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1 Introduction

Throughout the article w, c, c0, ℓ∞, ℓ1 denote the spaces of all, convergent, null,
bounded and absolutely summable sequences of complex numbers, respectively.
The zero sequence is denoted by θ. Also N and R denote the set of all positive
integers and set of real numbers respectively.

The difference sequence space was initially introduced by Kizmaz [1] and it
was generalized by Et and Colak [2] defined in the following way:

Z(∆m) = {(xk) ∈ w : ∆mxk ∈ Z},

for Z = c, c0, ℓ∞, where m ∈ N; ∆mxk = ∆m−1xk − ∆m−1xk+1 and ∆0xk = xk,
for all k ∈ N. The generalized difference operator is equivalent to the following
binomial representation:
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∆mxk =

m
∑

ν=0

(

m

ν

)

(−1)νxk+ν .

A lacunary sequence is an increasing integer sequence ξ = (kr), r = 1, 2, 3, ...
where k0 = 0 with hr = kr − kr−1 → ∞, as r → ∞. We denote Ir = (kr−1, kr]
and ηr = kr

kr−1

, for r = 1, 2, 3, ....

The lacunary strongly convergent sequence space Nξ was defined by Freedman
et al. [3] in the following way:

Nξ =

{

(xk) : lim
r→∞

h−1
r

∑

k∈Ir

|xk − L| = 0, for some L

}

.

The space Nξ is a BK- space with respect to the norm

||(xk)||ξ = sup
r

h−1
r

∑

k∈Ir

|xk|.

N0
ξ denotes the subset of these sequences in Nξ for which L = 0, (N0

ξ , ||.||ξ) is also
a BK- space. There is a relation beteen Nξ and |σ1| of strongly Cesàro summable
sequences (see Freedman et al. [3]). The space |σ1| is defined by

|σ1| =

{

(xk) ∈ w : lim
n→∞

1

n

n
∑

k=1

|xk − L| = 0, for some L

}

.

For ξ = (2r), we have a relation between the spaces |σ1| and Nξ, i.e. | σ1| = Nξ.
An Orlicz function is a function M : [0,∞) → [0,∞), which is continuous,

non-decreasing and convex with M(0) = 0, M(x) > 0, for x > 0 and M(x) → ∞,
as x → ∞. An Orlicz function M is said to satisfy ∆2 - condition for small x or at
0 if for each k > 0 there exist Rk > 0 and xk > 0 such that M(kx) ≤ RkM(x), for
all x ∈ (0, xk]. Moreover, an Orlicz function M is said to satisfy the ∆2-condition
if and only if

lim
x→∞

sup
M(2x)

M(x)
< ∞.

Two Orlicz functions M1 and M2 are said to be equivalent if there are positive
constants α, β and x0 such that

M1(αx) ≤ M2)(x) ≤ M1(βx),

for all x with 0 ≤ x < x0.
Lindenstrauss and Tzafriri [4] used the idea of the Orlicz function to construct

the sequence space:

ℓM =

{

(xk) ∈ w :

∞
∑

k=1

M

(

|xk|

ρ

)

< ∞, for some ρ > 0

}

.
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The space ℓM becomes a Banach space, with respect to the norm

|| x || = inf

{

ρ > 0 :

∞
∑

k=1

M

(

|xk|

ρ

)

≤ 1

}

which is called an Orlicz sequence space. The space ℓM is closely related to the
space ℓp which is an Orlicz sequence space with M(t) = |t|p, for 1 ≤ p < ∞.

Later on, Orlicz sequence spaces were investigated by Parashar and Choudhary
[5], Maddox [6], Tripathy et al. [7–10] and many others.

2 Definitions and Notations

A sequence M = (Mk) of Orlicz functions is called a Musielak-Orlicz function
(for details see [11, 12]). Also a Musielak-Orlicz function φ = (φk) is called a
complementary function of a Musielak-Orlicz function M if

φk(t) = sup{| t|s − Mk(s) : s ≥ 0}, for k = 1, 2, 3, ....

For a given Musielak-Orlicz function M, the Musielak-Orlicz sequence space lM
and its subspace hM are defined as follows:

lM = {x = (xk) ∈ w : IM(cx) < ∞, for some c > 0};

hM = {x = (xk) ∈ w : IM(cx) < ∞, for all c > 0},

where IM is a convex modular defined by

IM =

∞
∑

k=1

Mk(xk), x = (xk) ∈ lM.

