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1 Introduction

The product of an almost contact manifold M and the real line R carries a
natural almost complex structure. However if one takes M to be an almost contact
metric manifold and suppose that the product metric G on M × R is Kaehlerian,
then the structure on M is cosymplectic [1] and not Sasakian. On the other hand,
Oubina [2] pointed out that if the conformally related metric e2tG, t being the
coordinates on R, is Kaehlerian, then M is Sasakian and conversely.

Copyright c© 2012 by the Mathematical Association of Thailand.

All rights reserved.



2 Thai J. Math. 10 (2012)/ U.C. De and K. De

In [3], Tanno classified almost contact metric manifolds whose automorphism
groups possesses the maximum dimension. For such a manifold M , the sectional
curvature of plane section containing ξ is a constant, say c. If c > 0, M is a
homogeneous Sasakian manifold of constant sectional curvature. If c = 0, M is
the product of a line or a circle with a Kaehler manifold of constant holomorphic
sectional curvature. If c < 0, M is a warped product space R × fCn

. In 1972,
Kenmotsu [4] abstracted the differential geometric properties of the third case.
We call it Kenmotsu manifold.

In general, a geodesic circle (a curve whose first curvature is constant and
second curvature is identically zero) does not transform into a geodesic circle by
the conformal transformation

g̃ij = ψ2gij , (1.1)

of the fundamental tensor gij . The transformation which preserves geodesic circles
was first introduced by Yano [5]. The conformal transformation (1.1) satisfying
the partial differential equation

ψ;i;j = φgij , (1.2)

changes a geodesic circle into a geodesic circle. Such a transformation is known as
the concircular transformation and the geometry which deals with such transfor-
mation is called the concircular geometry [5].

A (1, 3) type tensor C̃(X,Y )Z which remains invariant under concircular trans-
formation, for an n-dimensional Riemannian manifold Mn, is given by Yano and
Kon [6, 7].

C̃(X,Y )Z = R(X,Y )Z −
r

n(n− 1)
[g(Y, Z)X − g(X,Z)Y ], (1.3)

where R(X,Y )Z = ∇X∇Y Z − ∇Y ∇XZ − ∇[X,Y ]Z (∇ being the Riemannian
connection) is the Riemannian curvature tensor and r, the scalar curvature. From
(1.3) we obtain

(∇W C̃)(X,Y )Z = (∇WR)(X,Y )Z −
dr(W )

n(n− 1)
[g(Y, Z)X − g(X,Z)Y ]. (1.4)

The importance of concircular transformation and concircular curvature tensor is
very well known in the differential geometry of certain F-structure such as complex,
almost complex, Kahler, almost Kahler, contact and almost contact structure etc.
([7–9]). In a recent paper, Ahsan and Siddiqui [10] studied the application of
concircular curvature tensor in fluid space time.

In this paper, we study locally φ-concircularly symmetric and globally φ-
concircularly symmetric contact metric manifolds. A contact metric manifold
(M, g) is called locally φ-concircularly symmetric if the condition

φ2
((

∇XC̃
)

(Y, Z,W )
)

= 0 (1.5)
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holds on M , where X,Y, Z and W are horizontal vectors. If X,Y, Z and W are
arbitrary vectors then the manifold is called globally φ-concircularly symmetric.
Kenmotsu manifold were studied by many authors such as Pitis [11], De and
Pathak [12], Binh et al. [13], Begewadi et al. [14–16], Ozgur [17, 18] and many
others. The paper is organized as follows: In section 2, some preliminary results
are recalled.After preliminaries,we study globally φ-concircularly symmetric Ken-
motsu manifolds. We prove that if a Kenmotsu manifold is globally φ-concircularly
symmetric, then the manifold is an Einstein manifold. We also show that a glob-
ally φ-concircularly symmetric Kenmotsu manifold is globally φ-symmetric. In
the next section, we study 3-dimensional locally φ-concircularly symmetric Ken-
motsu manifolds. We prove that a 3-dimensional Kenmotsu manifold is locally
φ-concircularly symmetric if and only if the scalar curvature is constant.Finally,
we cited some examples of φ-concircularly symmetric Kenmotsu manifolds.

