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1 Introduction

All graphs considered here are simple and finite. For a graph G, let P (G, λ) be
the chromatic polynomial of G. Two graphs G and H are said to be chromatically
equivalent (or simply χ−equivalent), symbolically G ∼ H , if P (G, λ) = P (H, λ).
The equivalence class determined by G under ∼ is denoted by [G]. A graph G
is chromatically unique (or simply χ−unique) if H ∼= G whenever H ∼ G, i.e,
[G] = {G} up to isomorphism. For a set G of graphs, if [G] ⊆ G for every G ∈ G,
then G is said to be χ−closed. Many families of χ-unique graphs are known (see
[1–3]).

For a graph G, let V (G), E(G) and t(G) be the vertex set, edge set and number
of triangles in G, respectively. Let S be a set of s edges in G. Let G−S (or G−s)
be the graph obtained from G by deleting all edges in S, and by 〈S〉 the graph
induced by S. Let K(n1, n2, ..., nt) be a complete t-partite graph. We denote by
K−s(n1, n2, ..., nt) the family of graphs which are obtained from K(n1, n2, ..., nt)
by deleting a set S of some s edges.

In [2–5], one can find many results on the chromatic uniqueness of bipartite
and tripartite graphs. Also there are some results on the chromaticity of 4-partite
graphs. However, there are very few 5-partite graphs known to be χ-unique, see
[6, 7].

Let G be a complete 5-partite graph with 5n + 1 vertices. In this paper, we
characterize certain complete 5-partite graphs with 5n + 1 vertices according to
the number of 6-independent partitions of G. Using these results, we investigate
the chromaticity of G with certain star or matching deleted. As a by-product,
many new families of chromatically unique complete 5-partite graphs with certain
star or matching deleted are obtained.

2 Some Lemmas and Notations

For a graph G and a positive integer r, a partition {A1, A2, ..., Ar} of V (G),
where r is a positive integer, is called an r-independent partition of G if every Ai

is independent of G. Let α(G, r) denote the number of r-independent partitions
of G. Then, we have P (G, λ) =

∑p

r=1
α(G, r)(λ)r , where (λ)r = λ(λ − 1)(λ −

2) · · · (λ − r + 1) (see [8]). Therefore, α(G, k) = α(H, k) for each k = 1, 2, ..., if
G ∼ H .

For a graph G with p vertices, the polynomial σ(G, x) =
∑p

r=1
α(G, r)xr is

called the σ-polynomial of G (see [9]). Clearly, P (G, λ) = P (H, λ) implies that
σ(G, x) = σ(H, x) for any graphs G and H .

For disjoint graphs G and H , G∪H denotes the disjoint union of G and H . The
join of G and H denoted by G∨H is defined as follows: V (G∨H) = V (G)∪V (H);
E(G ∨ H) = E(G) ∪ E(H) ∪ {xy | x ∈ V (G), y ∈ V (H)}. For notations and
terminology not defined here, we refer [10].

Lemma 2.1 (Koh et al. [2], Brenti [9]). Let G and H be two disjoint graphs.
Then
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(1) |V (G)| = |V (H)|, |E(G)| = |E(H)|, t(G) = t(H) and α(G, r) = α(H, r) for
r = 1, 2, 3, ..., if G ∼ H;

(2) σ(G ∨ H, x) = σ(G, x)σ(H, x).

Lemma 2.2 (Brenti [9]). Let G = K(n1, n2, n3, ..., nt) and σ(G, x) =
∑

r≥1
α(G, r)xr ,

then α(G, r) = 0 for 1 ≤ r ≤ t − 1, α(G, t) = 1 and α(G, t + 1) =
∑t

i=1
2ni−1 − t.

Let x1 ≤ x2 ≤ x3 ≤ x4 ≤ x5 be positive integers and {xi1 , xi2 , xi3 , xi4 , xi5} =
{x1, x2, x3, x4, x5}. If there are two elements xi1 and xi2 in {x1, x2, x3, x4, x5}
such that xi2 − xi1 ≥ 2, then H ′ = K(xi1 + 1, xi2 − 1, xi3 , xi4 , xi5} is called an
improvement of H = K(x1, x2, x3, x4, x5).