We consider lM equipped with the Luxemburg norm

||x|| = inf
{

k > 0 : IM

(x

k

)

≤ 1
}

or equipped with the Orlicz norm

||x||0 = inf

{

1

k
(1 + IM(kx)) : k > 0

}

.

The main aim of this article is to introduce the following sequence spaces and
examine some properties of the resulting sequence spaces. Let p = (pk) denote the
sequences of positive real numbers, for all k ∈ N. Let M = (Mk) be a Musielak-
Orlicz function and v = (vk) be any sequence of non-zero complex numbers. Let
X be a seminormed space over the field of complex numbers with the semi norm
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q and w(X) denotes the space of all sequences x = (xk), where xk ∈ X. Then we
define the following sequence spaces:

[Nξ,M, ∆m, p, q, v]1

=
{

(xk) ∈ w(X) : lim
r→∞

h−1
r

∑

k∈Ir

[

Mk

(

q
(vk∆mxk − L

ρ

))]pk

→ 0,

for some ρ > 0 and L ∈ C
}

;

[Nξ,M, ∆m, p, q, v]0

=
{

(xk) ∈ w(X) : lim
r→∞

h−1
r

∑

k∈Ir

[

Mk

(

q
(vk∆mxk

ρ

))]pk

→ 0,

for some ρ > 0
}

;

[Nξ,M, ∆m, p, q, v]∞

=
{

(xk) ∈ w(X) : sup
r

h−1
r

∑

k∈Ir

[

Mk

(

q
(vk∆mxk

ρ

))]pk

< ∞,

for some ρ > 0
}

.

Definition 2.1. A sequence space E is said to be solid (or normal) if (αkxk) ∈ E,
whenever (xk) ∈ E and for all sequence (αk) of scalars with |αk| ≤ 1, for all k ∈ N.

Definition 2.2. A sequence space E is said to be symmetric if (xk) ∈ E implies
(xπ(k)) ∈ E, where π is a permutation of N.

Definition 2.3. A sequence space E is said to be convergence free if (yk) ∈ E
whenever (xk) ∈ E and xk = 0 implies yk = 0.

Let K = {k1 < k2 < · · · } ⊂ N and E be a sequence space. A K-step space of
E is a sequence space λE

K = {(xkn
) ∈ w : (kn) ∈ E}. A canonical preimage of a

sequence (xkn
) ∈ λE

K is a sequence {yn} ∈ w defined by

yn =

{

xn, if n ∈ K;
0, otherwise.

A canonical preimage of a step space λE
K is a set of canonical preimages of all

elements in λE
K , i.e. y is in canonical preimage of λE

K if and only if y is canonical
preimage of some x ∈ λE

K .

Definition 2.4. A sequence space E is said to be monotone if it contains the
canonical preimages of its step spaces.

The following results will be used for establishing some results of this article.
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Lemma 2.5 (Kamthan and Gupta [13, p. 53]). A sequence space E is solid implies
E is monotone.

Lemma 2.6 (Freedman et al. [3, Lemma 2.1]). In order to |σ1| ⊆ Nξ it is
necessary and sufficient that limr inf ηr > 1.

Lemma 2.7 (Freedman et al. [3, Lemma 2.2]). In order to Nξ ⊆ |σ1| it is
necessary and sufficient that limr sup ηr < ∞.

Lemma 2.8 (Et and Nuray [14, Theorem 2.2]). If X is a Banach space normed
by ||.||, then ∆m(X) is also a Banach space normed by

||x||∆ =
m

∑

i=1

|xi| + f(∆mx).

3 Main Results

Theorem 3.1. Let p = (pk) in ℓ∞ of strictly positive real numbers and ξ =
(kr) be a lacunary sequence. Then [Nξ,M, ∆m, p, q, v]1, [Nξ,M, ∆m, p, q, v]0 and
[Nξ,M, ∆m, p, q, v]∞ are linear spaces.

Proof. The proof of the theorem is easy, so omitted.

Theorem 3.2. Let M = (Mk) be a Musielak-Orlicz function and p = (pk) in
ℓ∞ of strictly positive real numbers and ξ = (kr) be a lacunary sequence. Then
[Nξ,M, ∆m, p, q, v]0 is a paranormed space (not totally paranormed) with the para-
norm

g∆(x) =

m
∑

i=1

|xi| + inf
{

ρ
pk
H : sup

r
h−1

r

∑

k∈Ir

[

Mk

(

q
(vk∆mxk

ρ

))]

≤ 1,

for some ρ > 0 and r = 1, 2, 3, ...
}

,

where H = max{1, sup pk}.