2 Preliminaries

Let M be a connected almost contact metric manifold with an almost contact
metric structure (φ,ξ,η,g), that is, φ is an (1,1) tensor field, ξ is a vector field, η is
a 1-form and g is a compatible Riemannian metric such that

φ2(X) = −X + η(X)ξ, η(ξ) = 1, φξ = 0, ηφ = 0 (2.1)

g(φX, φY ) = g(X,Y ) − η(X)η(Y ) (2.2)

g(X, ξ) = η(X) (2.3)

for all X,Y ∈ T (M) [19, 20]. If an almost contact metric manifold satisfies

(∇Xφ)Y = g(φX, Y )ξ − η(Y )φX, (2.4)

then M is called a Kenmotsu manifold [4], where ∇ is the Levi-Civita connection
of g. From the above equation it follows that

∇Xξ = X − η(X)ξ, (2.5)

and

(∇Xη)Y = g(X,Y ) − η(X)η(Y ). (2.6)

Moreover, the curvature tensor R and the Ricci tensor S satisfy

R(X,Y )ξ = η(X)Y − η(Y )X (2.7)

and

S(X, ξ) = −(n− 1)η(X). (2.8)
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From [12], we know that for a 3-dimensional Kenmotsu manifold

R(X,Y )Z =

(
r + 4

2

)
[g(Y, Z)X − g(X,Z)Y ] (2.9)

−

(
r + 6

2

)
[g(Y, Z)η(X)ξ − g(X,Z)η(Y )ξ

+ η(Y )η(Z)X − η(X)η(Z)Y ],

S(X,Y ) =
1

2
[(r + 2)g(X,Y ) − (r + 6)η(X)η(Y )], (2.10)

where S is the Ricci tensor of type (0, 2), R is the curvature tensor of type (1, 3)
and r is the scalar curvature of the manifold M .

3 Globally φ-Concircularly Symmetric Kenmotsu

Manifolds

Definition 3.1. A Kenmotsu manifold M is said to be globally φ-concircularly
symmetric if the concircular curvature tensor C̃ satisfies

φ2
((

∇XC̃
)

(Y, Z,W )
)

= 0, (3.1)

for all vector fields X,Y, Z ∈ χ(M).

It is well-known that if the Ricci tensor S of the manifold is of the form
S(X,Y ) = λg(X,Y ), where λ is a constant and X,Y ∈ χ(M), then the manifold
is called an Einstein manifold.

Let us suppose that M is a globally φ-concircularly symmetric Kenmotsu man-
ifold. Then by definition

φ2
((

∇W C̃
)

(X,Y, Z)
)

= 0.

Using (2.1) we have

−
(
∇W C̃

)
(X,Y )Z + η

((
∇W C̃

)
(X,Y )Z

)
ξ = 0.

From (1.4) it follows that

0 = −g((∇WR)(X,Y )Z,U) +
dr(W )

n(n− 1)
[g(Y, Z)g(X,U) − g(X,Z)g(Y, U)]

+ η((∇WR)(X,Y )Z)η(U) −
dr(W )

n(n− 1)
[g(Y, Z)η(X) − g(X,Z)η(Y )]η(U).
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Putting X = U = ei, where {ei}, (i = 1, 2, ..., n) is an orthonormal basis of the
tangent space at each point of the manifold, and taking summation over i, we get

0 = − (∇WS) (Y, Z) +
dr(W )

n
g(Y, Z) + η ((∇WR) (ei, Y )Z) η(ei)

−
dr(W )

n(n− 1)
[g(Y, Z) − η(Y )η(Z)].

Putting Z = ξ, we obtain

− (∇WS) (Y, ξ) +
dr(W )

n
η(Y ) + η ((∇WR) (ei, Y )ξ) η(ei) = 0. (3.2)

Now
η ((∇WR) (ei, Y )ξ) η(ei) = g ((∇WR) (ei, Y )ξ, ξ) g(ei, ξ). (3.3)

g ((∇WR) (ei, Y )ξ, ξ) = g (∇WR(ei, Y )ξ, ξ) − g (R(∇W ei, Y )ξ, ξ)

− g (R(ei,∇WY )ξ, ξ) − g (R(ei, Y )∇W ξ, ξ) .

Since {ei} is an orthonormal basis ∇Xei = 0 and using (2.7) we find

g (R(ei,∇WY )ξ, ξ) = g(η(ei)∇WY − η(∇WY )ei, ξ)

= η(ei)η(∇WY ) − η(∇WY )η(ei)

= 0.

As
g (R(ei, Y )ξ, ξ) + g (R(ξ, ξ) Y, ei) = 0

we have
g (∇WR(ei, Y )ξ, ξ) + g (R(ei, Y )ξ,∇W ξ) = 0.

