Chromaticity of Complete 5-Partite Graphs with Certain Star or Matching Deleted

Ameen Shaman Ameen ${ }^{\dagger}$, Yee Hock Peng ${ }^{\ddagger}$, Haixing Zhao ${ }^{\S}$, Gee Choon Lau ${ }^{\sharp}$ and Roslan Hasni ${ }^{\dagger}, 1$
${ }^{\dagger}$ School of Mathematical Sciences, Universiti Sains Malaysia 11800 USM, Penang, Malaysia e-mail : amensh66@yahoo.com
${ }^{\ddagger}$ Department of Mathematics, and Institute for Mathematical Research
Universiti Putra Malaysia, 43400 Serdang, Malaysia
e-mail: yhpeng88@yahoo.com
${ }^{\text {§ }}$ Department of Mathematics, Qinghai Normal University
Xining, Qinghai 810008, P.R. China
e-mail : haixingzhao@yahoo.com.cn
${ }^{\sharp}$ Faculty of Computer and Mathematical Sciences
University Teknologi MARA (Segamat Campus), 85010, Johor, Malaysia
e-mail : drlaugc@gmail.com

Abstract

Let $P(G, \lambda)$ be the chromatic polynomial of a graph G. Two graphs G and H are said to be chromatically equivalent, denoted by $G \sim H$, if $P(G, \lambda)=$ $P(H, \lambda)$. We write $[G]=\{H \mid H \sim G\}$. If $[G]=\{G\}$, then G is said to be chromatically unique. In this paper, we first characterize certain complete 5-partite graphs with $5 n+1$ vertices according to the number of 6 -independent partitions of G. Using these results, we investigate the chromaticity of G with certain star or matching deleted. As a by-product, many new families of chromatically unique complete 5 -partite graphs with certain star or matching deleted are obtained.

Keywords : Chromatic polynomial; Chromatically closed; Chromatic uniqueness. 2010 Mathematics Subject Classification : 05C15.

[^0]
1 Introduction

All graphs considered here are simple and finite. For a graph G, let $P(G, \lambda)$ be the chromatic polynomial of G. Two graphs G and H are said to be chromatically equivalent (or simply χ-equivalent), symbolically $G \sim H$, if $P(G, \lambda)=P(H, \lambda)$. The equivalence class determined by G under \sim is denoted by $[G]$. A graph G is chromatically unique (or simply χ-unique) if $H \cong G$ whenever $H \sim G$, i.e, $[G]=\{G\}$ up to isomorphism. For a set \mathcal{G} of graphs, if $[G] \subseteq \mathcal{G}$ for every $G \in \mathcal{G}$, then \mathcal{G} is said to be χ-closed. Many families of χ-unique graphs are known (see [1-3]).

For a graph G, let $V(G), E(G)$ and $t(G)$ be the vertex set, edge set and number of triangles in G, respectively. Let S be a set of s edges in G. Let $G-S$ (or $G-s$) be the graph obtained from G by deleting all edges in S, and by $\langle S\rangle$ the graph induced by S. Let $K\left(n_{1}, n_{2}, \ldots, n_{t}\right)$ be a complete t-partite graph. We denote by $\mathcal{K}^{-s}\left(n_{1}, n_{2}, \ldots, n_{t}\right)$ the family of graphs which are obtained from $K\left(n_{1}, n_{2}, \ldots, n_{t}\right)$ by deleting a set S of some s edges.

In $[2-5]$, one can find many results on the chromatic uniqueness of bipartite and tripartite graphs. Also there are some results on the chromaticity of 4-partite graphs. However, there are very few 5-partite graphs known to be χ-unique, see [6, 7].

Let G be a complete 5 -partite graph with $5 n+1$ vertices. In this paper, we characterize certain complete 5 -partite graphs with $5 n+1$ vertices according to the number of 6 -independent partitions of G. Using these results, we investigate the chromaticity of G with certain star or matching deleted. As a by-product, many new families of chromatically unique complete 5-partite graphs with certain star or matching deleted are obtained.

2 Some Lemmas and Notations

For a graph G and a positive integer r, a partition $\left\{A_{1}, A_{2}, \ldots, A_{r}\right\}$ of $V(G)$, where r is a positive integer, is called an r-independent partition of G if every A_{i} is independent of G. Let $\alpha(G, r)$ denote the number of r-independent partitions of G. Then, we have $P(G, \lambda)=\sum_{r=1}^{p} \alpha(G, r)(\lambda)_{r}$, where $(\lambda)_{r}=\lambda(\lambda-1)(\lambda-$ 2) $\cdots(\lambda-r+1)$ (see [8]). Therefore, $\alpha(G, k)=\alpha(H, k)$ for each $k=1,2, \ldots$, if $G \sim H$.