Proof. Clearly g∆(x) = g∆(−x). Since Mk(0) = 0, for all k ∈ N, we get g∆(θ̄) = 0,
for x = θ̄. Let x = (xk) and y = (yk) be two elements in [Nξ,M, ∆m, p, q, v]0 and
let us choose ρ1 > 0 and ρ2 > 0 be such that

sup
r

h−1
r

∑

k∈Ir

[

Mk

(

q
(vk∆mxk

ρ1

))]

≤ 1, r = 1, 2, 3, ...

and

sup
r

h−1
r

∑

k∈Ir

[

Mk

(

q
(vk∆myk

ρ2

))]

≤ 1, r = 1, 2, 3, ....
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Let ρ = ρ1 + ρ2, then we have

sup
r

h−1
r

∑

k∈Ir

[

Mk

(

q
(vk∆m(xk + yk)

ρ

))]

≤
( ρ1

ρ1 + ρ2

)

sup
r

h−1
r

∑

k∈Ir

[

Mk

(

q
(vk∆mxk

ρ1

))]

+
( ρ2

ρ1 + ρ2

)

sup
r

h−1
r

∑

k∈Ir

[

Mk

(

q
(vk∆myk

ρ2

))]

≤ 1.

Since ρ > 0, we have

g∆(x + y) =

m
∑

i=1

|xi + yi| + inf
{

ρ
pk
H : sup

r
h−1

r

∑

k∈Ir

[

Mk

(

q
(vk∆m(xk + yk)

ρ

))]

≤ 1,

r = 1, 2, 3, ...
}

≤

m
∑

i=1

|xi| + inf
{

ρ
pk
H

1 : sup
r

h−1
r

∑

k∈Ir

[

Mk

(

q
(vk∆mxk

ρ1

))]

≤ 1,

for some ρ1 > 0 and r = 1, 2, 3, ...
}

+

m
∑

i=1

|yi| + inf
{

ρ
pk
H

2 : sup
r

h−1
r

∑

k∈Ir

[

Mk

(

q
(vk∆myk

ρ2

))]

≤ 1,

for some ρ2 > 0 and r = 1, 2, 3, ...
}

= g∆(x) + g∆(y),

i.e. g∆(x + y) ≤ g∆(x) + g∆(y).

Finally, let λ be a given non-zero scalar in C. Then the continuity of the
product follows from the following expression.

g∆(λx) =

m
∑

i=1

|λxi| + inf
{

ρ
pk
H : sup

r
h−1

r

∑

k∈Ir

[

Mk

(

q
(vk∆m(λxk)

ρ

))]

≤ 1,

for some ρ > 0 and r = 1, 2, 3, ...
}

= λ
m

∑

i=1

|xi| + inf
{

(|λ|η)
pk
H : sup

r
h−1

r

∑

k∈Ir

[

Mk

(

q
(vk∆mxk

η

))]

≤ 1,

for some ρ > 0 and r = 1, 2, 3, ...
}

where η = ρ
|λ| > 0. This completes the proof of the theorem.

The proof of the following theorem is easy, so omitted.



Some Lacunary Difference Sequence Spaces defined by ... 665

Theorem 3.3. Let M = (Mk) and φ = (φk) be two Musielak-Orlicz functions
and p = (pk) ∈ ℓ∞ of strictly positive real numbers. Then

(i) [Nξ,M, ∆m, p, q, v]Z ⊆ [Nξ, φ.M, ∆m, p, q, v]Z

(ii) [Nξ,M, ∆m, p, q, v]Z ∩ [Nξ, φ, ∆m, p, q, v]Z ⊆ [Nξ, φ + M, ∆m, p, q, v]Z ,

where Z = 0, 1,∞.

Theorem 3.4. The inclusion [Nξ,M, ∆m−1, q]Z ⊆ [Nξ,M, ∆m, q]Z holds, for
m ≥ 1. In general [Nξ,M, ∆i, q]Z ⊆ [Nξ,M, ∆m, q]Z , for i = 0, 1, 2, ..., m− 1 and
the inclusions are strict, where Z = 0, 1,∞.

Proof. Let (xk) ∈ [Nξ,M, ∆m−1, q]0. Then there exists ρ > 0 such that

lim
r→∞

h−1
r

∑

k∈Ir

[

Mk

(

q
(∆m−1xk

ρ

))]

→ 0.

