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Abstract : In this paper, we introduce a new implicit shrinking algorithm for
finding a common element of the set of solutions of an equilibrium problem and
the set of common fixed points of a countable family of relatively nonexpansive
mappings in the framework of Banach spaces. Our results are refinement as well
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1 Introduction and Preliminaries

Over the past few decades, iterative algorithms play a key role in solving
nonlinear equation in various fields of investigation. Therefore, algorithmic con-
struction for the approximation of fixed points of various mappings is a problem
of interest in various setting of spaces. Numerous implicit and explicit algorithms
have been developed for the approximation of fixed point results. Most of the
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problems in applied sciences such as monotone inclusion problems, saddle point
problems, variational inequality problems, minimization problems, Nash equilib-
ria in noncooperative games, vector equilibrium problems as well as certain fixed
point problems reduce in terms of finding solution of an equilibrium problem
which is defined as follows: Let C be a nonempty closed and convex subset of
a real Banach space E and let f : C × C → R (the set of reals) be a bifunc-
tion. The equilibrium problem for f is to find its equilibrium points, i.e. the set
EP (f) = {x ∈ C : f(x, y) ≥ 0, for all y ∈ C} . For solving the equilibrium prob-
lem, let us assume that the bifunction f satisfies the following conditions:

(A1) f(x, x) = 0 for all x ∈ C;

(A2) f is monotone, i.e. f(x, y) + f(y, x) ≤ 0 for all x, y ∈ C;

(A3) lim supt↓0 f(tz + (1 − t)x, y) ≤ f(x, y) for all x, y, z ∈ C,

(A4) f(x, .) is convex and lower semicontinuous for all x ∈ C; see [1, 2].

The Lyapunov functional ϕ : E × E → R is defined by

ϕ(x, y) = ‖x‖2 − 2 〈x, Jy〉 + ‖y‖2 for all x, y ∈ E.

It is obvious from the definition of ϕ that

(1) ϕ(x, y) ≥ 0 for all x, y ∈ E and ϕ(x, y) = 0 if and only if x = y;

(2) (‖x‖ − ‖y‖)2 ≤ ϕ(x, y) ≤ (‖x‖ + ‖y‖)2 for all x, y ∈ E.

In a real Hilbert space, we have, ϕ(x, y) = ‖x − y‖2
for all x, y ∈ E. For

details, see [3, 4].
Let C be a nonempty closed and convex subset of a Banach space E and let

T : C → C be a nonlinear mapping. We denote F (T ) the set of fixed points of
T . A point x ∈ C is said to be asymptotic fixed point of T [5] if there exists a
sequence {xn} ⊂ C which converges weakly to x and limn→∞ ‖xn − Txn‖ = 0.

The set of asymptotic fixed points of T is denoted by F̂ (T ). Recall that a mapping
T : C → C is nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ C and relatively
nonexpansive if

(1) F (T ) is nonempty;

(2) ϕ(u, Tx) ≤ ϕ(u, x) for all u ∈ F (T ) and x ∈ C;

(3) F̂ (T ) = F (T ).

Recently, numerous attempts have been made in order to guarantee the strong
convergence through algorithmic construction for the approximation of fixed points.
In 2004, Matsushita and Takahashi [6] introduced the following algorithm for a
single relatively nonexpansive mapping T in a Banach space E: For an initial point
x0 ∈ C, define a sequence {xn} by:

xn+1 = PCJ−1
(
αnJxn + (1 − αn)JTxn

)
, n ≥ 0, (1.1)
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where T is relatively nonexpansive mapping, J is the duality mapping on E and
PC is the generalized projection from E onto C and {αn} is a sequence in [0, 1].
They proved that the sequence {xn} generated by (1.1) converges weakly to some
fixed point of T under some suitable conditions on {αn}.

