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1 Introduction

The product of an almost contact manifold M and the real line R carries a
natural almost complex structure. However if one takes M to be an almost contact
metric manifold and suppose that the product metric G on M x R is Kaehlerian,
then the structure on M is cosymplectic [1] and not Sasakian. On the other hand,
Oubina [2] pointed out that if the conformally related metric €2'G, t being the
coordinates on R, is Kaehlerian, then M is Sasakian and conversely.
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In [3], Tanno classified almost contact metric manifolds whose automorphism
groups possesses the maximum dimension. For such a manifold M, the sectional
curvature of plane section containing ¢ is a constant, say c¢. If ¢ > 0, M is a
homogeneous Sasakian manifold of constant sectional curvature. If ¢ = 0, M is
the product of a line or a circle with a Kaehler manifold of constant holomorphic
sectional curvature. If ¢ < 0, M is a warped product space R x f¢". In 1972,
Kenmotsu [4] abstracted the differential geometric properties of the third case.
We call it Kenmotsu manifold.

In general, a geodesic circle (a curve whose first curvature is constant and
second curvature is identically zero) does not transform into a geodesic circle by
the conformal transformation

Gij = 1 gij, (1.1)

of the fundamental tensor g;;. The transformation which preserves geodesic circles
was first introduced by Yano [5]. The conformal transformation (1.1) satisfying
the partial differential equation

Viizj = 9Yij (1.2)

changes a geodesic circle into a geodesic circle. Such a transformation is known as
the concircular transformation and the geometry which deals with such transfor-
mation is called the concircular geometry [5].

A (1, 3) type tensor C (X,Y)Z which remains invariant under concircular trans-
formation, for an n-dimensional Riemannian manifold M", is given by Yano and
Kon [6, 7].

~ r

C(X,Y)Z=R(X,Y)Z - m[g(Y, X —g(X,2)Y], (1.3)

where R(X,Y)Z = VxVyZ — VyVxZ — Vixy]Z (V being the Riemannian
connection) is the Riemannian curvature tensor and r, the scalar curvature. From
(1.3) we obtain

dr(W)

(VwC)(X,Y)Z = (VwR)(X,Y)Z — =1

gV, 2)X —g(X,2)Y]. (1.4)

The importance of concircular transformation and concircular curvature tensor is
very well known in the differential geometry of certain F-structure such as complex,
almost complex, Kahler, almost Kahler, contact and almost contact structure etc.
([79]). In a recent paper, Ahsan and Siddiqui [10] studied the application of
concircular curvature tensor in fluid space time.

In this paper, we study locally ¢-concircularly symmetric and globally ¢-
concircularly symmetric contact metric manifolds. A contact metric manifold
(M, g) is called locally ¢-concircularly symmetric if the condition

@ ((vxé) (Y, Z, W)) -0 (1.5)
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holds on M, where X,Y,Z and W are horizontal vectors. If XY, Z and W are
arbitrary vectors then the manifold is called globally ¢-concircularly symmetric.
Kenmotsu manifold were studied by many authors such as Pitis [11], De and
Pathak [12], Binh et al. [13], Begewadi et al. [14-16], Ozgur [17, 18] and many
others. The paper is organized as follows: In section 2, some preliminary results
are recalled.After preliminaries,we study globally ¢-concircularly symmetric Ken-
motsu manifolds. We prove that if a Kenmotsu manifold is globally ¢-concircularly
symmetric, then the manifold is an Einstein manifold. We also show that a glob-
ally ¢-concircularly symmetric Kenmotsu manifold is globally ¢-symmetric. In
the next section, we study 3-dimensional locally ¢-concircularly symmetric Ken-
motsu manifolds. We prove that a 3-dimensional Kenmotsu manifold is locally
¢-concircularly symmetric if and only if the scalar curvature is constant.Finally,
we cited some examples of ¢-concircularly symmetric Kenmotsu manifolds.