Lemma 2.3 (Zhao et al. [6]). Suppose x1 ≤ x2 ≤ x3 ≤ x4 ≤ x5 and H ′ =
K(xi1 + 1, xi2 − 1, xi3 , xi4 , xi5} is an improvement of H = K(x1, x2, x3, x4, x5),
then

α(H, 6) − α(H ′, 6) = 2xi2
−2 − 2xi1

−1 ≥ 2xi1
−1.

For a graph G, let q(G) be the number of edges in G.

Lemma 2.4 (Zhao et al. [6]). Let G = K(n1, n2, n3, n4, n5) and S be a set of
some s edges of G. If H ∼ G − S, then there is a graph F = K(y1, y2, y3, y4, y5)
and a subset S′ of E(F ) of some s′ edges of F such that H = F − S′ and |S′| =
s′ = q(F ) − q(G) + s.

Let G = K(n1, n2, n3, n4, n5). For a graph H = G − S, where S is a set of
some s edges of G, define α′(H) = α(H, 6) − α(G, 6). Clearly, α′(H) ≥ 0.

Lemma 2.5 (Zhao [7]). Let G = K(n1, n2, n3, n4, n5). Suppose that min {ni|i =
1, 2, 3, 4, 5} ≥ s + 1 ≥ 1 and H = G − S, where S is a set of some s edges of G,
then

s ≤ α′(H) = α(H, 6) − α(G, 6) ≤ 2s − 1,

α′(H) = s iff the set of end-vertices of any r ≥ 2 edges in S is not independent
in H, and α′(H) = 2s − 1 iff S induces a star K1,s and all vertices of K1,s other
than its center belong to a same Ai.

Let K(A1, A2) be a complete bipartite graph with partite sets A1 and A2.
We denote by K−K1,s(Ai, Aj) the graph obtained from K(Ai, Aj) by deleting
s edges that induce a star with its center in Ai. Note that K−K1,s(Ai, Aj) 6=
K−K1,s(Aj , Ai) if |Ai| 6= |Aj | for i 6= j (see [5]).

Lemma 2.6 (Dong et al. [5]). Let K(n1, n2) be a complete bipartite graph with
partite sets A1 and A2 such that |Ai| = ni for i = 1, 2. If min {n1, n2} ≥ s + 2,
then every K−K1,s(Ai, Aj) is χ-unique, where i 6= j and i, j = 1, 2.
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Let G = K(n1, n2, n3, n4, n5) be a complete 5-partite graph with partite sets
Ai(i = 1, 2, ..., 5) such that |Ai| = ni. Let 〈Ai ∪Aj〉 be the subgraph of G induced

by Ai ∪ Aj , where i 6= j and i, j ∈ {1, 2, 3, 4, 5}. By K
−K1,s

i,j (n1, n2, n3, n4, n5), we
denote the graph obtained from K(n1, n2, n3, n4, n5) by deleting a set of s edges
that induce a K1,s with its center in Ai and all its end vertices are in Aj . Note that

K
−K1,s

i,l (n1, n2, n3, n4, n5) = K
−K1,s

j,l (n1, n2, n3, n4, n5) and K
−K1,s

l,i (n1, n2, n3, n4,

n5) = K
−K1,s

l,j (n1, n2, n3, n4, n5) for ni = nj and l 6= i, j.

Lemma 2.7 (Zhao et al. [6]). Suppose that min {n1, n2, n3, n4, n5} ≥ s + 2

and ni 6= nj for i 6= j, i, j = 1, 2, 3, 4, 5, then P (K
−K1,s

i,j (n1, n2, n3, n4, n5), λ) 6=

P (K
−K1,s

j,i (n1, n2, n3, n4, n5), λ).

3 Classification

In this section, we shall characterize certain complete 5-partite graph G =
K(n1, n2, n3, n4, n5) according to the number of 6-independent partitions of G
where n1 + n2 + n3 + n4 + n5 = 5n + 1, n ≥ 1.