For a graph G with p vertices, the polynomial $\sigma(G, x)=\sum_{r=1}^{p} \alpha(G, r) x^{r}$ is called the σ-polynomial of G (see [9]). Clearly, $P(G, \lambda)=P(H, \lambda)$ implies that $\sigma(G, x)=\sigma(H, x)$ for any graphs G and H.

For disjoint graphs G and $H, G \cup H$ denotes the disjoint union of G and H. The join of G and H denoted by $G \vee H$ is defined as follows: $V(G \vee H)=V(G) \cup V(H)$; $E(G \vee H)=E(G) \cup E(H) \cup\{x y \mid x \in V(G), y \in V(H)\}$. For notations and terminology not defined here, we refer [10].

Lemma 2.1 (Koh et al. [2], Brenti [9]). Let G and H be two disjoint graphs. Then
(1) $|V(G)|=|V(H)|,|E(G)|=|E(H)|, t(G)=t(H)$ and $\alpha(G, r)=\alpha(H, r)$ for $r=1,2,3, \ldots$, if $G \sim H$;
(2) $\sigma(G \vee H, x)=\sigma(G, x) \sigma(H, x)$.

Lemma 2.2 (Brenti [9]). Let $G=K\left(n_{1}, n_{2}, n_{3}, \ldots, n_{t}\right)$ and $\sigma(G, x)=\sum_{r \geq 1} \alpha(G, r) x^{r}$, then $\alpha(G, r)=0$ for $1 \leq r \leq t-1, \alpha(G, t)=1$ and $\alpha(G, t+1)=\sum_{i=1}^{t} 2^{n_{i}-1}-t$.

Let $x_{1} \leq x_{2} \leq x_{3} \leq x_{4} \leq x_{5}$ be positive integers and $\left\{x_{i_{1}}, x_{i_{2}}, x_{i_{3}}, x_{i_{4}}, x_{i_{5}}\right\}=$ $\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$. If there are two elements $x_{i_{1}}$ and $x_{i_{2}}$ in $\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$ such that $x_{i_{2}}-x_{i_{1}} \geq 2$, then $H^{\prime}=K\left(x_{i_{1}}+1, x_{i_{2}}-1, x_{i_{3}}, x_{i_{4}}, x_{i_{5}}\right\}$ is called an improvement of $H=K\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$.

Lemma 2.3 (Zhao et al. [6]). Suppose $x_{1} \leq x_{2} \leq x_{3} \leq x_{4} \leq x_{5}$ and $H^{\prime}=$ $K\left(x_{i_{1}}+1, x_{i_{2}}-1, x_{i_{3}}, x_{i_{4}}, x_{i_{5}}\right\}$ is an improvement of $H=K\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$, then

$$
\alpha(H, 6)-\alpha\left(H^{\prime}, 6\right)=2^{x_{i_{2}}-2}-2^{x_{i_{1}}-1} \geq 2^{x_{i_{1}}-1}
$$

For a graph G, let $q(G)$ be the number of edges in G.
Lemma 2.4 (Zhao et al. [6]). Let $G=K\left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}\right)$ and S be a set of some s edges of G. If $H \sim G-S$, then there is a graph $F=K\left(y_{1}, y_{2}, y_{3}, y_{4}, y_{5}\right)$ and a subset S^{\prime} of $E(F)$ of some s^{\prime} edges of F such that $H=F-S^{\prime}$ and $\left|S^{\prime}\right|=$ $s^{\prime}=q(F)-q(G)+s$.

Let $G=K\left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}\right)$. For a graph $H=G-S$, where S is a set of some s edges of G, define $\alpha^{\prime}(H)=\alpha(H, 6)-\alpha(G, 6)$. Clearly, $\alpha^{\prime}(H) \geq 0$.

Lemma 2.5 (Zhao [7]). Let $G=K\left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}\right)$. Suppose that min $\left\{n_{i} \mid i=\right.$ $1,2,3,4,5\} \geq s+1 \geq 1$ and $H=G-S$, where S is a set of some s edges of G, then

$$
s \leq \alpha^{\prime}(H)=\alpha(H, 6)-\alpha(G, 6) \leq 2^{s}-1
$$

$\alpha^{\prime}(H)=s$ iff the set of end-vertices of any $r \geq 2$ edges in S is not independent in H, and $\alpha^{\prime}(H)=2^{s}-1$ iff S induces a star $K_{1, s}$ and all vertices of $K_{1, s}$ other than its center belong to a same A_{i}.