Using this we get
g ((∇WR) (ei, Y )ξ, ξ) = 0. (3.4)

By the use of (3.3) and (3.4) , from (3.2) we obtain

(∇WS) (Y, ξ) =
1

n
dr(W )η(Y ), (3.5)

Putting Y = ξ in (3.5), we get dr(W ) = 0. This implies r is constant. So from
(3.5), we have ∇WS(Y, ξ) = 0. This implies that

S(Y,W ) = (1 − n)g(Y,W ). (3.6)

Hence we can state the following:

Theorem 3.2. If a Kenmotsu manifold is globally φ-concircularly symmetric, then
the manifold is an Einstein manifold.
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Next suppose S(X,Y ) = λg(X,Y ), that is, the manifold is an Einstein mani-
fold. Then from (1.3) we have

(
∇W C̃

)
(X,Y )Z = (∇WR) (X,Y )Z.

Applying φ2 on both sides of the above equation we have

φ2
(
∇W C̃

)
(X,Y )Z = φ2 (∇WR) (X,Y )Z.

Hence we can state:

Theorem 3.3. A globally φ-concircularly symmetric Kenmotsu manifold is glob-
ally φ-symmetric.

Remark 3.4. Since a globally φ-symmetric Kenmotsu manifold is always a glob-
ally φ-concircularly symmetric manifold, from Theorem 3.3, we conclude that on
a Kenmotsu manifold, globally φ-symmetry and globally φ-concircularly symmetry
are equivalent.

4 3-Dimensional Locally φ-Conccircularly

Symmetric Kenmotsu Manifolds

Using (2.9) in (1.3), in a 3-dimensional Kenmotsu manifold the concircular
curvature tensor is given by

C̃(X,Y )Z =

(
r + 4

2

)
[g(Y, Z)X − g(X,Z)Y ] (4.1)

−

(
r + 6

2

)
[g(Y, Z)η(X)ξ − g(X,Z)η(Y )ξ

+ η(Y )η(Z)X − η(X)η(Z)Y ] −
( r

6

)
[g(Y, Z)X − g(X,Z)Y ].

Taking the covariant differentiation to the both sides of the equation (4.1), we
have

(∇W C̃)(X,Y )Z =
dr(W )

2
[g(Y, Z)X − g(X,Z)Y ] (4.2)

−
dr(W )

2
[g(Y, Z)η(X)ξ − g(X,Z)η(Y )ξ

+ η(Y )η(Z)X − η(X)η(Z)Y ] −

(
r + 6

2

)
[g(Y, Z)(∇W η)(X)ξ

− g(X,Z)(∇W η)(Y )ξ + g(Y, Z)η(X)∇W ξ − g(X,Z)η(Y )∇W ξ

+ (∇W η)(Y )η(Z)X + η(Y )(∇W η)(Z)X − (∇W η)(X)η(Z)Y

− η(X)(∇W η)(Z)Y ] −

(
dr(W )

6

)
[g(Y, Z)X − g(X,Z)Y ].
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Now assume that X,Y and Z are horizontal vector fields. So the equation (4.2)
becomes

(∇W C̃)(X,Y )Z =
dr(W )

3
[g(Y, Z)X − g(X,Z)Y ] (4.3)

−

(
r + 6

2

)
[g(Y, Z)(∇W η)(X)ξ − g(X,Z)(∇W η)(Y )ξ].

From (4.3) it follows that

φ2((∇W C̃)(X,Y )Z) = −
dr(W )

3
[g(Y, Z)X − g(X,Z)Y ]. (4.4)

Hence we can state the following:

Theorem 4.1. A 3-dimensional Kenmotsu manifold is locally φ-concircularly
symmetric if and only if the scalar curvature r is constant.

In [12], De and Pathak prove that

Corollary 4.2. A 3-dimensional Kenmotsu manifold is locally φ-symmetric if and
only if the scalar curvature r is constant.

Using Corollary 4.2, we can state the following theorem:

Theorem 4.3. A 3-dimensional Kenmotsu manifold is locally φ-concircularly
symmetric if and only if it is locally φ-symmetric.

5 Examples

Example 5.1. In [21], the authors prove that if R(ξ,X)C̃ = 0 for any X ∈ χ(M),
then M has constant sectional curvature −1. Hence the manifold is an Einstein
manifold. Therefore from the definition of concircular curvature tensor we find
that globally φ-symmetry and globally φ-concircularly symmetry are equivalent.
Hence in a concircular semi-symmetric [RC̃ = 0] Kenmotsu manifold globally φ-
symmetry and globally φ-concircularly symmetry are equivalent. Thus Theorem
3.3 is verified.

Example 5.2. In [4], Kenmotsu prove that a conformally flat Kenmotsu manifold
of dimension ≥ 5 has constant sectional curvature equal to −1. Hence the manifold
is an Einstein manifold.Therefore by the same argument as in Example 5.1, in a
conformally flat Kenmotsu manifold of dimension ≥ 5 globally φ-symmetry and
globally φ-concircularly symmetry are equivalent. Thus Theorem 3.3 is verified.