In 2008, Takahashi and Zembayashi [7] introduced the shrinking projection
method for an equilibrium problem in a Banach space E as follows:






x0 = x ∈ C = C0

yn = J−1
(
αnJxn + (1 − αn)JTxn

)
,

un ∈ C such that f(un, y) + 1
rn
〈y − un, Jun − Jyn〉 ≥ 0 ∀y ∈ C,

Cn+1 = {z ∈ Cn : ϕ(z, un) ≤ ϕ(z, xn)},
xn+1 = PCn+1

x0, n ≥ 0,

(1.2)

where T, J and PC are the mappings as used in (1.1). They proved that the
sequence {xn} generated by (1.2) converges strongly to PF (T )∩EP (f)x0 under some
appropriate conditions.

Recent developments in fixed point theory reflect that the algorithmic con-
struction for the approximation of fixed point problems are vigorously proposed
and analyzed for various classes of mappings in different spaces. Since, most of
the problems from various disciplines of science are nonlinear in nature, therefore
implicit algorithms have an advantage over explicit one in view of their accuracy
for such nonlinear problems in the framework of Hilbert spaces and Banach spaces.
The arity of the algorithm and the family of mappings also play an important role
for the best approximation of nonlinear problems. The pioneering work of Xu and
Ori [8] deals with the weak convergence of an implicit iterative algorithm for a fi-
nite family of nonexpansive mappings. Recently, hybrid algorithms are vigorously
used for the development of approximate fixed point results. Furthermore, finding
a common element of the set of solutions of an equilibrium problem and the set
of fixed points in Hilbert spaces and Banach spaces is a problem of interest and,
is therefore, studied by many authors; see also [1, 2, 9, 10] and references therein.

Inspired and motivated by these facts, we introduce an implicit shrinking pro-
jection algorithm for finding a common element of the set of solutions of an equilib-
rium problem and the set of common fixed points of a countable family of relatively
nonexpansive mappings in a Banach space. As an application, we apply our result
to solve a variational inequality problem and a convex minimization problem in
Banach spaces.

Let E be a real Banach space with its dual E∗. For x∗ ∈ E∗, its value at
x ∈ E is denoted by 〈x, x∗〉 . Denote SE = {x ∈ E : ‖x‖ = 1}.

A Banach space E is said to be strictly convex if for x, y ∈ SE with x 6= y

implies ‖x + y‖ < 2, uniformly convex if for any two sequences {xn} and {yn} in
SE satisfying limn→∞

∥∥xn+yn

2

∥∥ = 1 implies limn→∞ ‖xn − yn‖ = 0 and reflexive
if T : E → E∗∗ is bijective, where E∗∗ is a dual of E∗. Furthermore, define

h : SE × SE × R \ {0} → R by

h(x, y, t) =
‖x + ty‖ − ‖x‖

t
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for x, y ∈ SE and t ∈ R \ {0}. The norm of E is said to be Gâteaux differentiable
if limt→0 h(x, y, t) exists for each x, y ∈ SE . The Banach space E is said to be
smooth if its norm is Gâteaux differentiable. The norm of E is said to be Fréchet
differentiable, if for each x ∈ E, limt→0 h(x, y, t) is attained uniformly for y ∈
SE . The Banach space E is said to be uniformly smooth if its norm is Fréchet
differentiable.

The normalized duality mapping J : E → E∗ is defined by

Jx =
{

x∗ ∈ E∗ : ‖x‖2
= 〈x, x∗〉 = ‖x∗‖2

}

for all x ∈ E. It is remarked that the normalized duality mapping J is nonempty,
closed and convex in a Banach space and is single valued in a real reflexive and
smooth Banach space. Furthermore, J−1 : E∗ → E, the inverse of the normalized
duality mapping J , is also a duality mapping in uniformly convex and uniformly
smooth Banach space. Both J and J−1 are uniformly norm-to-norm continuous
on each bounded subset of E or E∗, respectively. For more details, see [11, 12].

The following well known results are needed in the sequel for the development
of our main result.

Lemma 1.1 (Matsushita and Takahashi [13]). Let C be a nonempty closed convex
subset of a smooth, strictly convex and reflexive Banach space E and let T : C → C

be a relatively nonexpansive mapping. Then F (T ) is closed and convex.

Lemma 1.2 (Kamimura and Takahashi [14]). Let E be a uniformly convex and
smooth Banach space and let {xn}, {yn} be two sequences in E such that either
{xn} or {yn} is bounded. If limn→∞ ϕ(xn, yn) = 0, then limn→∞ ‖xn − yn‖ = 0.