Since M is nondecreasing and convex, we have

h−1
r

∑

k∈Ir

[

Mk

(

q
(∆mxk

2ρ

))]

= h−1
r

∑

k∈Ir

[

Mk

(

q
(∆m−1xk − ∆m−1xk+1

2ρ

))]

≤ h−1
r

{

∑

k∈Ir

[

Mk

(

q
(∆m−1xk

2ρ

))]

+
∑

k∈Ir

[

Mk

(

q
(∆m−1xk+1

2ρ

))]

}

≤ h−1
r

∑

k∈Ir

1

2

[

Mk

(

q
(∆m−1xk

ρ

))]

+ h−1
r

∑

k∈Ir

1

2

[

Mk

(

q
(∆m−1xk+1

ρ

))]

< h−1
r

∑

k∈Ir

[

Mk

(

q
(∆m−1xk

ρ

))]

+ h−1
r

∑

k∈Ir

[

Mk

(

q
(∆m−1xk+1

ρ

))]

.

Taking limit r → ∞, we have

h−1
r

∑

k∈Ir

[

Mk

(

q
(∆mxk

ρ

))]

→ 0,

i.e. (xk) ∈ [Nξ, M, ∆m, q]0. The rest of the cases can be proved in the similar
way. By using induction, we have [Nξ,M, ∆i, q]Z ⊆ [Nξ,M, ∆m, q]Z , for i =
0, 1, 2, ..., m− 1.

The above inclusion is strict follows from the following example.

Example 3.5. Let Mk(x) = x2, for all x ∈ [0,∞), ξ = (2r), for all k ∈ N and
q(x) = |x|. Consider a sequence (xk) defined by

(xk) = (km−1, km−1, km−1, ...).

Then ∆mxk = 0, but ∆m−1xk = (−1)m−1(m − 1)!, for all n ∈ N. Thus (xk) ∈
[Nξ,M, ∆m, q]0, but (xk) /∈ [Nξ,M, ∆m−1, q]0.
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Theorem 3.6. Let ξ = (kr) be a lacunary sequence and let M = (Mk) be a
Musielak-Orlicz function. Then

(i) [Nξ,M, ∆m, p, q, v]0 ⊆ [Nξ,M, ∆m, p, q, v]1 ⊆ [Nξ,M, ∆m, p, q, v]∞, and the
inclusion is strict.

(ii) If |vk| ≤ 1, then [Nξ,M, ∆m, p, q, v]Z ⊆ [Nξ,M, ∆m, p, q, ]Z , for Z = 0, 1,∞.

Proof. (i) The inclusion [Nξ,M, ∆m, p, q, v]0 ⊆ [Nξ,M, ∆m, p, q, v]1 is obvious.
Let (xk) be an element of [Nξ,M, ∆m, p, q, v]1. Then there exists ρ > 0 such that

lim
r→∞

h−1
r

∑

k∈Ir

[

Mk

(

q
(vk∆mxk − L

ρ

))]pk

→ 0.

Since Mk is non decreasing and convex for all k ∈ N, we have

h−1
r

∑

k∈Ir

[

Mk

(

q
(vk∆mxk

ρ

))]pk

≤ Dh−1
r

∑

k∈Ir

[

Mk

(

q
(vk∆mxk − L

ρ

))]pk

+ D max
[

1, Mk

(

q
(L

ρ

))]H

,

where G = supk pk, D = max{1, 2G−1}.
Thus the sequence (xk) belongs to [Nξ,M, ∆m, p, q, v]∞.
The inclusions are strict follows from the following example.

Example 3.7. Let

pk =

{

4, if k is even;
5, if k is odd.

Let m ≥ 0 be given. Let vk = k, Mk(x) = x2, for all k ∈ N and q(x) = |x|. Let
ξ = (2r) be a lacunary sequence. Consider a sequence (xk) defined by

(xk) = (km, km, km, ...).

Thus the sequence (xk) belongs to [Nξ,M, ∆m, p, q, v]1, but (xk) does not belong to
[Nξ,M, ∆m, p, q, v]0.

The proof of the part (ii) is easy, so omitted.

Theorem 3.8. Let M = (Mk) and φ = (φk) be two Musielak-Orlicz functions. If
Mk and φk are equivalent for each k ∈ N and ξ = (kr) be a lacunary sequence.
Then

[Nξ,M, ∆m, p, q, v]Z = [Nξ, φ, ∆m, p, q, v]Z ,

where Z = 0, 1,∞.