Example 5.3. In [22], Jun et al. prove that any η-Einstein [S(X,Y ) = ag(X,Y )+
bη(X)η(Y )] Kenmotsu manifold of dimension n ≥ 5 with b = constant is Ein-
stein.Hence by the similar argument as in Example 5.1, in an η-Einstein Kenmotsu
manifold of dimension ≥ 5 globally φ-symmetry and globally φ-concircularly sym-
metry are equivalent.Thus Theorem 3.3 is verified.
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Example 5.4. In [22], the authors prove that a Ricci recurrent [∇S = α ⊗ S]
manifold is an Einstein manifold. Hence by the similar argument as in Example
5.1,in a Ricci-recurrent Kenmotsu manifold globally φ-symmetry and globally φ-
concircularly symmetry are equivalent.Thus Theorem 3.3 is verified.

Example 5.5. We consider the 3-dimensional manifold M = {(x, y, z)εR3, z 6=
0}, where (x, y, z) are standard coordinate of R

3.

The vector fields

e1 = z
∂

∂x
, e2 = z

∂

∂y
, e3 = −z

∂

∂z

are linearly independent at each point of M.

Let g be the Riemannian metric defined by

g(e1, e3) = g(e1, e2) = g(e2, e3) = 0,

g(e1, e1) = g(e2, e2) = g(e3, e3) = 1.

Let η be the 1-form defined by η(Z) = g(Z, e3) for any Zεχ(M).
Let φ be the (1, 1) tensor field defined by

φ(e1) = −e2, φ(e2) = e1, φ(e3) = 0.

Then using the linearity of φ and g, we have

η(e3) = 1,

φ2Z = −Z + η(Z)e3,

g(φZ, φW ) = g(Z,W ) − η(Z)η(W ),

for any Z,Wεχ(M). Then for e3 = ξ, the structure (φ, ξ, η, g) defines an almost
contact metric structure on M .

Let ∇ be the Levi-Civita connection with respect to metric g. Then we have

[e1, e3] = e1e3 − e3e1

= z
∂

∂x

(
−z

∂

∂z

)
−

(
−z

∂

∂z

) (
z
∂

∂x

)

= −z2 ∂2

∂x∂z
+ z2 ∂2

∂z∂x
+ z

∂

∂x

= e1. (5.1)

Similarly, [e1, e2] = 0 and [e2, e3] = e2.

The Riemannian connection ∇ of the metric g is given by

2g(∇XY, Z) = Xg(Y, Z) + Y g(Z,X) − Zg(X,Y )

− g(X, [Y, Z]) − g(Y, [X,Z]) + g(Z, [X,Y ]), (5.2)
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which known as Koszul’s formula. Using (5.2) we have

2g(∇e1
e3, e1) = −2g(e1,−e1)

= 2g(e1, e1). (5.3)

Again by (5.2), we have

2g(∇e1
e3, e2) = 0 = 2g(e1, e2) (5.4)

and

2g(∇e1
e3, e3) = 0 = 2g(e1, e3). (5.5)

From (5.3), (5.4) and (5.5), we obtain

2g(∇e1
e3, X) = 2g(e1, X), (5.6)

for all Xεχ(M). Thus ∇e1
e3 = e1. Therefore, (5.2) further yields

∇e1
e3 = e1, ∇e1

e2 = 0, ∇e1
e1 = −e3,

∇e2
e3 = e2, ∇e2

e2 = e3, ∇e2
e1 = 0,

∇e3
e3 = 0, ∇e3

e2 = 0, ∇e3
e1 = 0. (5.7)

From the above it follows that the manifold satisfies ∇Xξ = X−η(X)ξ, for ξ = e3.
Hence the manifold is a Kenmotsu manifold. It is known that

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z. (5.8)

With the help of the above results and using (5.8), it can be easily verified that

R(e1, e2)e3 = 0, R(e2, e3)e3 = −e2, R(e1, e3)e3 = −e1,

R(e1, e2)e2 = −e1, R(e2, e3)e2 = e3, R(e1, e3)e2 = 0,

R(e1, e2)e1 = e2, R(e2, e3)e1 = 0, R(e1, e3)e1 = e3.

From the above expressions of the curvature tensor R we obtain

S(e1, e1) = g(R(e1, e2)e2, e1) + g(R(e1, e3)e3, e1)

= −2. (5.9)

Similarly, we have S(e2, e2) = S(e3, e3) = −2. Therefore, r = S(e1, e1)+S(e2, e2)+
S(e3, e3) = −6. We note that here r is constant. Thus Theorem 4.1 is verified.
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