2 Preliminaries
Let M be a connected almost contact metric manifold with an almost contact

metric structure (¢,£,n,9), that is, ¢ is an (1,1) tensor field, £ is a vector field, 7 is
a 1-form and ¢ is a compatible Riemannian metric such that

P (X)=—-X+n(X)EnE) =1,¢£ =0,n9 =0 (2.1)
9(¢X,9Y) = g(X,Y) —n(X)n(Y) (2.2)
9(X,§) = n(X) (2.3)

for all X,Y € T(M) [19, 20]. If an almost contact metric manifold satisfies

(Vxo)Y = g(¢X,Y)E —n(Y)oX, (2.4)

then M is called a Kenmotsu manifold [4], where V is the Levi-Civita connection
of g. From the above equation it follows that

Vx§=X—n(X)E, (2.5)
and
(Vxn)Y = g(X,Y) = n(X)n(Y). (2.6)
Moreover, the curvature tensor R and the Ricci tensor S satisfy

R(X,Y)§ =n(X)Y —n(Y)X (2.7)

and
S(X, &) = —(n = n(X). (2.8)
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From [12], we know that for a 3-dimensional Kenmotsu manifold

r+4

R(X.Y)Z = ( ) 9V, 2)X - g(X. Z)Y] (2.9)

- (55°) v 206 - ax. 2

+0(Y)n(2)X —n(X)n(2)Y],
S(XY) = 51+ 2)g(X,¥) ~ (r+ 6)n(X)n(¥)] (2.10)

where S is the Ricci tensor of type (0,2), R is the curvature tensor of type (1, 3)
and r is the scalar curvature of the manifold M.

3 Globally ¢-Concircularly Symmetric Kenmotsu
Manifolds

Definition 3.1. A Kenmotsu manifold M is said to be globally ¢-concircularly
symmetric if the concircular curvature tensor C satisfies

@ ((VX(?) v, 2, W)) —0, (3.1)

for all vector fields X,Y, Z € x(M).
It is well-known that if the Ricci tensor S of the manifold is of the form
S(X,Y) = Mg(X,Y), where ) is a constant and X,Y € x (M), then the manifold

is called an Einstein manifold.

Let us suppose that M is a globally ¢-concircularly symmetric Kenmotsu man-
ifold. Then by definition

¢ ((VwC) (X,Y,2)) =0.
Using (2.1) we have
- (vwé) (X,Y)Z +1 ((vwé) (X, Y)Z) £=0.

From (1.4) it follows that

dr(W)
n(n—1)

+0(VwR)(X,Y)Z)n(U) — %

0=—g(VwR)(X,Y)Z,U) + [9(Y, Z2)g(X,U) = g(X, Z)g(Y,U)]

[9(Y, Z)n(X) — g(X, Z)n(Y)]n(U).
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Putting X = U = ¢;, where {¢;}, (i = 1,2,...,n) is an orthonormal basis of the
tangent space at each point of the manifold, and taking summation over ¢, we get

dr(W

0= W) (v,2) + T (v, 2) 0 (T ) (1, V) 2) e

dr(W)

- m[Q(K Z) = n(Y)n(Z)].

Putting Z = £, we obtain

dr(W)

- (VwS) (Y, €) + nY)+n((VwR) (e, Y)) n(ei) =0.  (3.2)

Now

n(VwR) (e, Y)E) n(ei) = g (VwR) (&:,Y)E, €) g(ei, §). (3.3)
-9 (R(eiu va)gv 5) ) (R(ei7 Y)waa 5) .

Since {e;} is an orthonormal basis Vxe; = 0 and using (2.7) we find

g (R(ei, VwY)E,&) = g(n(ei) VY —n(VwY)e;, §)

=n(e)n(VwY) = n(VwY)n(e:)

=0.
As

g(R(ei,Y)E,€) +g(R(E Y, e)) =0
we have
9(VwR(ei,Y)E,8) + g (R(ei, Y)E, V) = 0.
Using this we get
9((VwR) (e;,Y)§,§) = 0. (3.4)

By the use of (3.3) and (3.4) , from (3.2) we obtain

(V) (Y,€) = —dr(W)n(Y), (35)

Putting Y = £ in (3.5), we get dr(W) = 0. This implies r is constant. So from
(3.5), we have ViS(Y, &) = 0. This implies that

SV, W) = (1 = n)g(Y, W). (3.6)
Hence we can state the following:

Theorem 3.2. If a Kenmotsu manifold is globally ¢-concircularly symmetric, then
the manifold is an FEinstein manifold.
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Next suppose S(X,Y) = Ag(X,Y), that is, the manifold is an Einstein mani-
fold. Then from (1.3) we have

(vwé) (X,Y)Z = (VwR) (X,Y)Z.
Applying ¢ on both sides of the above equation we have
¢* (VwC) (X,Y)Z = 6* (VwR) (X, Y)Z.