Proof. The proof of the theorem is easy, so omitted.

Theorem 3.9. Let M = (Mk) be any Musielak-Orlicz function and let q1 and q2

be two semi norms. Then
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(i) [Nξ,M, ∆m, p, q1, v]Z ∩ [Nξ,M, ∆m, p, q2, v]Z ⊆ [Nξ,M, ∆m, p, q1 + q2, v]Z ;

(ii) if q1 is stronger than q2, [Nξ,M, ∆m, p, q1, v]Z ⊆ [Nξ,M, ∆m, p, q2, v]Z ,
where Z = 0, 1,∞.

Proof. The proof of the theorem is easy, so omitted.

We give the following two propositions without proof.

Proposition 3.10. Let ξ = (kr) be a lacunary sequence. Then the followings
hold:

(i) If lim infr ηr > 1, then for any Musielak-Orlicz function M = (Mk), for all
k ∈ N,

[W,M, ∆m, p, q, v]0 ⊆ [Nξ,M, ∆m, p, q, v]0,

where

[W,M, ∆m, p, q, v]0 =
{

(xk) ∈ w(X) : lim
n→∞

n
∑

k=1

[

Mk

(

q
(vk∆mxk

ρ

))]pk

→ 0,

for some ρ > 0
}

.

(ii) If lim supr ηr < ∞, then for any Musielak-Orlicz function M = (Mk), for
all k ∈ N,

[Nξ,M, ∆m, p, q, v]0 ⊆ [W,M, ∆m, p, q, v]0.

Proposition 3.11. Let ξ = (kr) be a lacunary sequence, with 0 < lim infr ηr ≤
lim supr ηr < ∞, then for any Musielak-Orlicz function M = (Mk), for all k ∈ N,

[Nξ,M, ∆m, p, q, v]0 = [W,M, ∆m, p, q, v]0.

Property 3.12. The spaces [Nξ, M, p, q, v]0 and [Nξ, M, p, q, v]∞ are solid
as well as monotone. The spaces [Nξ, M, ∆m, p, q, v]Z are not solid in general,
for Z = 0, 1,∞.

Proof. Let (xk) ∈ [Nξ,M, p, q, v]0. Then there exists ρ > 0 such that

lim
r→∞

h−1
r

∑

k∈Ir

[

Mk

(

q
(vkxk

ρ

))]pk

→ 0.

Let (αk) be a sequence of scalars such that |αk| ≤ 1, for all k ∈ N. Since

|αk| ≤ max(1, |αk|
G) ≤ 1, for all k ∈ N, where G = sup

k

pk < ∞.

Then for each r, we have

h−1
r

∑

k∈Ir

[

Mk

(

q
(αk(vkxk)

ρ

))]pk

≤ h−1
r

∑

k∈Ir

[

Mk

(

q
(vkxk

ρ

))]pk

. (3.1)
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Therefore (αkxk) ∈ [Nξ,M, p, q, v]0. Hence [Nξ,M, p, q, v]0 is solid.
By the Lemma 2.5, it follows that the space [Nξ,M, p, q, v]0 is monotone.

Again by the inequality (3.1) and the Lemma 2.5, we can proved that the space
[Nξ,M, p, q, v]∞ is solid as well as monotone. In order to prove that the spaces
[Nξ,M, ∆m, p, q, v]1 and [Nξ,M, ∆m, p, q, v]∞ are not solid in general, we consider
the following example.

Example 3.13. Let Mk(x) = xt, for all k ∈ N and t ≥ 1. Let pk = 1
k
, vk = k,

for all k ∈ N and q(x) = | x|. Let ξ = (2r) be a lacunary sequence, for all k ∈ N.
Consider a sequence (xk) defined by

xk = k2, for all k ∈ N.

Then (xk) belongs to [Nξ,M, ∆m, p, q, v]1 and [Nξ,M, ∆m, p, q, v]∞, for m = 1.
Let (αk) = (−1)k, for all k ∈ N. Then (αkxk) does not belong to the spaces
[Nξ,M, ∆m, p, q, v]1 and [Nξ,M, ∆m, p, q, v]∞. Hence the spaces [Nξ,M, ∆m, p, q, v]1
and [Nξ,M, ∆m, p, q, v]∞ are not solid.

