematical Sciences, Universiti Sains Malaysia 11800 USM, Penang, Malaysia e-mail : amensh66@yahoo.com

[‡]Department of Mathematics, and Institute for Mathematical Research Universiti Putra Malaysia, 43400 Serdang, Malaysia e-mail : yhpeng88@yahoo.com

[§]Department of Mathematics, Qinghai Normal University Xining, Qinghai 810008, P.R. China e-mail : haixingzhao@yahoo.com.cn

[#]Faculty of Computer and Mathematical Sciences University Teknologi MARA (Segamat Campus), 85010, Johor, Malaysia e-mail : drlaugc@gmail.com

Abstract: Let $P(G, \lambda)$ be the chromatic polynomial of a graph G. Two graphs G and H are said to be chromatically equivalent, denoted by $G \sim H$, if $P(G, \lambda) = P(H, \lambda)$. We write $[G] = \{H|H \sim G\}$. If $[G] = \{G\}$, then G is said to be chromatically unique. In this paper, we first characterize certain complete 5-partite graphs with 5n + 1 vertices according to the number of 6-independent partitions of G. Using these results, we investigate the chromaticity of G with certain star or matching deleted. As a by-product, many new families of chromatically unique complete 5-partite graphs with certain star or matching deleted are obtained.

Keywords : Chromatic polynomial; Chromatically closed; Chromatic uniqueness. **2010 Mathematics Subject Classification :** 05C15.

¹Corresponding author email: hroslan@cs.usm.my (R. Hasni)

Copyright 2012 by the Mathematical Association of Thailand. All rights reserved.

1 Introduction

All graphs considered here are simple and finite. For a graph G, let $P(G, \lambda)$ be the chromatic polynomial of G. Two graphs G and H are said to be chromatically equivalent (or simply χ -equivalent), symbolically $G \sim H$, if $P(G, \lambda) = P(H, \lambda)$. The equivalence class determined by G under \sim is denoted by [G]. A graph Gis chromatically unique (or simply χ -unique) if $H \cong G$ whenever $H \sim G$, i.e, $[G] = \{G\}$ up to isomorphism. For a set \mathcal{G} of graphs, if $[G] \subseteq \mathcal{G}$ for every $G \in \mathcal{G}$, then \mathcal{G} is said to be χ -closed. Many families of χ -unique graphs are known (see [1-3]).

For a graph G, let V(G), E(G) and t(G) be the vertex set, edge set and number of triangles in G, respectively. Let S be a set of s edges in G. Let G-S (or G-s) be the graph obtained from G by deleting all edges in S, and by $\langle S \rangle$ the graph induced by S. Let $K(n_1, n_2, ..., n_t)$ be a complete t-partite graph. We denote by $\mathcal{K}^{-s}(n_1, n_2, ..., n_t)$ the family of graphs which are obtained from $K(n_1, n_2, ..., n_t)$ by deleting a set S of some s edges.

In [2–5], one can find many results on the chromatic uniqueness of bipartite and tripartite graphs. Also there are some results on the chromaticity of 4-partite graphs. However, there are very few 5-partite graphs known to be χ -unique, see [6, 7].

Let G be a complete 5-partite graph with 5n + 1 vertices. In this paper, we characterize certain complete 5-partite graphs with 5n + 1 vertices according to the number of 6-independent partitions of G. Using these results, we investigate the chromaticity of G with certain star or matching deleted. As a by-product, many new families of chromatically unique complete 5-partite graphs with certain star or matching deleted are obtained.

2 Some Lemmas and Notations

For a graph G and a positive integer r, a partition $\{A_1, A_2, ..., A_r\}$ of V(G), where r is a positive integer, is called an *r-independent partition* of G if every A_i is independent of G. Let $\alpha(G, r)$ denote the number of r-independent partitions of G. Then, we have $P(G, \lambda) = \sum_{r=1}^{p} \alpha(G, r)(\lambda)_r$, where $(\lambda)_r = \lambda(\lambda - 1)(\lambda - 2) \cdots (\lambda - r + 1)$ (see [8]). Therefore, $\alpha(G, k) = \alpha(H, k)$ for each k = 1, 2, ..., if $G \sim H$.