Hence we can state:

Theorem 3.3. A globally ¢-concircularly symmetric Kenmotsu manifold is glob-
ally ¢-symmetric.

Remark 3.4. Since a globally ¢-symmetric Kenmotsu manifold is always a glob-
ally ¢-concircularly symmetric manifold, from Theorem 3.8, we conclude that on
a Kenmotsu manifold, globally ¢-symmetry and globally ¢-concircularly symmetry
are equivalent.

4 3-Dimensional Locally ¢-Conccircularly
Symmetric Kenmotsu Manifolds

Using (2.9) in (1.3), in a 3-dimensional Kenmotsu manifold the concircular
curvature tensor is given by

Cex )z = (S5 ) v 2)x - g(x, 2)Y] (a.1)

- (55°) 206 - ox. 2

r

+ (¥ In(2)X —n(Om2)Y] - (5) l9Y. 2)X - g(X. 2)Y].

Taking the covariant differentiation to the both sides of the equation (4.1), we
have

(Vi C)(x,v)z = )

(Y, 2)X — g(X,2)Y] (4.2)
dr(W)

[9(Y, Z)n(X)§ — g(X, Z)n(Y)§

2
Sa@)X =02 - (50 . 2) T (08

—9(X, Z)(Vwn)(Y)E+ g(Y, Z)n(X)Vwé — g(X, Z)n(Y)VwE
+ (Vuwn)(Y)n(Z2)X +09(Y)(Vwn)(Z2)X — (Vwn)(X)n(Z2)Y

R

[9(Y, 2)X — g(X, Z2)Y].

N———
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Now assume that X,Y and Z are horizontal vector fields. So the equation (4.2)
becomes

(Vw0)(x,v)z = W)

[9(Y, 2)X — g(X, Z)Y] (4.3)

_ (7‘ ; 6) 9(Y, Z2)(Vwn)(X)E = g(X, Z)(Vwn)(Y)E].

From (4.3) it follows that

P*(VwC)(X,Y)Z) = —

dr(;m [9(Y, Z)X — g(X, Z)Y]. (4.4)

Hence we can state the following:

Theorem 4.1. A 3-dimensional Kenmotsu manifold is locally ¢-concircularly
symmetric if and only if the scalar curvature r is constant.

In [12], De and Pathak prove that

Corollary 4.2. A 3-dimensional Kenmotsu manifold is locally ¢-symmetric if and
only if the scalar curvature r is constant.

Using Corollary 4.2, we can state the following theorem:

Theorem 4.3. A 3-dimensional Kenmotsu manifold is locally ¢-concircularly
symmetric if and only if it is locally ¢-symmetric.

5 Examples

Example 5.1. In [21], the authors prove that if R(, X)é =0 for any X € x(M),
then M has constant sectional curvature —1. Hence the manifold is an Finstein
manifold. Therefore from the definition of concircular curvature tensor we find
that globally ¢-symmetry and globally ¢-concircularly symmetry are equivalent.
Hence in a concircular semi-symmetric [RC = 0] Kenmotsu manifold globally ¢-
symmetry and globally ¢-concircularly symmetry are equivalent. Thus Theorem
3.8 is verified.

Example 5.2. In [4], Kenmotsu prove that a conformally flat Kenmotsu manifold
of dimension > 5 has constant sectional curvature equal to —1. Hence the manifold
is an Finstein manifold. Therefore by the same argument as in Example 5.1, in a
conformally flat Kenmotsu manifold of dimension > 5 globally ¢-symmetry and
globally ¢-concircularly symmetry are equivalent. Thus Theorem 3.3 is verified.

