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1 Introduction

All graphs considered here are simple and finite. For a graph G, let P(G, \) be
the chromatic polynomial of G. Two graphs G and H are said to be chromatically
equivalent (or simply y—equivalent), symbolically G ~ H, if P(G,\) = P(H, \).
The equivalence class determined by G under ~ is denoted by [G]. A graph G
is chromatically unique (or simply y—unique) if H & G whenever H ~ G, i.e,
[G] = {G} up to isomorphism. For a set G of graphs, if [G] C G for every G € G,
then G is said to be y—closed. Many families of x-unique graphs are known (see
[1-3)).

For a graph G, let V(G), E(G) and t(G) be the vertex set, edge set and number
of triangles in G, respectively. Let S be a set of s edges in G. Let G— 5 (or G —s)
be the graph obtained from G by deleting all edges in S, and by (S) the graph
induced by S. Let K(ni,ns,...,nt) be a complete t-partite graph. We denote by
K=%(n1,n2,...,n¢) the family of graphs which are obtained from K(ni,ns,...,n¢)
by deleting a set S of some s edges.

In [2-5], one can find many results on the chromatic uniqueness of bipartite
and tripartite graphs. Also there are some results on the chromaticity of 4-partite
graphs. However, there are very few 5-partite graphs known to be y-unique, see
[6, 7].

Let G be a complete 5-partite graph with 5n + 1 vertices. In this paper, we
characterize certain complete 5-partite graphs with 5n + 1 vertices according to
the number of 6-independent partitions of GG. Using these results, we investigate
the chromaticity of G with certain star or matching deleted. As a by-product,
many new families of chromatically unique complete 5-partite graphs with certain
star or matching deleted are obtained.

2 Some Lemmas and Notations

For a graph G and a positive integer r, a partition {A1, Ao, ..., A, } of V(G),
where r is a positive integer, is called an r-independent partition of G if every A;
is independent of G. Let a(G,r) denote the number of r-independent partitions
of G. Then, we have P(G,\) = >.P_, a(G,7)(\);, where (A), = A(A — 1)(A —
2)---(A—=r+1) (see [8]). Therefore, a(G, k) = a(H, k) for each k = 1,2, ..., if
G~ H.

For a graph G with p vertices, the polynomial o(G,z) = Y .P_, a(G,r)z" is
called the o-polynomial of G (see [9]). Clearly, P(G,\) = P(H,\) implies that
o(G,x) = o(H,z) for any graphs G and H.

For disjoint graphs G and H, GUH denotes the disjoint union of G and H. The
join of G and H denoted by GV H is defined as follows: V(GVH) = V(G)UV (H);
E(GVH) =EG)UEH)U{zy | z € V(G),y € V(H)}. For notations and
terminology not defined here, we refer [10].

Lemma 2.1 (Koh et al. [2], Brenti [9]). Let G and H be two disjoint graphs.
Then
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(1) V(G =|V(H)|, |E(G)|=|E(H)|, H{G) =t(H) and a(G,7) = a(H,T) for
r=1,2,3,..,if G~ H;

(2) o(GV H,z) =0(G,z)o(H,z).

Lemma 2.2 (Brenti [9]). Let G = K(n1,n2,n3,...,n¢) and o(G,z) = > o, a(G,r)a",
then a(G,r) =0 for 1 <r <t—1, o(G,t) =1 and a(G,t +1) = S1_ 27~ —¢.

Let 21 < 29 < x5 < x4 < x5 be positive integers and {z;,, Tiy, Tig, Tiy, Tig } =
{x1,22, 23,24, 25}. If there are two elements x;, and x;, in {1, x2,xs,24,T5}
such that z;, — x;; > 2, then H = K(z;;, + 1,24, — 1,245, xi,, 25, } is called an
improvement of H = K(x1, 2,3, T4, 25).

Lemma 2.3 (Zhao et al. [6]). Suppose x1 < xo < x3 < x4 < 5 and H' =
K(xy + 1,25, — 1,24, 24, i } 18 an improvement of H = K(x1, 22,3, T4,25),
then

a(H,6) —a(H',6) = 27272 — 2%~ > 9%u—1

For a graph G, let ¢(G) be the number of edges in G.

Lemma 2.4 (Zhao et al. [6]). Let G = K(ny,n2,n3,n4,n5) and S be a set of
some s edges of G. If H ~ G — S, then there is a graph F = K (y1, Y2, Y3, Y4, Y5)
and a subset S’ of E(F) of some s’ edges of F such that H = F — S’ and |S’| =
s'=q(F) —q(G) + s.