Let $K\left(A_{1}, A_{2}\right)$ be a complete bipartite graph with partite sets A_{1} and A_{2}. We denote by $K^{-K_{1, s}}\left(A_{i}, A_{j}\right)$ the graph obtained from $K\left(A_{i}, A_{j}\right)$ by deleting s edges that induce a star with its center in A_{i}. Note that $K^{-K_{1, s}}\left(A_{i}, A_{j}\right) \neq$ $K^{-K_{1, s}}\left(A_{j}, A_{i}\right)$ if $\left|A_{i}\right| \neq\left|A_{j}\right|$ for $i \neq j$ (see [5]).

Lemma 2.6 (Dong et al. [5]). Let $K\left(n_{1}, n_{2}\right)$ be a complete bipartite graph with partite sets A_{1} and A_{2} such that $\left|A_{i}\right|=n_{i}$ for $i=1,2$. If $\min \left\{n_{1}, n_{2}\right\} \geq s+2$, then every $K^{-K_{1, s}}\left(A_{i}, A_{j}\right)$ is χ-unique, where $i \neq j$ and $i, j=1,2$.

Let $G=K\left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}\right)$ be a complete 5 -partite graph with partite sets $A_{i}(i=1,2, \ldots, 5)$ such that $\left|A_{i}\right|=n_{i}$. Let $\left\langle A_{i} \cup A_{j}\right\rangle$ be the subgraph of G induced by $A_{i} \cup A_{j}$, where $i \neq j$ and $i, j \in\{1,2,3,4,5\}$. By $K_{i, j}^{-K_{1, s}}\left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}\right)$, we denote the graph obtained from $K\left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}\right)$ by deleting a set of s edges that induce a $K_{1, s}$ with its center in A_{i} and all its end vertices are in A_{j}. Note that $K_{i, l}^{-K_{1, s}}\left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}\right)=K_{j, l}^{-K_{1, s}}\left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}\right)$ and $K_{l, i}^{-K_{1, s}}\left(n_{1}, n_{2}, n_{3}, n_{4}\right.$, $\left.n_{5}\right)=K_{l, j}^{-K_{1, s}}\left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}\right)$ for $n_{i}=n_{j}$ and $l \neq i, j$.

Lemma 2.7 (Zhao et al. [6]). Suppose that $\min \left\{n_{1}, n_{2}, n_{3}, n_{4}, n_{5}\right\} \geq s+2$ and $n_{i} \neq n_{j}$ for $i \neq j, i, j=1,2,3,4,5$, then $P\left(K_{i, j}^{-K_{1, s}}\left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}\right), \lambda\right) \neq$ $P\left(K_{j, i}^{-K_{1, s}}\left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}\right), \lambda\right)$.

3 Classification

In this section, we shall characterize certain complete 5 -partite graph $G=$ $K\left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}\right)$ according to the number of 6 -independent partitions of G where $n_{1}+n_{2}+n_{3}+n_{4}+n_{5}=5 n+1, n \geq 1$.

Theorem 3.1. Let $G=K\left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}\right)$ be a complete 5-partite graph such that $n_{1}+n_{2}+n_{3}+n_{4}+n_{5}=5 n+1, n \geq 1$. Define $\theta(G)=\left[\alpha(G, 6)-2^{n+1}-2^{n}+\right.$ 5] $/ 2^{n-2}$. Then
(i) $\theta(G) \geq 0$;
(ii) $\theta(G)=0$ if and only if $G=K(n, n, n, n, n+1)$;
(iii) $\theta(G)=1$ if and only if $G=K(n-1, n, n, n+1, n+1)$;
(iv) $\theta(G)=2$ if and only if $G=K(n-1, n-1, n+1, n+1, n+1)$;
(v) $\theta(G)=5 / 2$ if and only if $G=K(n-2, n, n+1, n+1, n+1)$;
(vi) $\theta(G)=3$ if and only if $G=K(n-1, n, n, n, n+2)$;
(vii) $\theta(G) \geq 4$ if and only if G is not a graph appeared in (ii)-(vi);

Proof. For a complete 5-partite graph H_{1} with $5 n+1$ vertices, we can construct a sequence of complete 5 -partite graphs with $5 n+1$ vertices, say $H_{1}, H_{2}, \ldots, H_{t}$, such that H_{i} is an improvement of H_{i-1} for each $i=2, \ldots, t$, and $H_{t}=K(n, n, n, n, n+$ 1). By Lemma 2.3, $\alpha\left(H_{i-1}, 6\right)-\alpha\left(H_{i}, 6\right)>0$. So $\theta\left(H_{i-1}\right)-\theta\left(H_{i}\right)>0$, which implies $\theta(G) \geq \theta\left(H_{t}\right)=\theta(K(n, n, n, n, n+1))$. From Lemma 2.2 and by a simple calculation, we have $\theta(K(n, n, n, n, n+1))=0$. Thus, (ii) is true.