For a graph G with p vertices, the polynomial $\sigma(G, x) = \sum_{r=1}^{p} \alpha(G, r) x^{r}$ is called the σ -polynomial of G (see [9]). Clearly, $P(G, \lambda) = P(H, \lambda)$ implies that $\sigma(G, x) = \sigma(H, x)$ for any graphs G and H.

For disjoint graphs G and H, $G \cup H$ denotes the disjoint union of G and H. The join of G and H denoted by $G \vee H$ is defined as follows: $V(G \vee H) = V(G) \cup V(H)$; $E(G \vee H) = E(G) \cup E(H) \cup \{xy \mid x \in V(G), y \in V(H)\}$. For notations and terminology not defined here, we refer [10].

Lemma 2.1 (Koh et al. [2], Brenti [9]). Let G and H be two disjoint graphs. Then

Chromaticity of Complete 5-Partite Graphs with Certain Star ...

(1) |V(G)| = |V(H)|, |E(G)| = |E(H)|, t(G) = t(H) and $\alpha(G, r) = \alpha(H, r)$ for $r = 1, 2, 3, ..., if G \sim H$;

(2)
$$\sigma(G \lor H, x) = \sigma(G, x)\sigma(H, x).$$

Lemma 2.2 (Brenti [9]). Let $G = K(n_1, n_2, n_3, ..., n_t)$ and $\sigma(G, x) = \sum_{r \ge 1} \alpha(G, r) x^r$, then $\alpha(G, r) = 0$ for $1 \le r \le t - 1$, $\alpha(G, t) = 1$ and $\alpha(G, t + 1) = \sum_{i=1}^{t} 2^{n_i - 1} - t$.

Let $x_1 \le x_2 \le x_3 \le x_4 \le x_5$ be positive integers and $\{x_{i_1}, x_{i_2}, x_{i_3}, x_{i_4}, x_{i_5}\} = \{x_1, x_2, x_3, x_4, x_5\}$. If there are two elements x_{i_1} and x_{i_2} in $\{x_1, x_2, x_3, x_4, x_5\}$ such that $x_{i_2} - x_{i_1} \ge 2$, then $H' = K(x_{i_1} + 1, x_{i_2} - 1, x_{i_3}, x_{i_4}, x_{i_5}\}$ is called an *improvement* of $H = K(x_1, x_2, x_3, x_4, x_5)$.

Lemma 2.3 (Zhao et al. [6]). Suppose $x_1 \le x_2 \le x_3 \le x_4 \le x_5$ and $H' = K(x_{i_1} + 1, x_{i_2} - 1, x_{i_3}, x_{i_4}, x_{i_5})$ is an improvement of $H = K(x_1, x_2, x_3, x_4, x_5)$, then

$$\alpha(H,6) - \alpha(H',6) = 2^{x_{i_2}-2} - 2^{x_{i_1}-1} \ge 2^{x_{i_1}-1}$$

For a graph G, let q(G) be the number of edges in G.

Lemma 2.4 (Zhao et al. [6]). Let $G = K(n_1, n_2, n_3, n_4, n_5)$ and S be a set of some s edges of G. If $H \sim G - S$, then there is a graph $F = K(y_1, y_2, y_3, y_4, y_5)$ and a subset S' of E(F) of some s' edges of F such that H = F - S' and |S'| = s' = q(F) - q(G) + s.

Let $G = K(n_1, n_2, n_3, n_4, n_5)$. For a graph H = G - S, where S is a set of some s edges of G, define $\alpha'(H) = \alpha(H, 6) - \alpha(G, 6)$. Clearly, $\alpha'(H) \ge 0$.

Lemma 2.5 (Zhao [7]). Let $G = K(n_1, n_2, n_3, n_4, n_5)$. Suppose that min $\{n_i | i = 1, 2, 3, 4, 5\} \ge s + 1 \ge 1$ and H = G - S, where S is a set of some s edges of G, then

$$s \le \alpha'(H) = \alpha(H, 6) - \alpha(G, 6) \le 2^s - 1,$$

 $\alpha'(H) = s$ iff the set of end-vertices of any $r \ge 2$ edges in S is not independent in H, and $\alpha'(H) = 2^s - 1$ iff S induces a star $K_{1,s}$ and all vertices of $K_{1,s}$ other than its center belong to a same A_i .