Therefore by the Lemma 2.5, it follows that the spaces [Nξ,M, ∆m, p, q, v]1
and [Nξ,M, ∆m, p, q, v]∞ are not monotone.

Next to show that the space [Nξ,M, ∆m, p, q, v]0 is not solid in general. We
consider the following example.

Example 3.14. Under the restrictions on M, p, v, m, q and ξ as in Example 3.7.
We consider a sequence (xk) defined by

xk = 2, for all k ∈ N.

Let (αk) = (−1)k, for all k ∈ N. Then (αkxk) does not belong to [Nξ,M, ∆m, p, q, v]0.
Hence the space [Nξ,M, ∆m, p, q, v]0 is not solid.

Therefore by the Lemma 2.5, it follows that the space [Nξ,M, ∆m, p, q, v]0 is
not monotone.

Property 3.15. The space [Nξ,M, p, q, v]1 is neither solid nor monotone.

Proof. The space [Nξ,M, p, q, v]1 is not monotone follows from the following ex-
ample.

Example 3.16. Let pk = 1 + 1
k2 and vk = k, for all k ∈ N. Let Mk(x) = xt, for

all k ∈ N and t ≥ 1 and q(x) = |x|. Let ξ = (2r) be a lacunary sequence for all
k ∈ N. Consider a sequence (xk) defined by

(xk) = (2, 2, 2, ...), for all k ∈ N.

Consider the Kth-step space EK for a sequence space E and defined a sequence
(yk) as follows:

yk =

{

xk, if k is even;
0, otherwise.

Then (yk) does not belong to the Kth-step space EK of the sequence space E. Hence
the space [Nξ,M, p, q, v]1 is not monotone.
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Therefore by the Lemma 2.5, it follows that the space [Nξ,M, p, q, v]1 is not
solid.

Property 3.17. The spaces [Nξ,M, ∆m, p, q, v]Z are not monotone in general,
for Z = 0, 1,∞.

Proof. The proof of the result follows from the Examples 3.13 and 3.14, by con-
sidering the Kth- step space EK for a sequence space E and defined a sequence
(yk) as follows:

yk =

{

xk, if k is even;
0, otherwise.

Then the sequence (xk) defined in the Example 3.13 belongs to [Nξ,M, ∆m, p, q, v]Z ,
but (yk) does not belong to [Nξ,M, ∆m, p, q, v]Z , for Z = 1,∞.

Similarly, (xk) defined in the Example 3.14 belongs to [Nξ,M, ∆m, p, q, v]0, but
(yk) does not belong to [Nξ,M, ∆m, p, q, v]0. Hence the spaces [Nξ,M, ∆m, p, q, v]Z
are not monotone, for Z = 0, 1,∞.

Property 3.18. The spaces [Nξ,M, ∆m, p, q, v]Z are not symmetric in general,
for Z = 0, 1,∞.

Proof. The proof of the result follows from the following example.

Example 3.19. Let Mk(x) = x2, pk = k and vk = k2, for all k ∈ N. and
q(x) = |x|. Let ξ = (2r) be a lacunary sequence for all k ∈ N. Consider a sequence
(xk) defined by

xk = k3, for all k ∈ N.

Then (xk) belongs to [Nξ,M, ∆m, p, q, v]0, for m = 1. Consider the sequence (yk)
which is the rearrangement of the sequence (xk) defined by

(yk) = (x1, x2, x4, x3, x9, x5, x16, x6, x25, x7, ...).

Then (yk) does not belong to [Nξ,M, ∆m, p, q, v]Z .

Hence the spaces [Nξ,M, ∆m, p, q, v]Z are not symmetric in general.

Property 3.20. The space [Nξ,M, ∆m, p, q, v]0 is not convergence free.

Proof. The proof of the result follows from the following example.

Example 3.21. Let Mk(x) = x, pk = k, vk = k, for all k ∈ N. and q(x) = |x|. Let
ξ = (2r) be a lacunary sequence for all k ∈ N. Consider a sequence (xk) defined
by

xk =

{

2, if k is even;
0, if k is odd.

Then (xk) belongs to [Nξ,M, ∆m, p, q, v]0, for m = 2. Consider the sequence (yk)
defined by

yk =

{

k2, if k is even;
0, if k is odd.
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Then (yk) deos not belong to [Nξ,M, ∆m, p, q, v]0.

Hence the space [Nξ,M, ∆m, p, q, v]0 is not convergence free.
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