Since $H_{t}=K(n, n, n, n, n+1)$ and H_{t} is an improvement of H_{t-1}, it is not hard to see that $H_{t-1} \in\left\{M_{0}, M_{3}\right\}$, where $M_{0}=K(n-1, n, n, n+1, n+1)$ and $M_{3}=K(n-1, n, n, n, n+2)$. Hence, by Lemma 2.2, we have $\theta\left(M_{0}\right)=1$, $\theta\left(M_{3}\right)=3$. Note that H_{t-1} is an improvement of H_{t-2}, one can see that $H_{t-2} \in$ $\left\{M_{i} \mid i=1,2, \ldots, 7\right\}$, where M_{i} and $\theta\left(M_{i}\right)$ are shown in Table 1.

M_{i}	Graphs H_{t-2}	$\theta\left(M_{i}\right)$
M_{1}	$K(n-1, n-1, n+1, n+1, n+1)$	2
M_{2}	$K(n-2, n, n+1, n+1, n+1)$	$5 / 2$
M_{3}	$K(n-1, n, n, n, n+2)$	3
M_{4}	$K(n-1, n-1, n, n+1, n+2)$	4
M_{5}	$K(n-2, n, n, n+1, n+2)$	$9 / 2$
M_{6}	$K(n-1, n-1, n, n, n+3)$	10
M_{7}	$K(n-2, n, n, n, n+3)$	$21 / 2$

Table 1: H_{t-2} and its θ-values

R_{i}	Graphs H_{t-3}	$\theta\left(R_{i}\right)$
R_{1}	$K(n-3, n+1, n+1, n+1, n+1)$	$17 / 4$
R_{2}	$K(n-2, n-1, n+1, n+1, n+2)$	$11 / 2$
R_{3}	$K(n-3, n, n+1, n+1, n+2)$	$25 / 4$

Table 2: H_{t-3} and its θ-values

To complete the proof of the theorem, we need only determine all complete 5 -partite graph G with $5 n+1$ vertices such that $\theta(G)<4$. By Lemma 2.3, $\theta\left(H_{t-3}\right)>4$ for each H_{t-3} if $H_{t-2} \in\left\{M_{i} \mid i=4,5,6,7\right\}$. All graphs H_{t-3} and its θ-values are listed in Table 2 when $H_{t-2} \in\left\{M_{i} \mid i=1,2,3\right\}$.

It is easy to obtain the following: If $H_{t-2}=M_{1}$, then $H_{t-3} \in\left\{M_{2}, M_{4}, R_{2}\right\}$; $H_{t-3} \in\left\{M_{5}, R_{1}, R_{2}, R_{3}\right\}$ if $H_{t-2}=M_{2}$ and $H_{t-3} \in\left\{M_{i} \mid i=4,5,6,7\right\}$ if $H_{t-2}=$ M_{3}. Thus, from Lemma 2.2, Table 1, Table 2 and the above arguments, we conclude that the theorem holds.

4 Chromatically Closed 5-Partite Graphs

In this section, we obtained several χ-closed families of graphs in $\mathcal{K}^{-s}\left(n_{1}, n_{2}, n_{3}\right.$, $\left.n_{4}, n_{5}\right)$.

Theorem 4.1.

(i) If $n \geq s+2$, then the family of graphs $\mathcal{K}^{-s}(n, n, n, n, n+1)$ is χ-closed;
(ii) If $n \geq s+3$, then the family of graphs $\mathcal{K}^{-s}(n-1, n, n, n+1, n+1)$ is χ-closed;
(iii) If $n \geq s+3$, then the family of graphs $\mathcal{K}^{-s}(n-1, n-1, n+1, n+1, n+1)$ is χ-closed;
(iv) If $n \geq s+4$, then the family of graphs $\mathcal{K}^{-s}(n-2, n, n+1, n+1, n+1)$ is χ-closed;
(v) If $n \geq s+3$, then the family of graphs $\mathcal{K}^{-s}(n-1, n, n, n, n+2)$ is χ-closed.

Proof. The proof of each statement of the theorem is similar. So, we only give a proof for (iii) and omit the proofs of the others. For convenience, let $G_{1}=$ $K(n, n, n, n, n+1), G_{2}=K(n-1, n, n, n+1, n+1)$ and $G_{3}=K(n-1, n-$ $1, n+1, n+1, n+1)$. Suppose that $H \sim G_{3}-S$. Then it suffices to show that $H \in \mathcal{K}^{-s}(n-1, n-1, n+1, n+1, n+1)$. By Lemma 2.4, there is a complete 5-partite graph $F=K\left(y_{1}, y_{2}, y_{3}, y_{4}, y_{5}\right)$ and a set S^{\prime} for some s^{\prime} edges in F such that $H=F-S^{\prime}$ and $\left|S^{\prime}\right|=s^{\prime}=q(F)-q\left(G_{3}\right)+s \geq 0$. Clearly, $\alpha\left(F-S^{\prime}, 6\right)=$ $\alpha\left(G_{3}-S, 6\right)$.