Let $K(A_1, A_2)$ be a complete bipartite graph with partite sets A_1 and A_2 . We denote by $K^{-K_{1,s}}(A_i, A_j)$ the graph obtained from $K(A_i, A_j)$ by deleting s edges that induce a star with its center in A_i . Note that $K^{-K_{1,s}}(A_i, A_j) \neq K^{-K_{1,s}}(A_j, A_i)$ if $|A_i| \neq |A_j|$ for $i \neq j$ (see [5]).

Lemma 2.6 (Dong et al. [5]). Let $K(n_1, n_2)$ be a complete bipartite graph with partite sets A_1 and A_2 such that $|A_i| = n_i$ for i = 1, 2. If $\min \{n_1, n_2\} \ge s + 2$, then every $K^{-K_{1,s}}(A_i, A_j)$ is χ -unique, where $i \neq j$ and i, j = 1, 2.

Let $G = K(n_1, n_2, n_3, n_4, n_5)$ be a complete 5-partite graph with partite sets $A_i(i = 1, 2, ..., 5)$ such that $|A_i| = n_i$. Let $\langle A_i \cup A_j \rangle$ be the subgraph of G induced by $A_i \cup A_j$, where $i \neq j$ and $i, j \in \{1, 2, 3, 4, 5\}$. By $K_{i,j}^{-K_{1,s}}(n_1, n_2, n_3, n_4, n_5)$, we denote the graph obtained from $K(n_1, n_2, n_3, n_4, n_5)$ by deleting a set of s edges that induce a $K_{1,s}$ with its center in A_i and all its end vertices are in A_j . Note that $K_{i,l}^{-K_{1,s}}(n_1, n_2, n_3, n_4, n_5) = K_{j,l}^{-K_{1,s}}(n_1, n_2, n_3, n_4, n_5)$ and $K_{l,i}^{-K_{1,s}}(n_1, n_2, n_3, n_4, n_5) = K_{j,l}^{-K_{1,s}}(n_1, n_2, n_3, n_4, n_5)$ for $n_i = n_j$ and $l \neq i, j$.

Lemma 2.7 (Zhao et al. [6]). Suppose that min $\{n_1, n_2, n_3, n_4, n_5\} \geq s + 2$ and $n_i \neq n_j$ for $i \neq j$, i, j = 1, 2, 3, 4, 5, then $P(K_{i,j}^{-K_{1,s}}(n_1, n_2, n_3, n_4, n_5), \lambda) \neq P(K_{i,i}^{-K_{1,s}}(n_1, n_2, n_3, n_4, n_5), \lambda).$

3 Classification

In this section, we shall characterize certain complete 5-partite graph $G = K(n_1, n_2, n_3, n_4, n_5)$ according to the number of 6-independent partitions of G where $n_1 + n_2 + n_3 + n_4 + n_5 = 5n + 1, n \ge 1$.

Theorem 3.1. Let $G = K(n_1, n_2, n_3, n_4, n_5)$ be a complete 5-partite graph such that $n_1 + n_2 + n_3 + n_4 + n_5 = 5n + 1, n \ge 1$. Define $\theta(G) = [\alpha(G, 6) - 2^{n+1} - 2^n + 5]/2^{n-2}$. Then

(i) $\theta(G) \ge 0;$

(ii) $\theta(G) = 0$ if and only if G = K(n, n, n, n, n+1);

(*iii*) $\theta(G) = 1$ *if and only if* G = K(n - 1, n, n, n + 1, n + 1);

- (iv) $\theta(G) = 2$ if and only if G = K(n-1, n-1, n+1, n+1, n+1);
- (v) $\theta(G) = 5/2$ if and only if G = K(n-2, n, n+1, n+1, n+1);
- (vi) $\theta(G) = 3$ if and only if G = K(n-1, n, n, n, n+2);
- (vii) $\theta(G) \ge 4$ if and only if G is not a graph appeared in (ii)–(vi);