Theorem 3.1. Let G = K(n1, n2, n3, n4, n5) be a complete 5-partite graph such
that n1 + n2 + n3 + n4 + n5 = 5n + 1, n ≥ 1. Define θ(G) = [α(G, 6)− 2n+1 − 2n +
5]/2n−2. Then

(i) θ(G) ≥ 0;

(ii) θ(G) = 0 if and only if G = K(n, n, n, n, n + 1);

(iii) θ(G) = 1 if and only if G = K(n − 1, n, n, n + 1, n + 1);

(iv) θ(G) = 2 if and only if G = K(n − 1, n − 1, n + 1, n + 1, n + 1);

(v) θ(G) = 5/2 if and only if G = K(n − 2, n, n + 1, n + 1, n + 1);

(vi) θ(G) = 3 if and only if G = K(n − 1, n, n, n, n + 2);

(vii) θ(G) ≥ 4 if and only if G is not a graph appeared in (ii)–(vi);

Proof. For a complete 5-partite graph H1 with 5n+1 vertices, we can construct a
sequence of complete 5-partite graphs with 5n+1 vertices, say H1, H2, ..., Ht, such
that Hi is an improvement of Hi−1 for each i = 2, ..., t, and Ht = K(n, n, n, n, n +
1). By Lemma 2.3, α(Hi−1, 6) − α(Hi, 6) > 0. So θ(Hi−1) − θ(Hi) > 0, which
implies θ(G) ≥ θ(Ht) = θ(K(n, n, n, n, n + 1)). From Lemma 2.2 and by a simple
calculation, we have θ(K(n, n, n, n, n + 1)) = 0. Thus, (ii) is true.

Since Ht = K(n, n, n, n, n + 1) and Ht is an improvement of Ht−1, it is not
hard to see that Ht−1 ∈ {M0, M3}, where M0 = K(n − 1, n, n, n + 1, n + 1)
and M3 = K(n − 1, n, n, n, n + 2). Hence, by Lemma 2.2, we have θ(M0) = 1,
θ(M3) = 3. Note that Ht−1 is an improvement of Ht−2, one can see that Ht−2 ∈
{Mi|i = 1, 2, ..., 7}, where Mi and θ(Mi) are shown in Table 1.
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Mi Graphs Ht−2 θ(Mi)

M1 K(n − 1, n − 1, n + 1, n + 1, n + 1) 2

M2 K(n − 2, n, n + 1, n + 1, n + 1) 5/2

M3 K(n − 1, n, n, n, n + 2) 3

M4 K(n − 1, n − 1, n, n + 1, n + 2) 4

M5 K(n − 2, n, n, n + 1, n + 2) 9/2

M6 K(n − 1, n − 1, n, n, n + 3) 10

M7 K(n − 2, n, n, n, n + 3) 21/2

Table 1: Ht−2 and its θ-values

Ri Graphs Ht−3 θ(Ri)

R1 K(n − 3, n + 1, n + 1, n + 1, n + 1) 17/4

R2 K(n − 2, n − 1, n + 1, n + 1, n + 2) 11/2

R3 K(n − 3, n, n + 1, n + 1, n + 2) 25/4

Table 2: Ht−3 and its θ-values

To complete the proof of the theorem, we need only determine all complete
5-partite graph G with 5n + 1 vertices such that θ(G) < 4. By Lemma 2.3,
θ(Ht−3) > 4 for each Ht−3 if Ht−2 ∈ {Mi|i = 4, 5, 6, 7}. All graphs Ht−3 and its
θ-values are listed in Table 2 when Ht−2 ∈ {Mi|i = 1, 2, 3}.

It is easy to obtain the following: If Ht−2 = M1, then Ht−3 ∈ {M2, M4, R2};
Ht−3 ∈ {M5, R1, R2, R3} if Ht−2 = M2 and Ht−3 ∈ {Mi|i = 4, 5, 6, 7} if Ht−2 =
M3. Thus, from Lemma 2.2, Table 1, Table 2 and the above arguments, we
conclude that the theorem holds.

4 Chromatically Closed 5-Partite Graphs

In this section, we obtained several χ-closed families of graphs in K−s(n1, n2, n3,
n4, n5).

Theorem 4.1.

(i) If n ≥ s + 2, then the family of graphs K−s(n, n, n, n, n + 1) is χ-closed;

(ii) If n ≥ s+3, then the family of graphs K−s(n−1, n, n, n+1, n+1) is χ-closed;
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(iii) If n ≥ s + 3, then the family of graphs K−s(n− 1, n− 1, n + 1, n + 1, n + 1)
is χ-closed;

(iv) If n ≥ s + 4, then the family of graphs K−s(n − 2, n, n + 1, n + 1, n + 1) is
χ-closed;

(v) If n ≥ s + 3, then the family of graphs K−s(n− 1, n, n, n, n + 2) is χ-closed.