By definition, we have

$$
\alpha\left(G_{3}-S, 6\right)=\alpha\left(G_{3}, 6\right)+\alpha^{\prime}\left(G_{3}-S\right) \quad \text { with } \quad s \leq \alpha^{\prime}\left(G_{3}-S\right) \leq 2^{s}-1
$$

and

$$
\alpha\left(F-S^{\prime}, 6\right)=\alpha(F, 6)+\alpha^{\prime}\left(F-S^{\prime}\right) .
$$

So

$$
\begin{equation*}
\alpha\left(F-S^{\prime}, 6\right)-\alpha\left(G_{3}-S, 6\right)=\alpha(F, 6)-\alpha\left(G_{3}, 6\right)+\alpha^{\prime}\left(F-S^{\prime}\right)-\alpha^{\prime}\left(G_{3}-S\right) \tag{4.1}
\end{equation*}
$$

By Theorem 3.1, $\alpha(F, 6)-\alpha\left(G_{3}, 6\right)=2^{n-2}\left(\theta(F)-\theta\left(G_{3}\right)\right)$. We distinguish the following two cases.

Case 1: $\alpha(F, 6)<\alpha\left(G_{3}, 6\right)$. By Theorem 3.1, then $F \in\left\{G_{1}, G_{2}\right\}$. If $F=G_{1}$, we have $\alpha\left(G_{1}, 6\right)-\alpha\left(G_{3}, 6\right)=-2^{n-1}$, and $q\left(G_{1}\right)-q\left(G_{3}\right)=2$. From Equation (4.1) above, we have

$$
\alpha\left(G_{1}-S^{\prime}, 6\right)-\alpha\left(G_{3}-S, 6\right)=-2^{n-1}+\alpha^{\prime}\left(F-S^{\prime}\right)-\alpha^{\prime}\left(G_{3}-S\right) .
$$

Note that $n \geq s+3$ and $s^{\prime}=q\left(G_{1}\right)-q\left(G_{3}\right)+s=s+2 \leq n-1$. By Lemma 2.5, $0 \leq s^{\prime} \leq \alpha^{\prime}\left(F-S^{\prime}\right) \leq 2^{s^{\prime}}-1 \leq 2^{n-1}-1$, since $0 \leq s \leq \alpha^{\prime}\left(G_{3}-S\right) \leq 2^{s}-1$, we have

$$
\alpha\left(G_{1}-S^{\prime}, 6\right)-\alpha\left(G_{3}-S, 6\right) \leq-2^{n-1}+\alpha^{\prime}\left(F-S^{\prime}\right)-\alpha^{\prime}\left(G_{3}-S\right) \leq-1,
$$

which contradicts $\alpha\left(F-S^{\prime}, 6\right)=\alpha\left(G_{3}-S, 6\right)$.
If $F=G_{2}$, by Theorem 3.1, we have $\alpha\left(G_{2}, 6\right)-\alpha\left(G_{3}, 6\right)=-2^{n-2}$, and $q\left(G_{2}\right)-q\left(G_{3}\right)=1$. From Equation (4.1) above, we have

$$
\alpha\left(G_{2}-S^{\prime}, 6\right)-\alpha\left(G_{3}-S, 6\right)=-2^{n-2}+\alpha^{\prime}\left(F-S^{\prime}\right)-\alpha^{\prime}\left(G_{3}-S\right) .
$$

Note that $n \geq s+3$ and $s^{\prime}=q\left(G_{2}\right)-q\left(G_{3}\right)+s=s+1 \leq n-2$. By Lemma 2.5, $0 \leq s^{\prime} \leq \alpha^{\prime}\left(F-S^{\prime}\right) \leq 2^{s^{\prime}}-1 \leq 2^{n-2}-1$, since $0 \leq s \leq \alpha^{\prime}\left(G_{3}-S\right) \leq 2^{s}-1$, we have

$$
\alpha\left(G_{2}-S^{\prime}, 6\right)-\alpha\left(G_{3}-S, 6\right) \leq-2^{n-2}+\alpha^{\prime}\left(F-S^{\prime}\right)-\alpha^{\prime}\left(G_{3}-S\right) \leq-1
$$

which contradicts $\alpha\left(F-S^{\prime}, 6\right)=\alpha\left(G_{3}-S, 6\right)$.
Case 2: $\alpha(F, 6)>\alpha\left(G_{3}, 6\right)$. By Theorem 3.1, $F \neq G_{i}$, where $i=1,2,3$ and we have $\alpha(F, 6)-\alpha\left(G_{3}, 6\right) \geq 2^{n-3}$. Hence we have $\alpha\left(F-S^{\prime}, 6\right)-\alpha\left(G_{3}-S, 6\right) \geq$ $2^{n-3}+\alpha^{\prime}\left(F-S^{\prime}\right)-\alpha^{\prime}\left(G_{3}-S\right)$.