Let C be a nonempty, closed and convex subset of a Hilbert space H and
PC : H → C defined by

‖x − PCx‖ = inf{‖x − y‖ : for all y ∈ C},

is known as metric (nearest point) projection of H onto C. This fact characterizes
Hilbert space and consequently not available in more general Banach space. In
this sequel, Alber [3] introduced a generalized projection operator in Banach space
as follows: Let E be a reflexive, strictly convex and smooth Banach space and let
C be a nonempty, closed and convex subset of E. Then the generalized projection
PC : E → C is a mapping that assigns to any point x ∈ E, the point x0 which is the
solution to the minimization problem ϕ(x0, x) = miny∈C ϕ(y, x). The existence
and uniqueness of the generalized projection operator follows from the properties
of ϕ. In a real Hilbert space, the generalized projection coincides with the metric
projection operator.

The following two lemmas are due to Alber [3] concerning the generalized
projection operator.

Lemma 1.3 (Alber [3]). Let C be a nonempty closed convex subset of a smooth,
strictly convex, and reflexive Banach space E, let x ∈ E and let x0 ∈ C. Then,
PCx = x0 if and only if

〈x0 − y, Jx − Jx0〉 ≥ 0, for all y ∈ C.
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Lemma 1.4 (Alber [3]). Let E be a reflexive, strictly convex and smooth Banach
space, let C be a nonempty closed convex subset of E and let x ∈ E. Then

ϕ(y, PCx) + ϕ(PCx, x) ≤ ϕ(y, x), for all y ∈ C.

Lemma 1.5 (Blum and Oettli [1]). Let C be a closed convex subset of a smooth,
strictly convex and reflexive Banach space E, let f : C × C → R be a bifunction
satisfying (A1)-(A4), let r > 0 and x ∈ E. Then there exists z ∈ C such that

f(z, y) +
1

r
〈y − z, Jz − Jx〉 ≥ 0, for all y ∈ C.

Lemma 1.6 (Takahashi and Zembayashi [15]). Let C be a closed convex subset
of a uniformly smooth, strictly convex, and reflexive Banach space E. Let f :
C × C → R be a bifunction satisfying (A1)-(A4). For r > 0 and x ∈ E, define a
mapping Tr : E → C by

Tr(x) =

{
z ∈ C : f(z, y) +

1

r
〈y − z, Jz − Jx〉 ≥ 0, for all y ∈ C

}

for all x ∈ C. Then, the following holds:

(1) EP (f) is closed and convex;

(2) Tr is single valued;

(3) Tr is firmly nonexpansive-type mapping, i.e.,

〈Trx − Try, JTrx − JTry〉 ≤ 〈Trx − Try, Jx − Jy〉, for all x, y ∈ E,

(4) F (Tr) = EP (f).

2 Main Result

In this section, we prove a strong convergence theorem by using a shrinking
projection method based on an implicit hybrid algorithm for a countable family
of relatively nonexpansive mappings in a Banach space.

Our main result is as under:

Theorem 2.1. Let C be a nonempty, closed and convex subset of a uniformly
smooth and uniformly convex Banach space E. Let f : C2 → R be a bifunction
satisfying (A1)-(A4) and let Si : C → C, i ≥ 1, be a countable family of relatively
nonexpansive mappings such that F :=

⋂∞

i=1 F (Si) ∩ EP (f) 6= ∅. Let {xn} be a
sequence generated by:






x0 ∈ C0 = C

yn,i = J−1 (αnJxn + (1 − αn)JSiyn,i) , i ≥ 1,

un,i ∈ C such that f(un,i, y) + 1
rn
〈y − un,i, Jun,i − Jyn,i〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : supi≥1 ϕ (z, un,i) ≤ ϕ (z, xn)},
xn+1 = PCn+1

x0, n ≥ 0,
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where {αn} ⊂ (0, 1) and {rn} ⊂ (0,∞) satisfying lim supn→∞ αn < 1 and
lim infn→∞ rn > 0. Then {xn} converges strongly to PF x0, where PF is a gener-
alized projection of E onto F .