Proof. For a complete 5-partite graph H_1 with 5n + 1 vertices, we can construct a sequence of complete 5-partite graphs with 5n + 1 vertices, say $H_1, H_2, ..., H_t$, such that H_i is an improvement of H_{i-1} for each i = 2, ..., t, and $H_t = K(n, n, n, n, n + 1)$. By Lemma 2.3, $\alpha(H_{i-1}, 6) - \alpha(H_i, 6) > 0$. So $\theta(H_{i-1}) - \theta(H_i) > 0$, which implies $\theta(G) \ge \theta(H_t) = \theta(K(n, n, n, n, n + 1))$. From Lemma 2.2 and by a simple calculation, we have $\theta(K(n, n, n, n, n + 1)) = 0$. Thus, (ii) is true.

Since $H_t = K(n, n, n, n, n + 1)$ and H_t is an improvement of H_{t-1} , it is not hard to see that $H_{t-1} \in \{M_0, M_3\}$, where $M_0 = K(n - 1, n, n, n + 1, n + 1)$ and $M_3 = K(n - 1, n, n, n, n + 2)$. Hence, by Lemma 2.2, we have $\theta(M_0) = 1$, $\theta(M_3) = 3$. Note that H_{t-1} is an improvement of H_{t-2} , one can see that $H_{t-2} \in \{M_i | i = 1, 2, ..., 7\}$, where M_i and $\theta(M_i)$ are shown in Table 1. Chromaticity of Complete 5-Partite Graphs with Certain Star ...

M_i	Graphs H_{t-2}	$\theta(M_i)$
M_1	K(n-1, n-1, n+1, n+1, n+1)	2
M_2	K(n-2, n, n+1, n+1, n+1)	5/2
M_3	K(n-1, n, n, n, n+2)	3
M_4	K(n-1, n-1, n, n+1, n+2)	4
M_5	K(n-2, n, n, n+1, n+2)	9/2
M_6	K(n-1, n-1, n, n, n+3)	10
M_7	K(n-2, n, n, n, n+3)	21/2

Table 1: H_{t-2} and its θ -values

R _i	Graphs H_{t-3}	$\theta(R_i)$
R_1	K(n-3, n+1, n+1, n+1, n+1)	17/4
R_2	K(n-2, n-1, n+1, n+1, n+2)	11/2
R_3	K(n-3, n, n+1, n+1, n+2)	25/4

Table 2: H_{t-3} and its θ -values

To complete the proof of the theorem, we need only determine all complete 5-partite graph G with 5n + 1 vertices such that $\theta(G) < 4$. By Lemma 2.3, $\theta(H_{t-3}) > 4$ for each H_{t-3} if $H_{t-2} \in \{M_i | i = 4, 5, 6, 7\}$. All graphs H_{t-3} and its θ -values are listed in Table 2 when $H_{t-2} \in \{M_i | i = 1, 2, 3\}$.

It is easy to obtain the following: If $H_{t-2} = M_1$, then $H_{t-3} \in \{M_2, M_4, R_2\}$; $H_{t-3} \in \{M_5, R_1, R_2, R_3\}$ if $H_{t-2} = M_2$ and $H_{t-3} \in \{M_i | i = 4, 5, 6, 7\}$ if $H_{t-2} = M_3$. Thus, from Lemma 2.2, Table 1, Table 2 and the above arguments, we conclude that the theorem holds.

4 Chromatically Closed 5-Partite Graphs

In this section, we obtained several χ -closed families of graphs in $\mathcal{K}^{-s}(n_1, n_2, n_3, n_4, n_5)$.

Theorem 4.1.

- (i) If $n \ge s+2$, then the family of graphs $\mathcal{K}^{-s}(n, n, n, n, n+1)$ is χ -closed;
- (ii) If $n \ge s+3$, then the family of graphs $\mathcal{K}^{-s}(n-1, n, n, n+1, n+1)$ is χ -closed;

- (iii) If $n \ge s+3$, then the family of graphs $\mathcal{K}^{-s}(n-1, n-1, n+1, n+1, n+1)$ is χ -closed;
- (iv) If $n \ge s + 4$, then the family of graphs $\mathcal{K}^{-s}(n-2, n, n+1, n+1, n+1)$ is χ -closed;
- (v) If $n \ge s+3$, then the family of graphs $\mathcal{K}^{-s}(n-1, n, n, n, n+2)$ is χ -closed.