Since $n-3 \geq s, 0 \leq \alpha^{\prime}\left(F-S^{\prime}\right)$ and $0 \leq s \leq \alpha^{\prime}\left(G_{3}-S\right) \leq 2^{s}-1$, we have $\alpha\left(F-S^{\prime}, 6\right)-\alpha\left(G_{3}-S, 6\right) \geq 1$, contradicting the fact that $\alpha\left(F-S^{\prime}, 6\right)=$ $\alpha\left(G_{3}-S, 6\right)$. So, from the above two cases, we conclude that $\theta(F)-\theta\left(G_{3}\right)=0$. Thus $F=G_{3}$ and $S=S^{\prime}$. Therefore, $H \in \mathcal{K}^{-s}(n-1, n-1, n+1, n+1, n+1)$.

5 Chromatically Unique 5-Partite Graphs

In this section, we first study the chromatically unique 5-partite graphs with $5 n+1$ vertices and a set S of s edges deleted where the deleted edges induce a star $K_{1, s}$.

Theorem 5.1. If $n \geq s+2$, then the graphs $K_{i, j}^{-K_{1, s}}(n, n, n, n, n+1)$ are χ-unique for each $(i, j) \in\{(1,2),(1,5),(5,1)\}$.

Proof. By Lemma 2.5 and Theorem 4.1(i), we know that $K_{i, j}^{-K_{1, s}}(n, n, n, n, n+1)=$ $\left\{K_{i, j}^{-K_{1, s}}(n, n, n, n, n+1) \mid(i, j) \in\{(1,2),(1,5),(5,1)\}\right\}$ is χ-closed for $n \geq s+2$. Note that
$t\left(K_{i, j}^{-K_{1, s}}(n, n, n, n, n+1)\right)=t(K(n, n, n, n, n+1))-3 \operatorname{sn}$ for $(i, j) \in\{(1,5),(5,1)\}$,

$$
t\left(K_{1,2}^{-K_{1, s}}(n, n, n, n, n+1)\right)=t(K(n, n, n, n, n+1))-s(3 n+1)
$$

By Lemma 2.1, we have $K_{1,2}^{-K_{1, s}}(n, n, n, n, n+1)$ is chromatically unique. From Lemma 2.7, we find that $P\left(K_{1,5}^{-K_{1, s}}(n, n, n, n, n+1), \lambda\right) \neq P\left(K_{5,1}^{-K_{1, s}}(n, n, n, n, n+\right.$ $1), \lambda)$. Hence, the graphs $K_{i, j}^{-K_{1, s}}(n, n, n, n, n+1)$ is χ-unique where $n \geq s+2$ for each $(i, j) \in\{(1,2),(1,5),(5,1)\}$.

Theorem 5.2. If $n \geq s+3$, then the graphs $K_{i, j}^{-K_{1, s}}(n-1, n, n, n+1, n+1)$ are χ-unique for each $(i, j) \in\{(1,2),(2,1),(2,4),(4,2),(4,5)\}$.

Proof. Let $F \in\left\{K_{i, j}^{-K_{1, s}}(n-1, n, n, n+1, n+1) \mid(i, j)=\{(1,2),(2,1),(2,4)\right.$, $(4,2),(4,5)\}\}$ and $H \sim F$. By Theorem 4.1(ii), $H \in \mathcal{K}^{-s}(n-1, n, n, n+1, n+1)$.

Without loss of generality, we assume $H \sim K_{1,2}^{-K_{1, s}}(n-1, n, n, n+1, n+1)$, where $(i, j)=(1,2)$. Since

$$
\begin{aligned}
\alpha(H, 6) & =\alpha\left(K_{1,2}^{-K_{1, s}}(n-1, n, n, n+1, n+1), 6\right) \\
& =\alpha(K(n-1, n, n, n+1, n+1), 6)+2^{s}-1,
\end{aligned}
$$

from Lemma 2.5, we know that $H \in\left\{K_{i, j}^{-K_{1, s}}(n-1, n, n, n+1, n+1) \mid i \neq\right.$ $j, i, j=1,2,3,4,5\}$. It easy to see that $H \in\left\{K_{i, j}^{-K_{1, s}}(n-1, n, n, n+1, n+\right.$ 1) $\mid i \neq j, i, j=1,2,3,4,5\}=\left\{K_{i, j}^{-K_{1, s}}(n-1, n, n, n+1, n+1) \mid(i, j) \in\right.$ $\{(1,2),(2,1),(1,4),(4,1),(2,3),(2,4),(4,2),(4,5)\}\}$.