Let G = K(ni,n2,n3,n4,n5). For a graph H = G — S, where S is a set of
some s edges of G, define o/ (H) = a(H,6) — a(G, 6). Clearly, o/(H) > 0.

Lemma 2.5 (Zhao [7]). Let G = K(n1,na,ns, ng,ns). Suppose that min {n;|i =
1,2,3,4,5} > s+1>1and H=G — S, where S is a set of some s edges of G,
then

s<d(H)=a(H,6)—alG,6) <2°—1,

o/ (H) = s iff the set of end-vertices of any r > 2 edges in S is not independent
in H, and o/ (H) = 25 — 1 iff S induces a star K1 s and all vertices of K1 s other
than its center belong to a same A;.

Let K(A1,As) be a complete bipartite graph with partite sets 4; and As.
We denote by K~%1.(A; A;) the graph obtained from K(A;, A;) by deleting
s edges that induce a star with its center in A;. Note that K—%1.:(4;, A;) #
KﬁKl’s(Aj,Ai) if |Az| }é |AJ| for 4 #‘] (see [5])

Lemma 2.6 (Dong et al. [5]). Let K(ni,n2) be a complete bipartite graph with
partite sets Ay and As such that |A;| = n; for i = 1,2. If min {n1,n2} > s + 2,
then every K —K1.:(A;, A;) is x-unique, where i # j and i,j = 1,2.
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Let G = K(n1,n2,n3,n4,n5) be a complete 5-partite graph with partite sets
A;(i=1,2,...,5) such that |4;| = n,;. Let (A; U A;) be the subgraph of G induced
by A; U A;, where i # j and i, € {1,2,3,4,5}. By KiTJKl’S(nl,ng,ng,ml,ng,), we
denote the graph obtained from K (n1,nq,ns,n4,ns) by deleting a set of s edges
that induce a K ¢ with its center in A; and all its end vertices are in A;. Note that
KiTlKl’s (n1,n2,n3,n4,n5) = KK (n1,n2,n3,n4,n5) and K&Kl’s (n1,n2,n3,n4,

Jil
1,s _ L
ns) =K, (n1,n2,n3,n4,n5) for n; =n; and [ # 4, 5.

Lemma 2.7 (Zhao et al. [6]). Suppose that min {ni,na,n3,ng,n5} > s+ 2
and n; # n; fori #j, 14,5 =1,2,3,4,5, then P(K;J-Kl’s(nl,ng,ng,n4,n5),/\) %
P(E; [ (n1, 2, n3, 4, 15), A).

5

3 Classification

In this section, we shall characterize certain complete 5-partite graph G =
K(n1,n2,n3,n4,n5) according to the number of 6-independent partitions of G
where ny +ng +ng+ng+n5 =51+ 1,n > 1.

Theorem 3.1. Let G = K(ni,ne,ns,ng,ns) be a complete 5-partite graph such
that ny +ng +nz+ng+ns = 5n+1,n > 1. Define (G) = [a(G, 6) — 2"+ — 27 4
5]/2"=2. Then

(i) 0(G) =
(i) 0(G) =0 if and only if G = K(n,n,n,n,n+1);
(iii) 9(G) =1 if and only if G = K(n — L,n,n,n + 1,n +1);
(i) 0(G) =2 if and only if G = K(n—1,n— Ln+1L,n+1,n+1);
(v) 0(G) =5/2 if and only if G=K(n—2,n,n+1,n+1,n+1);
(vi) 8(G) =3 if and only if G = K(n—1,n,n,n,n+ 2);
(vii) 0(G) =

Proof. For a complete 5-partite graph H; with 5n + 1 vertices, we can construct a
sequence of complete 5-partite graphs with 5n+ 1 vertices, say Hy, Ho, ..., H¢, such
that H; is an improvement of H,;_; for each i = 2,...,t, and H; = K(n,n,n,n,n+
1). By Lemma 2.3, a(H;-1,6) — a(H;,6) > 0. So 8(H,;_1) — 8(H;) > 0, which
implies 0(G) > 0(H¢) = (K (n,n,n,n,n+1)). From Lemma 2.2 and by a simple
calculation, we have (K (n,n,n,n,n+ 1)) = 0. Thus, (ii) is true.

Since Hy = K(n,n,n,n,n+ 1) and H; is an improvement of H;_1, it is not
hard to see that H,—1 € {Moy, M3}, where My = K(n — 1,n,n,n+ 1,n + 1)
and M35 = K(n — 1,n,n,n,n+ 2). Hence, by Lemma 2.2, we have (M) = 1,
6(Ms) = 3. Note that H;_; is an improvement of H;_5, one can see that Hy_o €
{M;li =1,2,...,7}, where M; and 8(M;) are shown in Table 1.