Proof. The proof of each statement of the theorem is similar. So, we only give a proof for (iii) and omit the proofs of the others. For convenience, let $G_1 = K(n, n, n, n, n+1)$, $G_2 = K(n-1, n, n, n+1, n+1)$ and $G_3 = K(n-1, n-1, n+1, n+1)$. Suppose that $H \sim G_3 - S$. Then it suffices to show that $H \in \mathcal{K}^{-s}(n-1, n-1, n+1, n+1, n+1)$. By Lemma 2.4, there is a complete 5-partite graph $F = K(y_1, y_2, y_3, y_4, y_5)$ and a set S' for some s' edges in F such that H = F - S' and $|S'| = s' = q(F) - q(G_3) + s \ge 0$. Clearly, $\alpha(F - S', 6) = \alpha(G_3 - S, 6)$.

By definition, we have

$$\alpha(G_3 - S, 6) = \alpha(G_3, 6) + \alpha'(G_3 - S)$$
 with $s \le \alpha'(G_3 - S) \le 2^s - 1$

and

$$\alpha(F - S', 6) = \alpha(F, 6) + \alpha'(F - S').$$

So

$$\alpha(F - S', 6) - \alpha(G_3 - S, 6) = \alpha(F, 6) - \alpha(G_3, 6) + \alpha'(F - S') - \alpha'(G_3 - S)$$
(4.1)

By Theorem 3.1, $\alpha(F, 6) - \alpha(G_3, 6) = 2^{n-2}(\theta(F) - \theta(G_3))$. We distinguish the following two cases.

Case 1: $\alpha(F, 6) < \alpha(G_3, 6)$. By Theorem 3.1, then $F \in \{G_1, G_2\}$. If $F = G_1$, we have $\alpha(G_1, 6) - \alpha(G_3, 6) = -2^{n-1}$, and $q(G_1) - q(G_3) = 2$. From Equation (4.1) above, we have

$$\alpha(G_1 - S', 6) - \alpha(G_3 - S, 6) = -2^{n-1} + \alpha'(F - S') - \alpha'(G_3 - S).$$

Note that $n \ge s+3$ and $s' = q(G_1) - q(G_3) + s = s+2 \le n-1$. By Lemma 2.5, $0 \le s' \le \alpha'(F - S') \le 2^{s'} - 1 \le 2^{n-1} - 1$, since $0 \le s \le \alpha'(G_3 - S) \le 2^s - 1$, we have

$$\alpha(G_1 - S', 6) - \alpha(G_3 - S, 6) \le -2^{n-1} + \alpha'(F - S') - \alpha'(G_3 - S) \le -1,$$

which contradicts $\alpha(F - S', 6) = \alpha(G_3 - S, 6)$.

If $F = G_2$, by Theorem 3.1, we have $\alpha(G_2, 6) - \alpha(G_3, 6) = -2^{n-2}$, and $q(G_2) - q(G_3) = 1$. From Equation (4.1) above, we have

$$\alpha(G_2 - S', 6) - \alpha(G_3 - S, 6) = -2^{n-2} + \alpha'(F - S') - \alpha'(G_3 - S).$$

Chromaticity of Complete 5-Partite Graphs with Certain Star ...

Note that $n \ge s+3$ and $s' = q(G_2) - q(G_3) + s = s+1 \le n-2$. By Lemma 2.5, $0 \le s' \le \alpha'(F - S') \le 2^{s'} - 1 \le 2^{n-2} - 1$, since $0 \le s \le \alpha'(G_3 - S) \le 2^s - 1$, we have

$$\alpha(G_2 - S', 6) - \alpha(G_3 - S, 6) \le -2^{n-2} + \alpha'(F - S') - \alpha'(G_3 - S) \le -1,$$

which contradicts $\alpha(F - S', 6) = \alpha(G_3 - S, 6)$.

Case 2: $\alpha(F,6) > \alpha(G_3,6)$. By Theorem 3.1, $F \neq G_i$, where i = 1, 2, 3 and we have $\alpha(F,6) - \alpha(G_3,6) \geq 2^{n-3}$. Hence we have $\alpha(F-S',6) - \alpha(G_3-S,6) \geq 2^{n-3} + \alpha'(F-S') - \alpha'(G_3-S)$.