Proof. The proof of each statement of the theorem is similar. So, we only give
a proof for (iii) and omit the proofs of the others. For convenience, let G1 =
K(n, n, n, n, n + 1), G2 = K(n − 1, n, n, n + 1, n + 1) and G3 = K(n − 1, n −
1, n + 1, n + 1, n + 1). Suppose that H ∼ G3 − S. Then it suffices to show that
H ∈ K−s(n − 1, n − 1, n + 1, n + 1, n + 1). By Lemma 2.4, there is a complete
5-partite graph F = K(y1, y2, y3, y4, y5) and a set S′ for some s′ edges in F such
that H = F − S′ and |S′| = s′ = q(F ) − q(G3) + s ≥ 0. Clearly, α(F − S′, 6) =
α(G3 − S, 6).

By definition, we have

α(G3 − S, 6) = α(G3, 6) + α′(G3 − S) with s ≤ α′(G3 − S) ≤ 2s − 1,

and

α(F − S′, 6) = α(F, 6) + α′(F − S′).

So

α(F − S′, 6)−α(G3 − S, 6) = α(F, 6)−α(G3, 6) + α′(F −S′)−α′(G3 − S) (4.1)

By Theorem 3.1, α(F, 6) − α(G3, 6) = 2n−2(θ(F ) − θ(G3)). We distinguish the
following two cases.

Case 1: α(F, 6) < α(G3, 6). By Theorem 3.1, then F ∈ {G1, G2}. If F = G1,
we have α(G1, 6) − α(G3, 6) = −2n−1, and q(G1) − q(G3) = 2. From Equation
(4.1) above, we have

α(G1 − S′, 6) − α(G3 − S, 6) = −2n−1 + α′(F − S′) − α′(G3 − S).

Note that n ≥ s+3 and s′ = q(G1)−q(G3)+s = s+2 ≤ n−1. By Lemma 2.5,
0 ≤ s′ ≤ α′(F − S′) ≤ 2s′

− 1 ≤ 2n−1 − 1, since 0 ≤ s ≤ α′(G3 − S) ≤ 2s − 1, we
have

α(G1 − S′, 6) − α(G3 − S, 6) ≤ −2n−1 + α′(F − S′) − α′(G3 − S) ≤ −1,

which contradicts α(F − S′, 6) = α(G3 − S, 6).

If F = G2, by Theorem 3.1, we have α(G2, 6) − α(G3, 6) = −2n−2, and
q(G2) − q(G3) = 1. From Equation (4.1) above, we have

α(G2 − S′, 6) − α(G3 − S, 6) = −2n−2 + α′(F − S′) − α′(G3 − S).
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Note that n ≥ s+3 and s′ = q(G2)−q(G3)+s = s+1 ≤ n−2. By Lemma 2.5,
0 ≤ s′ ≤ α′(F − S′) ≤ 2s′

− 1 ≤ 2n−2 − 1, since 0 ≤ s ≤ α′(G3 − S) ≤ 2s − 1, we
have

α(G2 − S′, 6) − α(G3 − S, 6) ≤ −2n−2 + α′(F − S′) − α′(G3 − S) ≤ −1,

which contradicts α(F − S′, 6) = α(G3 − S, 6).

Case 2: α(F, 6) > α(G3, 6). By Theorem 3.1, F 6= Gi, where i = 1, 2, 3 and
we have α(F, 6) − α(G3, 6) ≥ 2n−3. Hence we have α(F − S′, 6) − α(G3 − S, 6) ≥
2n−3 + α′(F − S′) − α′(G3 − S).

Since n − 3 ≥ s, 0 ≤ α′(F − S′) and 0 ≤ s ≤ α′(G3 − S) ≤ 2s − 1, we
have α(F − S′, 6) − α(G3 − S, 6) ≥ 1, contradicting the fact that α(F − S′, 6) =
α(G3 − S, 6). So, from the above two cases, we conclude that θ(F ) − θ(G3) = 0.
Thus F = G3 and S = S′. Therefore, H ∈ K−s(n−1, n−1, n+1, n+1, n+1).