4 if and only if G is not a graph appeared in (ii)—(vi);
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M; | Graphs H;_» 6(M;)
My | Kin—1,n—1n+1n+1n+1)|2

My | K(n—2,n,n+1,n+1n+1) 5/2
Ms | K(n—1,n,n,n,n+ 2) 3

My | K(n—1,n—1,nn+1,n+2) 4

Ms | K(n—2,n,nn+1,n+2) 9/2
Mg | K(n—1,n—1,n,n,n+ 3) 10
M; | K(n—2,n,n,n,n+ 3) 21/2

Table 1: H;_9 and its 6-values
R; | Graphs H;_3 0(R;)

Ri | Kn—3n+1l,n+1ln+1l,n+1)]|17/4
Ry | Kn—2,n—1,n+1,n+1n+2)|11/2
Rs | K(n—3,n,n+1,n+1,n+2) 25/4

Table 2: H;_3 and its #-values

To complete the proof of the theorem, we need only determine all complete
5-partite graph G with 5n 4+ 1 vertices such that (G) < 4. By Lemma 2.3,
O(H:—3) > 4 for each H;_3 if Hy_o € {M;|i =4,5,6,7}. All graphs H;_3 and its
f-values are listed in Table 2 when H;_o € {M;|i = 1,2, 3}.

It is easy to obtain the following: If Hy_o = M, then H;_35 € { My, My, Ro};
H; 3¢ {M5,R1,R2,R3} if H_o = My and H;_3 € {M1|’L = 4,5,6,7} it Hy_o =
Mjs. Thus, from Lemma 2.2, Table 1, Table 2 and the above arguments, we
conclude that the theorem holds. [l

4 Chromatically Closed 5-Partite Graphs

In this section, we obtained several x-closed families of graphs in X~%(nq, no, ng,
n4,M5).

Theorem 4.1.
(i) If n > s+ 2, then the family of graphs K—*(n,n,n,n,n+ 1) is x-closed;
(i1) Ifn > s+3, then the family of graphs K=*(n—1,n,n,n+1,n+1) is x-closed;
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(ii) If n > s+ 3, then the family of graphs K*(n—1,n—1,n+1,n+1,n+1)
is x-closed;

(i) If n > s+ 4, then the family of graphs K=°(n — 2,n,n+ 1,n+ 1,n+1) is
x-closed;

(v) If n > s+ 3, then the family of graphs K=°(n—1,n,n,n,n+ 2) is x-closed.

Proof. The proof of each statement of the theorem is similar. So, we only give
a proof for (iii) and omit the proofs of the others. For convenience, let G; =
Kn,n,nnn+1), Goe = K(n—1,n,n,n+1,n+1) and G = K(n — 1,n —
IL,n+1,mn+1,n+1). Suppose that H ~ G5 — S. Then it suffices to show that
HeK*n-1n—-1,n+1,n+1,n+1). By Lemma 2.4, there is a complete
5-partite graph F = K (y1, Y2, Y3, Y1, y5) and a set S’ for some s’ edges in F such
that H = F — S" and |S’| = s’ = ¢(F) — q(G3) + s > 0. Clearly, a(F — 5’',6) =
OZ(Gg - S, 6)
By definition, we have

a(Gs — S,6) = a(G3,6) + o/ (Gs — 5) with s<a'(Gz3—S)<2° -1,

and
a(F —5',6) =a(F,6) +d(F - 5.
So
a(F —5',6)—a(Gs — 5,6) = a(F,6) —a(G3,6) + o' (F—S5") =/ (Gs — S) (4.1)

By Theorem 3.1, a(F,6) — a(G3,6) = 2" 2(§(F) — 6(G3)). We distinguish the
following two cases.

Case 1: a(F,6) < a(G3,6). By Theorem 3.1, then F' € {G1,G2}. If F =Gy,
we have a(G1,6) — a(G3,6) = —2"71 and ¢(G1) — ¢(G3) = 2. From Equation
(4.1) above, we have

a(Gy —8',6) —a(Gz — 5,6) = 2"t +o/(F - 8') — /(G3 — 9).
Note that n > s+3 and s’ = ¢(G1) —q¢(G3)+s =s+2 < n—1. By Lemma 2.5,

Ogs’go/(F—S”)§2S,—1§2"’1—1,sinceOﬁsSa’(G3—S’)§2S—1,we
have

a(Gy — 8',6) —a(Gs — S,6) < —2" 1 +o/(F - 8') —d/(Gs — S) < —1,
which contradicts a(F — S’,6) = (G5 — S, 6).