Now let's determine the numbers of triangles in H and F. Denote by $t_{i, j}$ the number of triangles in $K_{i, j}^{-K_{1, s}}(n-1, n, n, n+1, n+1)$. Then we obtain that

$$
\begin{aligned}
& t_{1,2}=t_{2,1}=t(K(n-1, n, n, n+1, n+1))-s(3 n+2), \\
& t_{1,4}=t_{4,1}=t_{2,3}=t(K(n-1, n, n, n+1, n+1))-s(3 n+1) \text {, } \\
& t_{2,4}=t_{4,2}=t(K(n-1, n, n, n+1, n+1))-3 n s \text {, } \\
& t_{4,5}=t(K(n-1, n, n, n+1, n+1))-s(3 n-1) .
\end{aligned}
$$

Recalling $F \in\left\{K_{i, j}^{-K_{1, s}}(n-1, n, n, n+1, n+1) \mid(i, j) \in\{(1,2),(2,1),(2,4),(4,2)\right.$, $(4,5)\}\}$ and $t(H)=t(F)$, we have

$$
H, F \in\left\{K_{i, j}^{-K_{1, s}}(n-1, n, n, n+1, n+1) \mid(i, j) \in\{(1,2),(2,1)\}\right\}
$$

or

$$
H, F \in\left\{K_{i, j}^{-K_{1, s}}(n-1, n, n, n+1, n+1) \mid(i, j) \in\{(2,4),(4,2)\}\right\} .
$$

It follows from Lemma 2.7 that

$$
\begin{aligned}
& P\left(K_{1,2}^{-K_{1, s}}(n-1, n, n, n+1, n+1), \lambda\right) \neq P\left(K_{2,1}^{-K_{1, s}}(n-1, n, n, n+1, n+1), \lambda\right) ; \\
& P\left(K_{2,4}^{-K_{1, s}}(n-1, n, n, n+1, n+1), \lambda\right) \neq P\left(K_{4,2}^{-K_{1, s}}(n-1, n, n, n+1, n+1), \lambda\right) .
\end{aligned}
$$

Hence, the graphs $K_{i, j}^{-K_{1, s}}(n-1, n, n, n+1, n+1)$ are χ-unique where $n \geq s+3$ for each $(i, j) \in\{(1,2),(2,1),(2,4),(4,2),(4,5)\}$.

Similarly to the proofs of Theorems 5.1 and 5.2 , we can prove Theorems 5.3, 5.4 and 5.5.

Theorem 5.3. If $n \geq s+3$, then the graphs $K_{i, j}^{-K_{1, s}}(n-1, n-1, n+1, n+1, n+1)$ are χ-unique for each $(i, j) \in\{(1,2),(1,3),(3,1),(3,4)\}$.

Theorem 5.4. If $n \geq s+4$, then the graphs $K_{i, j}^{-K_{1, s}}(n-2, n, n+1, n+1, n+1)$ are χ-unique for each $(i, j) \in\{(1,2),(2,1),(1,3),(3,1),(2,3),(3,2),(3,4)\}$.

Theorem 5.5. If $n \geq s+3$, then the graphs $K_{i, j}^{-K_{1, s}}(n-1, n, n, n, n+2)$ are χ-unique for each $(i, j) \in\{(1,2),(2,1),(1,5),(5,1),(2,5),(5,2),(2,3)\}$.

Let $K_{i, j}^{-s K_{2}}\left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}\right)$ denotes the graph obtained from $K\left(n_{1}, n_{2}, n_{3}, n_{4}\right.$, n_{5}) by deleting a set of s edges that forms a matching in $\left\langle A_{i} \cup A_{j}\right\rangle$. We now investigate the chromatically unique 5 -partite graphs with $5 n+1$ vertices and a set S of s edges deleted where the deleted edges induce a matching $s K_{2}$.

Theorem 5.6. If $n \geq s+3$, then the graphs $K_{1,2}^{-s K_{2}}(n-1, n-1, n+1, n+1, n+1)$ are χ-unique.