Since $n-3 \geq s, 0 \leq \alpha'(F-S')$ and $0 \leq s \leq \alpha'(G_3-S) \leq 2^s-1$, we have $\alpha(F-S',6) - \alpha(G_3-S,6) \geq 1$, contradicting the fact that $\alpha(F-S',6) = \alpha(G_3-S,6)$. So, from the above two cases, we conclude that $\theta(F) - \theta(G_3) = 0$. Thus $F = G_3$ and S = S'. Therefore, $H \in \mathcal{K}^{-s}(n-1, n-1, n+1, n+1)$.

5 Chromatically Unique 5-Partite Graphs

In this section, we first study the chromatically unique 5-partite graphs with 5n + 1 vertices and a set S of s edges deleted where the deleted edges induce a star $K_{1,s}$.

Theorem 5.1. If $n \ge s+2$, then the graphs $K_{i,j}^{-K_{1,s}}(n, n, n, n, n+1)$ are χ -unique for each $(i, j) \in \{(1, 2), (1, 5), (5, 1)\}.$

Proof. By Lemma 2.5 and Theorem 4.1(i), we know that $K_{i,j}^{-K_{1,s}}(n, n, n, n, n+1) = \{K_{i,j}^{-K_{1,s}}(n, n, n, n, n+1) | (i, j) \in \{(1, 2), (1, 5), (5, 1)\}\}$ is χ -closed for $n \ge s + 2$. Note that

$$\begin{split} t(K_{i,j}^{-K_{1,s}}(n,n,n,n,n+1)) &= t(K(n,n,n,n,n+1)) - 3sn \text{ for } (i,j) \in \{(1,5),(5,1)\} \\ &\quad t(K_{1,2}^{-K_{1,s}}(n,n,n,n,n+1)) = t(K(n,n,n,n,n+1)) - s(3n+1). \end{split}$$

By Lemma 2.1, we have $K_{1,2}^{-K_{1,s}}(n, n, n, n, n+1)$ is chromatically unique. From Lemma 2.7, we find that $P(K_{1,5}^{-K_{1,s}}(n, n, n, n, n+1), \lambda) \neq P(K_{5,1}^{-K_{1,s}}(n, n, n, n, n+1), \lambda)$. Hence, the graphs $K_{i,j}^{-K_{1,s}}(n, n, n, n, n+1)$ is χ -unique where $n \geq s+2$ for each $(i, j) \in \{(1, 2), (1, 5), (5, 1)\}$.

Theorem 5.2. If $n \ge s+3$, then the graphs $K_{i,j}^{-K_{1,s}}(n-1,n,n,n+1,n+1)$ are χ -unique for each $(i,j) \in \{(1,2), (2,1), (2,4), (4,2), (4,5)\}.$

Proof. Let $F \in \{K_{i,j}^{-K_{1,s}}(n-1, n, n, n+1, n+1) \mid (i, j) = \{(1, 2), (2, 1), (2, 4), (4, 2), (4, 5)\}\}$ and $H \sim F$. By Theorem 4.1(ii), $H \in \mathcal{K}^{-s}(n-1, n, n, n+1, n+1)$.

Without loss of generality, we assume $H \sim K_{1,2}^{-K_{1,s}}(n-1, n, n, n+1, n+1)$, where (i, j) = (1, 2). Since

$$\alpha(H, 6) = \alpha(K_{1,2}^{-K_{1,s}}(n-1, n, n, n+1, n+1), 6)$$

= $\alpha(K(n-1, n, n, n+1, n+1), 6) + 2^s - 1,$

from Lemma 2.5, we know that $H \in \{K_{i,j}^{-K_{1,s}}(n-1,n,n,n+1,n+1) \mid i \neq j, i, j = 1, 2, 3, 4, 5\}$. It easy to see that $H \in \{K_{i,j}^{-K_{1,s}}(n-1,n,n,n+1,n+1) \mid i \neq j, i, j = 1, 2, 3, 4, 5\} = \{K_{i,j}^{-K_{1,s}}(n-1,n,n,n+1,n+1) \mid (i,j) \in \{(1,2), (2,1), (1,4), (4,1), (2,3), (2,4), (4,2), (4,5)\}\}.$