If F = (3, by Theorem 3.1, we have a(Ga,6) — a(G3,6) = —2""2, and
q(G2) — q(G3) = 1. From Equation (4.1) above, we have

a(Gy — 8',6) — a(Gs — 8,6) = —2""2 4 o/(F = §') — o/ (G3 — S).
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Note that n > s+3 and s’ = ¢(G2) —q¢(G3)+s = s+1 < n—2. By Lemma 2.5,
0<s <a/(F—8)<2 —1<2"2_1 since0<s<a'(Gg—5)<2°—1, we
have

a(Gy — 8",6) —a(G3 —8,6) < —2" 2+ o/(F-8') -/ (G3 - S) < —1,

which contradicts a(F — 5’,6) = a(G3 — S, 6).

Case 2: a(F,6) > a(Gs,6). By Theorem 3.1, F' # G;, where i = 1,2,3 and
we have a(F,6) — a(G3,6) > 2"~3. Hence we have a(F — S’,6) — a(G3 — S,6) >
23 4 o/ (F—8") —ad'(Gs — 5).

Sincen—3>s5 0<dF-5)and 0 < s < a(Gs—95) <251, we
have a(F — S',6) — a(G5 — S,6) > 1, contradicting the fact that a(F — S’,6) =
a(G3 — S,6). So, from the above two cases, we conclude that 0(F) — 0(G3) = 0.
Thus F = G3 and S = §’. Therefore, H € K *(n—1,n—1,n+1,n+1,n+1). O

5 Chromatically Unique 5-Partite Graphs

In this section, we first study the chromatically unique 5-partite graphs with
5n + 1 vertices and a set S of s edges deleted where the deleted edges induce a
star K .

Theorem 5.1. Ifn > s+2, then the graphs K;J-Kl’s (n,n,n,n,n+1) are x-unique
for each (i,7) € {(1,2),(1,5),(5,1)}.

Proof. By Lemma 2.5 and Theorem 4.1(i), we know that K;jKl‘S (n,n,n,n,n+1) =

{K;JKI’S(n,n,n,n,n + 1)|(4,7) € {(1,2),(1,5),(5,1)}} is x-closed for n > s + 2.

Note that

t(K-i-Kl’s (n,n,n,n,n+1)) = t(K(n,n,n,n,n+1))—3sn for (i,5) € {(1,5),(5,1)},

i
t(K;;{I’S(n,n, n,n,n+ 1)) =t(K(n,n,n,n,n+1)) —s(3n+ 1).

By Lemma 2.1, we have K;QKI’S(n,n, n,n,n + 1) is chromatically unique. From

Lemma 2.7, we find that P(K;?l’s(n,n, n,n,n+1),\) # P(K;lKl’S(n, n,m,n,n-+

1), A). Hence, the graphs K;J-Kl’s(n,n, n,n,n+ 1) is x-unique where n > s+ 2 for
each (4,7) € {(1,2),(1,5),(5,1)}. [l

Theorem 5.2. If n > s+ 3, then the graphs K;J-Kl’s (n—1,n,n,n+1,n+1) are
x-unique fOT each (Zaj) € {(17 2)7 (27 1)7 (274)7 (47 2)7 (47 5)}

—Ki s

Proof. Let F € {K,; ;" ""(n—1,n,n,n+1,n+1)|(j)={(1,2),(2,1),(2,4),

(
(4,2),(4,5)}} and H ~ F. By Theorem 4.1(ii), H € K *(n—1,n,n,n+1,n+1).
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Without loss of generality, we assume H ~ K;QKI’S (n—1,n,n,n+1,n+1), where

(4,7) = (1,2). Since

a(H,6) = a(K; 5 " (n—1,n,n,n+1,n+1),6)
=a(K(n—1,n,n,n+1,n+1),6)+2°—1,

from Lemma 2.5, we know that H € {K;J-Kl’s(n —Linnn+1l,n+1)|i#

j, 4,7 = 1,2,3,4,5}. Tt easy to see that H € {K;J-Kl’s(n - Ln,nn+1n+

1) | i # 34, i = 1,23,45 = {K, (- Lnnn+1n+1) | (i,j) €
{(1,2),(2,1),(1,4),(4,1),(2,3),(2,4), (4,2), (4,5)} }.