Proof. Let $F \sim K_{1,2}^{-s K_{2}}(n-1, n-1, n+1, n+1, n+1)$. It is sufficient to prove that $F=K_{1,2}^{-s K_{2}}(n-1, n-1, n+1, n+1, n+1)$. By Theorem 4.1(iii) and Lemma 2.5, we have $F \in \mathcal{K}^{-s}(n-1, n-1, n+1, n+1, n+1)$ and $\alpha^{\prime}(F)=s$. Let $F=G-S$ where $G=K(n-1, n-1, n+1, n+1, n+1)$. Next we consider the number of triangles of F. Let $e_{i} \in S$ and $t\left(e_{i}\right)$ be the number of triangles in G containing the edge e_{i}. Then one can see that $t\left(e_{i}\right) \leq 3 n+3$. As $n-1 \leq n-1<n+1 \leq n+1 \leq n+1$, we know that $t\left(e_{i}\right)=3 n+3$ if and only if e_{i} is an edge of the subgraph $\left\langle A_{1} \cup A_{2}\right\rangle$ in G. So,

$$
t(F) \geq t(G)-s(3 n+3)
$$

where the equality holds if and only if each edge e_{i} in S is an edge of the subgraph $\left\langle A_{1} \cup A_{2}\right\rangle$ in G. Note that $t(F)=t(G)-s(3 n+3)$ and $\alpha^{\prime}(F)=s$. By Lemma 2.5, we know that $F=K_{1,2}^{-s K_{2}}(n-1, n-1, n+1, n+1, n+1)$. This completes the proof.

Similarly to the proof of Theorem 5.6, we can prove Theorem 5.7.
Theorem 5.7. If $n \geq s+4$, then the graphs $K_{1,2}^{-s K_{2}}(n-2, n, n+1, n+1, n+1)$ are χ-unique.

We end this paper with the following two open problems.

1. Study the chromaticity of the graphs $K_{i, j}^{-K_{1, s}}(n-1, n, n, n+1, n+1)$ for each $(i, j) \in\{(1,4),(4,1),(2,3)\}$.
2. Study the chromaticity of the graphs $K_{1,2}^{-s K_{2}}(n, n, n, n, n+1), K_{1,2}^{-s K_{2}}(n-$ $1, n, n, n+1, n+1)$ and $K_{1,2}^{-s K_{2}}(n-1, n, n, n, n+2)$.

Acknowledgements : We would like to thank the referees for his comments and suggestions on the manuscript. This work was supported by Universiti Sains Malaysia, Penang, Malaysia under Research Incentive Grant 304/JNP/600004.

References

[1] F.M. Dong, K.M. Koh, K.L. Teo, Chromatic Polynomials and Chromaticity of Graphs, Word Scientific, 2005.
[2] K.M. Koh, K.L. Teo, The search for chromatically unique graphs, Graphs Combin. 6 (1990) 259-285.
[3] K.M. Ko, K.L. Teo, The search for chromatically unique graphs II, Discrete Math. 172 (1997) 59-78.
[4] G.L. Chia, B.H. Goh, K.M. Koh, The chromaticity of some families of complete tripartite graphs, Scientia, Series A: Math. Sci. 2 (1988) 27-37.
[5] F.M. Dong, K.M. Koh, K.L. Teo, Sharp bounds for the number of 3independent partition and chromaticity of bipartite graphs, J. Graph Theory 37 (2001) 48-77.
[6] H.X. Zhao, R.Y. Liu, S.G. Zhang, Classification of Complete 5-Partite Graphs and Chromaticity of 5-Partite Graphs With 5n Vertices, Appl. Math. J.Chinese Univ. Ser. B. 19 (1) (2004) 116-124.
[7] H.X. Zhao, On the chromaticity of 5 -partite graphs with $5 \mathrm{n}+4$ vertices, J. Lanzhou Univ. (Natural Sciences) 40 (3) (2004) 12-16 (in Chinese).
[8] R.C. Read, W.T. Tutte, Chromatic Polynomials, In: L.W. Beineke and R.J. Wilson, eds. Selected Topics in Graph Theory (II), New York: Academic Press, (1988) 15-42.
[9] F. Brenti, Expansions of chromatic polynomials and log-concavity, Trans. Amer. Math. Soc. 332 (2) (1992) 729-756.
[10] J.A. Bondy, U.S.R. Murty, Graph Theory with Application, London: Macmillan, 1976.
(Received 5 May 2011)
(Accepted 9 November 2011)

Thai J. Math. Online @ http://www.math.science.cmu.ac.th/thaijournal

[^0]: ${ }^{1}$ Corresponding author email: hroslan@cs.usm.my (R. Hasni)
 Copyright (c) 2012 by the Mathematical Association of Thailand. All rights reserved.