5 Chromatically Unique 5-Partite Graphs

In this section, we first study the chromatically unique 5-partite graphs with
5n + 1 vertices and a set S of s edges deleted where the deleted edges induce a
star K1,s.

Theorem 5.1. If n ≥ s+2, then the graphs K
−K1,s

i,j (n, n, n, n, n+1) are χ-unique
for each (i, j) ∈ {(1, 2), (1, 5), (5, 1)}.

Proof. By Lemma 2.5 and Theorem 4.1(i), we know that K
−K1,s

i,j (n, n, n, n, n+1) =

{K
−K1,s

i,j (n, n, n, n, n + 1)|(i, j) ∈ {(1, 2), (1, 5), (5, 1)}} is χ-closed for n ≥ s + 2.
Note that

t(K
−K1,s

i,j (n, n, n, n, n+1)) = t(K(n, n, n, n, n+1))−3sn for (i, j) ∈ {(1, 5), (5, 1)},

t(K
−K1,s

1,2 (n, n, n, n, n + 1)) = t(K(n, n, n, n, n + 1)) − s(3n + 1).

By Lemma 2.1, we have K
−K1,s

1,2 (n, n, n, n, n + 1) is chromatically unique. From

Lemma 2.7, we find that P (K
−K1,s

1,5 (n, n, n, n, n+1), λ) 6= P (K
−K1,s

5,1 (n, n, n, n, n+

1), λ). Hence, the graphs K
−K1,s

i,j (n, n, n, n, n + 1) is χ-unique where n ≥ s + 2 for
each (i, j) ∈ {(1, 2), (1, 5), (5, 1)}.

Theorem 5.2. If n ≥ s + 3, then the graphs K
−K1,s

i,j (n − 1, n, n, n + 1, n + 1) are
χ-unique for each (i, j) ∈ {(1, 2), (2, 1), (2, 4), (4, 2), (4, 5)}.

Proof. Let F ∈ {K
−K1,s

i,j (n − 1, n, n, n + 1, n + 1) | (i, j) = {(1, 2), (2, 1), (2, 4),

(4, 2), (4, 5)}} and H ∼ F . By Theorem 4.1(ii), H ∈ K−s(n− 1, n, n, n + 1, n + 1).
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Without loss of generality, we assume H ∼ K
−K1,s

1,2 (n− 1, n, n, n+1, n+1), where
(i, j) = (1, 2). Since

α(H, 6) = α(K
−K1,s

1,2 (n − 1, n, n, n + 1, n + 1), 6)

= α(K(n − 1, n, n, n + 1, n + 1), 6) + 2s − 1,

from Lemma 2.5, we know that H ∈ {K
−K1,s

i,j (n − 1, n, n, n + 1, n + 1) | i 6=

j, i, j = 1, 2, 3, 4, 5}. It easy to see that H ∈ {K
−K1,s

i,j (n − 1, n, n, n + 1, n +

1) | i 6= j, i, j = 1, 2, 3, 4, 5} = {K
−K1,s

i,j (n − 1, n, n, n + 1, n + 1) | (i, j) ∈
{(1, 2), (2, 1), (1, 4), (4, 1), (2, 3), (2, 4), (4, 2), (4, 5)}}.

Now let’s determine the numbers of triangles in H and F . Denote by ti,j the

number of triangles in K
−K1,s

i,j (n − 1, n, n, n + 1, n + 1). Then we obtain that

t1,2 = t2,1 = t(K(n − 1, n, n, n + 1, n + 1)) − s(3n + 2),

t1,4 = t4,1 = t2,3 = t(K(n − 1, n, n, n + 1, n + 1)) − s(3n + 1),

t2,4 = t4,2 = t(K(n − 1, n, n, n + 1, n + 1)) − 3ns,

t4,5 = t(K(n − 1, n, n, n + 1, n + 1)) − s(3n − 1).

Recalling F ∈ {K
−K1,s

i,j (n−1, n, n, n+1, n+1) | (i, j) ∈ {(1, 2), (2, 1), (2, 4), (4, 2),
(4, 5)}} and t(H) = t(F ), we have

H, F ∈ {K
−K1,s

i,j (n − 1, n, n, n + 1, n + 1) | (i, j) ∈ {(1, 2), (2, 1)}}

or
H, F ∈ {K

−K1,s

i,j (n − 1, n, n, n + 1, n + 1) | (i, j) ∈ {(2, 4), (4, 2)}}.