Example 5.3. In [22], Jun et al. prove that any n-Einstein [S(X,Y) = ag(X,Y)+
(X )n(Y)] Kenmotsu manifold of dimension n > 5 with b = constant is Ein-
stein. Hence by the similar argument as in Example 5.1, in an n-Einstein Kenmotsu
manifold of dimension > 5 globally ¢-symmetry and globally ¢-concircularly sym-
metry are equivalent. Thus Theorem 8.3 is verified.



8 Thai J. Math. 10 (2012)/ U.C. De and K. De

Example 5.4. In [22], the authors prove that a Ricci recurrent VS = a ® SJ
manifold is an FEinstein manifold. Hence by the similar argument as in Ezxample
5.1,in a Ricci-recurrent Kenmotsu manifold globally ¢-symmetry and globally ¢-
concircularly symmetry are equivalent. Thus Theorem 3.8 is verified.

Example 5.5. We consider the 3-dimensional manifold M = {(z,y, 2)eR3, z #
0}, where (x,vy,2) are standard coordinate of R3.
The vector fields

are linearly independent at each point of M.
Let g be the Riemannian metric defined by

gle1,e3) = g(er, e2) = glea,e3) =0,

glei,e1) = glez, e2) = g(es,e3) = 1.
Let i be the 1-form defined by n(Z) = g(Z,e3) for any Zex(M).
Let ¢ be the (1,1) tensor field defined by

ple1) = —ea, ¢lez) =e1, d(e3) =0.

Then using the linearity of ¢ and g, we have

77(63) = 15
$*Z = —Z +n(2)es,

9(¢Z, W) = g(Z, W) —n(Z)n(W),

for any Z,Wex(M). Then for es = &, the structure (¢,£,n,g) defines an almost
contact metric structure on M.
Let V be the Levi-Civita connection with respect to metric g. Then we have

le1,e3] = ere3 — ezeq

_LO0 (0N (L9 (02
_ZB:E Z@z Z@z Z(’?x
N )

— 0x0z * 020z +Z@x
= €1. (51)

Similarly, [e1,e2] = 0 and [ez, e3] = ea.
The Riemannian connection V of the metric g is given by
29(VxY,Z) = Xg(Y, Z) +Yg(Z,X) = Zg(X,Y)
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which known as Koszul’s formula. Using (5.2) we have

29(Ve,e3,e1) = —2g(e1, —eq)

= 2g(e1,e1). (5.3)
Again by (5.2), we have
2g(Ve,e3,e2) =0 =2g(e1, ea) (5.4)
and
29(Ve,e3,e3) =0 =2g(e1, e3). (5.5)
From (5.8), (5.4) and (5.5), we obtain
29(Ve,e3,X) = 2¢g(e1, X), (5.6)

for all Xex(M). Thus V,es = e1. Therefore, (5.2) further yields

Ve,e3=¢e1, Veea=0, Ve =—e3,

Ve,e3 =e2, Ve,ea=c¢e3, Ve =0,

V6363 = 0, V63€2 = 0, Vesel =0. (57)

From the above it follows that the manifold satisfies Vx& = X —n(X)E, for & = es.
Hence the manifold is a Kenmotsu manifold. It is known that

R(X,Y)Z =VxVyZ —VyVxZ -V xy|Z. (5.8)
With the help of the above results and using (5.8), it can be easily verified that

R(e1,ez)es =0, R(ez,e3)es = —e2, Rl(ey,es3)es = —eq,

R(e1,e2)ea = —e1, Rlez,e3)ea =e3, R(er,ez)ea =0,
R(e1,e2)er = ez, R(ez,ez)er =0, R(er,es3)er = es.
From the above expressions of the curvature tensor R we obtain

S(e1,e1) = g(R(e1,e2)ea, e1) + g(R(e1, e3)es, er)
= -2, (5.9)

Similarly, we have S(ez,es) = S(es, e3) = —2. Therefore, r = S(e1, e1)+S(ez, e2)+
S(es,e3) = —6. We note that here r is constant. Thus Theorem 4.1 is verified.
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