Now let's determine the numbers of triangles in H and F. Denote by $t_{i,j}$ the number of triangles in $K_{i,j}^{-K_{1,s}}(n-1,n,n,n+1,n+1)$. Then we obtain that

$$\begin{split} t_{1,2} &= t_{2,1} = t(K(n-1,n,n,n+1,n+1)) - s(3n+2), \\ t_{1,4} &= t_{4,1} = t_{2,3} = t(K(n-1,n,n,n+1,n+1)) - s(3n+1), \\ t_{2,4} &= t_{4,2} = t(K(n-1,n,n,n+1,n+1)) - 3ns, \\ t_{4,5} &= t(K(n-1,n,n,n+1,n+1)) - s(3n-1). \end{split}$$

Recalling $F \in \{K_{i,j}^{-K_{1,s}}(n-1,n,n,n+1,n+1) \mid (i,j) \in \{(1,2),(2,1),(2,4),(4,2),(4,5)\}\}$ and t(H) = t(F), we have

$$H, F \in \{K_{i,j}^{-K_{1,s}}(n-1, n, n, n+1, n+1) \mid (i,j) \in \{(1,2), (2,1)\}\}$$

or

$$H, F \in \{K_{i,j}^{-K_{1,s}}(n-1, n, n, n+1, n+1) \mid (i,j) \in \{(2,4), (4,2)\}\}.$$

It follows from Lemma 2.7 that

$$\begin{split} &P(K_{1,2}^{-K_{1,s}}(n-1,n,n,n+1,n+1),\lambda) \neq P(K_{2,1}^{-K_{1,s}}(n-1,n,n,n+1,n+1),\lambda); \\ &P(K_{2,4}^{-K_{1,s}}(n-1,n,n,n+1,n+1),\lambda) \neq P(K_{4,2}^{-K_{1,s}}(n-1,n,n,n+1,n+1),\lambda). \end{split}$$

Hence, the graphs $K_{i,j}^{-K_{1,s}}(n-1,n,n,n+1,n+1)$ are χ -unique where $n \ge s+3$ for each $(i,j) \in \{(1,2), (2,1), (2,4), (4,2), (4,5)\}$.

Similarly to the proofs of Theorems 5.1 and 5.2, we can prove Theorems 5.3, 5.4 and 5.5.

Theorem 5.3. If $n \ge s+3$, then the graphs $K_{i,j}^{-K_{1,s}}(n-1, n-1, n+1, n+1, n+1)$ are χ -unique for each $(i, j) \in \{(1, 2), (1, 3), (3, 1), (3, 4)\}$.

Theorem 5.4. If $n \ge s + 4$, then the graphs $K_{i,j}^{-K_{1,s}}(n-2, n, n+1, n+1, n+1)$ are χ -unique for each $(i, j) \in \{(1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2), (3, 4)\}$.

Theorem 5.5. If $n \ge s+3$, then the graphs $K_{i,j}^{-K_{1,s}}(n-1,n,n,n+2)$ are χ -unique for each $(i,j) \in \{(1,2), (2,1), (1,5), (5,1), (2,5), (5,2), (2,3)\}.$

Let $K_{i,j}^{-sK_2}(n_1, n_2, n_3, n_4, n_5)$ denotes the graph obtained from $K(n_1, n_2, n_3, n_4, n_5)$ by deleting a set of s edges that forms a matching in $\langle A_i \cup A_j \rangle$. We now investigate the chromatically unique 5-partite graphs with 5n + 1 vertices and a set S of s edges deleted where the deleted edges induce a matching sK_2 .

Theorem 5.6. If $n \ge s+3$, then the graphs $K_{1,2}^{-sK_2}(n-1, n-1, n+1, n+1, n+1)$ are χ -unique.