Proof. By Lemma 1.1 and Lemma 1.6 (4), we know that F is a closed and convex.
Next we show that Cn is closed and convex. Clearly, C0 = C is closed and convex.
Suppose that Ck is closed and convex for k ∈ N. For each z ∈ Ck, we observe that

Ck+1 = {z ∈ Ck : sup
i≥1

ϕ(z, uk,i) ≤ ϕ(z, xk)}

=
⋂

i≥1

{z ∈ Ck : ϕ(z, uk,i) ≤ ϕ(z, xk)}

=
⋂

i≥1

{z ∈ Ck : 2〈z, Jxk − Juk,i〉 + ‖uk,i‖
2 − ‖xk‖

2 ≤ 0}.

This implies that Ck+1 is closed and convex. By induction, we get that Cn is
closed and convex for all n ≥ 0.
For simplicity, we divide the remaining proof into the following six steps.
Step 1. F ⊂ Cn for all n ≥ 0.

Step 2. limn→∞ ϕ(xn, x0) exists.

Step 3. {xn} is a Cauchy sequence.

Step 4. xn → q ∈
⋂

i≥1 F (Si).

Step 5. xn → q ∈ EP (f).

Step 6. q = PF x0.

Proof of step 1. F ⊂ C0 = C is obvious. Suppose that F ⊂ Ck for k ∈ N. For
any p ∈ F , we first estimate that

ϕ(p, yk,i) = ϕ(p, J−1 (αkJxk + (1 − αk)JSiyk,i)

= ‖p‖2 − 2〈p, αkJxk + (1 − αk)JSiyk,i〉 + ‖αkJxk + (1 − αk)JSiyk,i‖
2

≤ ‖p‖2 − 2αk〈p, Jxk〉 − 2(1 − αk)〈p, JSiyk,i〉 + αk ‖xk‖
2

+ (1 − αk) ‖Siyk,i‖
2

= αk

(
‖p‖2 − 2〈p, Jxk〉 + ‖xk‖

2
)

+ (1 − αk)
(
‖p‖2 − 2〈p, JSiyk,i〉 + ‖Siyk,i‖

2
)

= αk ϕ(p, xk) + (1 − αk)ϕ(p, Siyk,i)

≤ αk ϕ(p, xk) + (1 − αk)ϕ(p, yk,i). (2.1)

Since αk > 0, therefore (2.1) reduces to

ϕ(p, yk,i) ≤ ϕ(p, xk). (2.2)

Note that uk,i = Trk
yk,i, i ≥ 1. Since Trk

is relatively nonexpansive, so we have

ϕ(p, uk,i) = ϕ(p, Trk
yk,i) ≤ ϕ(p, yk,i) ≤ ϕ(p, xk).
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This shows that p ∈ Ck+1; consequently, F ⊂ Ck+1. By a simple induction, we
also get that F ⊂ Cn for all n ≥ 0. Moreover, PCn+1

x0 is well defined.

Proof of step 2. Since xn = PCn
x0 and xn+1 = PCn+1

x0 ∈ Cn+1 ⊂ Cn for all
n ≥ 0, we obtain

ϕ(xn, x0) ≤ ϕ(xn+1, x0).

This shows that {ϕ(xn, x0)} is non-decreasing. On the other hand, it follows from
xn = PCn

x0 and Lemma 1.4 that

ϕ(xn, x0) = ϕ(PCn
x0, x0) ≤ ϕ(p, x0) − ϕ(p, PCn

x0) ≤ ϕ(p, x0),

for each p ∈ F. Therefore, ϕ(xn, x0) is bounded and hence limn→∞ ϕ(xn, x0) exists.

Proof of step 3. Since xm = PCm
x0 ∈ Cm ⊂ Cn for m > n, so by Lemma 1.4,

we have

ϕ(xm, xn) = ϕ(xm, PCn
x0) ≤ ϕ(xm, x0) − ϕ(PCn

x0, x0)

= ϕ(xm, x0) − ϕ(xn, x0).