Now let’s determine the numbers of triangles in H and F'. Denote by ¢; ; the
number of triangles in KZ-TjKl‘S (n—1,n,n,n+1,n+1). Then we obtain that

tig=ta1 =t(K(n—1,n,n,n+1,n+1)) —s(Bn+2),
t174 = t471 = t2)3 = t(K(?’L — 1,7’L,TL,7’L+ l,n + 1)) — S(?)TL + 1),
toq =ts2 =t(K(n—1,n,n,n+1,n+1))—3ns,

tas =t(K(n—1,n,nn+1,n+1))—s(3n—-1).

Recalling F' € {K;J-Kl’s(n—l,n, n,n+1,n+1) | (4,5) € {(1,2),(2,1),(2,4), (4, 2),

s

(4,5)}} and t(H) = t(F), we have
H,F e {K, [ (n—Lnnn+1n+1)] (i,§) € {(1,2),(2,1)}}
or .
H Fe{K,;""(n—=1Ln,nn+1n+1)|(7j)€{(2,4),(42)}}
It follows from Lemma 2.7 that
P(K1_72Kls(n - 17”5”7”"’ 1,7’L—|— 1)5 A) # P(K2_,1Kls(n - 17”5”7”"’ lan + 1)5 A)v
P(K;fl‘s(n— Ln,nn+1l,n+1),\)# P(K;QKI’S(n— Ln,nn+1,n+1),A).

Hence, the graphs K;jKl‘S (n—1,n,n,n+1,n+ 1) are y-unique where n > s + 3
for each (i, ) € {(1,2), (2. 1), (2,4), (4,2), (4,5)}. 0

Similarly to the proofs of Theorems 5.1 and 5.2, we can prove Theorems 5.3,
5.4 and 5.5.
Theorem 5.3. Ifn > s+3, then the graphs K»_jKl‘S (n—=1,n—1,n+1,n+1,n+1)

3

are x-unique for each (i,5) € {(1,2),(1,3),(3,1), (3,4)}.

Theorem 5.4. If n > s+ 4, then the graphs K;J-Kl’s(n —2,n,n+1l,n+1,n+1)
are x-unique for each (i,7) € {(1,2),(2,1),(1,3),(3,1),(2,3),(3,2),(3,4)}.

7‘)

Theorem 5.5. If n > s+ 3, then the graphs K-_Kl’s(n — 1,n,n,n,n+ 2) are
y-unigue for each (i,5) € {(1,2), (2,1), (1,5), (5,1), (2,5), (5,2), (



Chromaticity of Complete 5-Partite Graphs with Certain Star ... 33

Let K;J-SKQ (n1,n2,n3, n4, ns) denotes the graph obtained from K (nq,na, n3, na,
ns) by deleting a set of s edges that forms a matching in (4; U A;). We now in-
vestigate the chromatically unique 5-partite graphs with 5n + 1 vertices and a set
S of s edges deleted where the deleted edges induce a matching sKo.

Theorem 5.6. Ifn > s+ 3, then the graphs K;;Kz(n—1,n—1,n—|—1,n—|—1,n—|—1)
are X -unique.

Proof. Let F ~ K;ng(n— I,n—1,n4+1,n4+1,n+1). It is sufficient to prove that
F= K;;Kz (n—1,n—1,n+1,n+1,n+1). By Theorem 4.1(iii) and Lemma 2.5, we
have F e K*(n—1,n—1,n+1,n+1,n+1)and o/ (F) = s. Let F = G— S where
G=K(n—-1,n—-1,n+1,n+1,n+1). Next we consider the number of triangles
of F. Let e; € S and t(e;) be the number of triangles in G containing the edge e;.
Then one can see that t(e;) <3n+3. Asn—1<n—-1<n+1<n+1<n+1,
we know that t(e;) = 3n+ 3 if and only if e; is an edge of the subgraph (A; U As)
in G. So,
t(F) > t(G) — s(3n + 3);

where the equality holds if and only if each edge e; in S is an edge of the subgraph
(A1 UAs) in G. Note that t(F) = ¢(G) —s(3n+3) and o/ (F) = s. By Lemma 2.5,
we know that F' = Ki§K2(n —1,n—1,n+1,n+1,n+1). This completes the
proof. O

Similarly to the proof of Theorem 5.6, we can prove Theorem 5.7.

Theorem 5.7. Ifn > s+ 4, then the graphs Ki;m(n - 2n,n+1l,n+1,n+1)
are X -unique.

We end this paper with the following two open problems.
1. Study the chromaticity of the graphs K;J-Kl’s (n—1,n,n,n+1,n+1) for each

(4,7) € {(1,4), (4,1),(2,3)}.
2. Study the chromaticity of the graphs K;;Kz (n,m,n,n,n+ 1), K;;Kz (n —
1I,m,n,n+1,n+1) and Ki§K2(n—1,n,n,n,n+2).
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