It follows from Lemma 2.7 that

P (K
−K1,s

1,2 (n − 1, n, n, n + 1, n + 1), λ) 6= P (K
−K1,s

2,1 (n − 1, n, n, n + 1, n + 1), λ);

P (K
−K1,s

2,4 (n − 1, n, n, n + 1, n + 1), λ) 6= P (K
−K1,s

4,2 (n − 1, n, n, n + 1, n + 1), λ).

Hence, the graphs K
−K1,s

i,j (n − 1, n, n, n + 1, n + 1) are χ-unique where n ≥ s + 3
for each (i, j) ∈ {(1, 2), (2, 1), (2, 4), (4, 2), (4, 5)}.

Similarly to the proofs of Theorems 5.1 and 5.2, we can prove Theorems 5.3,
5.4 and 5.5.

Theorem 5.3. If n ≥ s+3, then the graphs K
−K1,s

i,j (n−1, n−1, n+1, n+1, n+1)
are χ-unique for each (i, j) ∈ {(1, 2), (1, 3), (3, 1), (3, 4)}.

Theorem 5.4. If n ≥ s + 4, then the graphs K
−K1,s

i,j (n − 2, n, n + 1, n + 1, n + 1)
are χ-unique for each (i, j) ∈ {(1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2), (3, 4)}.

Theorem 5.5. If n ≥ s + 3, then the graphs K
−K1,s

i,j (n − 1, n, n, n, n + 2) are
χ-unique for each (i, j) ∈ {(1, 2), (2, 1), (1, 5), (5, 1), (2, 5), (5, 2), (2, 3)}.
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Let K−sK2

i,j (n1, n2, n3, n4, n5) denotes the graph obtained from K(n1, n2, n3, n4,
n5) by deleting a set of s edges that forms a matching in 〈Ai ∪ Aj〉. We now in-
vestigate the chromatically unique 5-partite graphs with 5n + 1 vertices and a set
S of s edges deleted where the deleted edges induce a matching sK2.

Theorem 5.6. If n ≥ s+3, then the graphs K−sK2

1,2 (n−1, n−1, n+1, n+1, n+1)
are χ-unique.

Proof. Let F ∼ K−sK2

1,2 (n−1, n−1, n+1, n+1, n+1). It is sufficient to prove that

F = K−sK2

1,2 (n−1, n−1, n+1, n+1, n+1). By Theorem 4.1(iii) and Lemma 2.5, we
have F ∈ K−s(n−1, n−1, n+1, n+1, n+1) and α′(F ) = s. Let F = G−S where
G = K(n− 1, n− 1, n + 1, n + 1, n + 1). Next we consider the number of triangles
of F . Let ei ∈ S and t(ei) be the number of triangles in G containing the edge ei.
Then one can see that t(ei) ≤ 3n + 3. As n − 1 ≤ n − 1 < n + 1 ≤ n + 1 ≤ n + 1,
we know that t(ei) = 3n + 3 if and only if ei is an edge of the subgraph 〈A1 ∪A2〉
in G. So,

t(F ) ≥ t(G) − s(3n + 3);

where the equality holds if and only if each edge ei in S is an edge of the subgraph
〈A1 ∪A2〉 in G. Note that t(F ) = t(G)− s(3n+3) and α′(F ) = s. By Lemma 2.5,
we know that F = K−sK2

1,2 (n − 1, n − 1, n + 1, n + 1, n + 1). This completes the
proof.

Similarly to the proof of Theorem 5.6, we can prove Theorem 5.7.

Theorem 5.7. If n ≥ s + 4, then the graphs K−sK2

1,2 (n − 2, n, n + 1, n + 1, n + 1)
are χ-unique.

We end this paper with the following two open problems.

1. Study the chromaticity of the graphs K
−K1,s

i,j (n−1, n, n, n+1, n+1) for each
(i, j) ∈ {(1, 4), (4, 1), (2, 3)}.

2. Study the chromaticity of the graphs K−sK2

1,2 (n, n, n, n, n + 1), K−sK2

1,2 (n −

1, n, n, n + 1, n + 1) and K−sK2

1,2 (n − 1, n, n, n, n + 2).
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