Letting m, n → ∞, we have ϕ(xm, xn) → 0. By Lemma 1.2, we have ‖xm − xn‖ →
0. Hence {xn} is Cauchy. Therefore, there exists a point q ∈ C such that xn → q

as n → ∞. In particular, we also have

lim
n→∞

‖xn+1 − xn‖ = 0. (2.3)

Proof of step 4. As xn+1 ∈ Cn, so ϕ(xn+1, un,i) ≤ ϕ(xn+1, xn). Tending n → ∞,

we have limn→∞ ϕ(xn+1, un,i) = 0 for all i ≥ 1. Again by Lemma 1.2, we have

lim
n→∞

‖xn+1 − un,i‖ = 0, i ≥ 1. (2.4)

This implies un,i → q as n → ∞. Furthermore, (2.3) and (2.4) yield that

lim
n→∞

‖xn − un,i‖ = 0, i ≥ 1. (2.5)

Since J is uniformly norm-to-norm continuous on bounded sets, so

lim
n→∞

‖Jxn − Jun,i‖ = 0. (2.6)

From (2.2), we know that ϕ(p, yn,i) ≤ ϕ(p, xn) for all i ≥ 1. So by Lemma 1.4, we
have

ϕ(un,i, yn,i) = ϕ(Trn
yn,i, yn,i)

≤ ϕ (p, yn,i) − ϕ(p, Trn
yn,i)

≤ ϕ(p, xn) − ϕ(p, Trn
yn,i)

= ϕ(p, xn) − ϕ(p, un,i), i ≥ 1. (2.7)
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From (2.5), (2.6) and (2.7), we have limn→∞ ϕ(un,i, yn,i) = 0 for all i ≥ 1;
consequently, Lemma 1.2 asserts that

lim
n→∞

‖un,i − yn,i‖ = 0, i ≥ 1. (2.8)

From (2.5) and (2.8), we also have

lim
n→∞

‖xn − yn,i‖ = 0, i ≥ 1. (2.9)

Thus, yn,i → q as n → ∞. On the other hand, we observe that

‖JSiyn,i − Jyn,i‖ =
αn

1 − αn

‖Jxn − Jyn,i‖, i ≥ 1. (2.10)

Since lim supn→∞ αn < 1, it follows from (2.9) and (2.10) that

lim
n→∞

‖JSiyn,i − Jyn,i‖ = 0, i ≥ 1.

This also implies that

lim
n→∞

‖Siyn,i − yn,i‖ = 0, i ≥ 1.

Therefore, q ∈
⋂∞

i=1 F̂ (Si) =
⋂∞

i=1 F (Si).

Proof of step 5. Since lim infn→∞ rn > 0, it follows from (2.8) that

lim
n→∞

‖Jun,i − Jyn,i‖

rn

= 0, i ≥ 1. (2.11)

From un,i = Trn
yn,i for all n ≥ 0 and i ≥ 1, we have

f(un,i, y) +
1

rn

〈y − un,i, Jun,i − Jyn,i〉 ≥ 0, for all y ∈ C.

From (A2), we have

1

rn

〈y − un,i, Jun,i − Jyn,i〉 ≥ −f(un,i, y)

≥ f(y, un,i), for all y ∈ C.

From un,i → q and (A4), we obtain f(y, q) ≤ 0 for all y ∈ C. Let yt = ty+(1− t)q
for 0 < t < 1 and y ∈ C. Then yt ∈ C and hence f(yt, q) ≤ 0. From (A1)
and (A4), we have 0 = f(yt, yt) ≤ tf(yt, y) + (1 − t)f(yt, q) ≤ tf(yt, y). Thus,
f(yt, y) ≥ 0. From (A3), we have f(q, y) ≥ 0 for all y ∈ C. Therefore, q ∈ EP (f)
and hence q ∈ F.

Proof of step 6. From xn = PCn
x0 we have

〈xn − p, Jx0 − Jxn〉 ≥ 0, for all p ∈ F.

Taking limit in the above inequality, we have 〈q − p, Jx0 − Jq〉 ≥ 0, for all p ∈ F.