Proof. Let $F \sim K_{1,2}^{-sK_2}(n-1,n-1,n+1,n+1,n+1)$. It is sufficient to prove that $F = K_{1,2}^{-sK_2}(n-1,n-1,n+1,n+1,n+1)$. By Theorem 4.1(iii) and Lemma 2.5, we have $F \in \mathcal{K}^{-s}(n-1,n-1,n+1,n+1,n+1)$ and $\alpha'(F) = s$. Let F = G - S where G = K(n-1,n-1,n+1,n+1,n+1). Next we consider the number of triangles of F. Let $e_i \in S$ and $t(e_i)$ be the number of triangles in G containing the edge e_i . Then one can see that $t(e_i) \leq 3n+3$. As $n-1 \leq n-1 < n+1 \leq n+1 \leq n+1$, we know that $t(e_i) = 3n+3$ if and only if e_i is an edge of the subgraph $\langle A_1 \cup A_2 \rangle$ in G. So,

$$t(F) \ge t(G) - s(3n+3);$$

where the equality holds if and only if each edge e_i in S is an edge of the subgraph $\langle A_1 \cup A_2 \rangle$ in G. Note that t(F) = t(G) - s(3n+3) and $\alpha'(F) = s$. By Lemma 2.5, we know that $F = K_{1,2}^{-sK_2}(n-1, n-1, n+1, n+1, n+1)$. This completes the proof.

Similarly to the proof of Theorem 5.6, we can prove Theorem 5.7.

Theorem 5.7. If $n \ge s + 4$, then the graphs $K_{1,2}^{-sK_2}(n-2, n, n+1, n+1, n+1)$ are χ -unique.

We end this paper with the following two open problems.

- 1. Study the chromaticity of the graphs $K_{i,j}^{-K_{1,s}}(n-1, n, n, n+1, n+1)$ for each $(i, j) \in \{(1, 4), (4, 1), (2, 3)\}.$
- 2. Study the chromaticity of the graphs $K_{1,2}^{-sK_2}(n,n,n,n+1)$, $K_{1,2}^{-sK_2}(n-1,n,n,n+1,n+1)$ and $K_{1,2}^{-sK_2}(n-1,n,n,n+2)$.

Acknowledgements : We would like to thank the referees for his comments and suggestions on the manuscript. This work was supported by Universiti Sains Malaysia, Penang, Malaysia under Research Incentive Grant 304/JNP/600004.

References

- F.M. Dong, K.M. Koh, K.L. Teo, Chromatic Polynomials and Chromaticity of Graphs, Word Scientific, 2005.
- [2] K.M. Koh, K.L. Teo, The search for chromatically unique graphs, Graphs Combin. 6 (1990) 259–285.

- [3] K.M. Ko, K.L. Teo, The search for chromatically unique graphs II, Discrete Math. 172 (1997) 59–78.
- [4] G.L. Chia, B.H. Goh, K.M. Koh, The chromaticity of some families of complete tripartite graphs, Scientia, Series A: Math. Sci. 2 (1988) 27–37.
- [5] F.M. Dong, K.M. Koh, K.L. Teo, Sharp bounds for the number of 3independent partition and chromaticity of bipartite graphs, J. Graph Theory 37 (2001) 48–77.
- [6] H.X. Zhao, R.Y. Liu, S.G. Zhang, Classification of Complete 5-Partite Graphs and Chromaticity of 5-Partite Graphs With 5n Vertices, Appl. Math. J.Chinese Univ. Ser. B. 19 (1) (2004) 116–124.
- [7] H.X. Zhao, On the chromaticity of 5-partite graphs with 5n+4 vertices, J. Lanzhou Univ. (Natural Sciences) 40 (3) (2004) 12–16 (in Chinese).
- [8] R.C. Read, W.T. Tutte, Chromatic Polynomials, In: L.W. Beineke and R.J. Wilson, eds. Selected Topics in Graph Theory (II), New York: Academic Press, (1988) 15–42.
- [9] F. Brenti, Expansions of chromatic polynomials and log-concavity, Trans. Amer. Math. Soc. 332 (2) (1992) 729–756.
- [10] J.A. Bondy, U.S.R. Murty, Graph Theory with Application, London: Macmillan, 1976.

(Received 5 May 2011) (Accepted 9 November 2011)

THAI J. MATH. Online @ http://www.math.science.cmu.ac.th/thaijournal