So by Lemma 1.3, we conclude that q = PF x0. This completes the proof.
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3 Applications

This section deals with the application of equilibrium problems as it play
a central role in numerous disciplines including economics, management science,
operations research, and engineering. We discuss variational inequality problem
and convex minimization problem in a Banach space.

3.1 Variational Inequality Problem

Numerous algorithms have been developed for the computation of equilib-
rium points. Variational inequality theory, a powerful computational algorithm,
is one of them which has numerous applications in various disciplines of sciences
such as mathematical programming, game theory, mechanics and geometry. Now,
we formally define classical variational inequality problem in connection with the
equilibrium problem discussed in Theorem 2.1 as follows: Let A : C → E∗ be a
nonlinear mapping, the variational inequality problem is to find a point x ∈ C such
that 〈Ax, y − x〉 ≥ 0 for all y ∈ C. The set of solutions of variational inequality
problem is denoted as

V I(C, A) = {x ∈ C : 〈Ax, y − x〉 ≥ 0, for all y ∈ C}.

Theorem 3.1. Let C be a nonempty, closed and convex subset of a uniformly
smooth and uniformly convex Banach space E. Let A : C → E∗ be a monotone
and continuous mapping, and let Si : C → C, i ≥ 1, be a countable family of
relatively nonexpansive mappings such that F :=

⋂∞

i=1 F (Si) ∩ V I(C, A) 6= ∅. Let
{xn} be a sequence generated by






x0 ∈ C0 = C

yn,i = J−1 (αnJxn + (1 − αn)JSiyn,i) , i ≥ 1,

un,i ∈ C such that 〈Aun,i, y − un,i〉 + 1
rn
〈y − un,i, Jun,i − Jyn,i〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : supi≥1 ϕ (z, un,i) ≤ ϕ (z, xn)},
xn+1 = PCn+1

x0, n ≥ 0,

where {αn} ⊂ (0, 1) and {rn} ⊂ (0,∞) satisfying lim supn→∞ αn < 1 and
lim infn→∞ rn > 0. Then, {xn} converges strongly to PF x0, where PF is a gener-
alized projection of E onto F .

Proof. Define f(x, y) = 〈Ax, y−x〉 for all x, y ∈ C. Then f satisfies the conditions
(A1)-(A4). Therefore, by Theorem 2.1, we obtain the desired result.

3.2 Convex Minimization Problem

Mathematical optimization has applicable roots in various disciplines such as
estimation and signal processing, communications and networks, electronic circuit
design, data analysis and modeling, statistics (optimal design), and finance. Con-
vex minimization problem (CMP), basically deals with the problems of minimizing
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real valued convex function defined on the convex subset of the underlying space,
i.e. φ : C → R such that

CMP (φ) = {x ∈ C : φ(x) ≤ φ(y), for all y ∈ C}.

Theorem 3.2. Let C be a nonempty, closed and convex subset of a uniformly
smooth and uniformly convex Banach space E. Let φ : C → R be a proper,
lower semicontinuous and convex function, and let Si : C → C, i ≥ 1, be a
countable family of relatively nonexpansive mappings such that F :=

⋂∞

i=1 F (Si)∩
CMP (φ) 6= ∅. Let {xn} be a sequence generated by






x0 ∈ C0 = C

yn,i = J−1 (αnJxn + (1 − αn)JSiyn,i) , i ≥ 1,

un,i ∈ C such that φ(y) + 1
rn
〈y − un,i, Jun,i − Jyn,i〉 ≥ φ(un,i), ∀y ∈ C,

Cn+1 = {z ∈ Cn : supi≥1 ϕ (z, un,i) ≤ ϕ (z, xn)},
xn+1 = PCn+1

x0, n ≥ 0,

where {αn} ⊂ (0, 1) and {rn} ⊂ (0,∞) satisfying lim supn→∞ αn < 1 and
lim infn→∞ rn > 0. Then, {xn} converges strongly to PF x0, where PF is a gener-
alized projection of E onto F .

Proof. Define f(x, y) = φ(y) − φ(x) for all x, y ∈ C. Then f satisfies the con-
ditions (A1)-(A4). Therefore, Theorem 2.1 can also be applied to such a convex
minimization problem.
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