Thai Journal of Mathematics Volume 9 (2011) Number 3 : 659–671

www.math.science.cmu.ac.th/thaijournal Online ISSN 1686-0209

Some Lacunary Difference Sequence Spaces defined by Musielak-Orlicz Functions

Bipan Hazarika

Department of Mathematics, Rajiv Gandhi University, Rono Hills, Doimukh, Itanagar-791 112, Arunachal Pradesh, India e-mail : bh_rgu@yahoo.co.in

Abstract : In this article we are introduced the lacunary sequence spaces defined by Musielak-Orlicz functions and study their algebraic and topological properties. Also we obtain some relations related to these spaces.

Keywords : Difference sequence space; Lacunary sequence; Musielak-Orlicz function.

2010 Mathematics Subject Classification: 40A05; 40D05; 46A45; 46E30.

1 Introduction

Throughout the article $w, c, c_0, \ell_{\infty}, \ell_1$ denote the spaces of all, convergent, null, bounded and absolutely summable sequences of complex numbers, respectively. The zero sequence is denoted by θ . Also **N** and **R** denote the set of all positive integers and set of real numbers respectively.

The difference sequence space was initially introduced by Kizmaz [1] and it was generalized by Et and Colak [2] defined in the following way:

$$Z(\Delta^m) = \{ (x_k) \in w : \Delta^m x_k \in Z \},\$$

for $Z = c, c_0, \ell_{\infty}$, where $m \in \mathbf{N}$; $\Delta^m x_k = \Delta^{m-1} x_k - \Delta^{m-1} x_{k+1}$ and $\Delta^0 x_k = x_k$, for all $k \in \mathbf{N}$. The generalized difference operator is equivalent to the following binomial representation:

Copyright \bigodot 2011 by the Mathematical Association of Thailand. All rights reserved.

$$\Delta^m x_k = \sum_{\nu=0}^m \binom{m}{\nu} (-1)^\nu x_{k+\nu}.$$

A lacunary sequence is an increasing integer sequence $\xi = (k_r), r = 1, 2, 3, ...$ where $k_0 = 0$ with $h_r = k_r - k_{r-1} \to \infty$, as $r \to \infty$. We denote $I_r = (k_{r-1}, k_r]$ and $\eta_r = \frac{k_r}{k_{r-1}}$, for r = 1, 2, 3, ...

The lacunary strongly convergent sequence space N_{ξ} was defined by Freedman et al. [3] in the following way:

$$N_{\xi} = \left\{ (x_k) : \lim_{r \to \infty} h_r^{-1} \sum_{k \in I_r} |x_k - L| = 0, \text{ for some } L \right\}.$$

The space N_{ξ} is a *BK*- space with respect to the norm

$$||(x_k)||_{\xi} = \sup_r h_r^{-1} \sum_{k \in I_r} |x_k|.$$

 N_{ξ}^{0} denotes the subset of these sequences in N_{ξ} for which $L = 0, (N_{\xi}^{0}, ||.||_{\xi})$ is also a *BK*- space. There is a relation beteen N_{ξ} and $|\sigma_{1}|$ of strongly Cesàro summable sequences (see Freedman et al. [3]). The space $|\sigma_{1}|$ is defined by

$$|\sigma_1| = \left\{ (x_k) \in w : \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n |x_k - L| = 0, \text{ for some } L \right\}.$$

For $\xi = (2^r)$, we have a relation between the spaces $|\sigma_1|$ and N_{ξ} , i.e. $|\sigma_1| = N_{\xi}$.

An Orlicz function is a function $M : [0, \infty) \to [0, \infty)$, which is continuous, non-decreasing and convex with M(0) = 0, M(x) > 0, for x > 0 and $M(x) \to \infty$, as $x \to \infty$. An Orlicz function M is said to satisfy Δ_2 - condition for small x or at 0 if for each k > 0 there exist $R_k > 0$ and $x_k > 0$ such that $M(kx) \leq R_k M(x)$, for all $x \in (0, x_k]$. Moreover, an Orlicz function M is said to satisfy the Δ_2 -condition if and only if

$$\lim_{x \to \infty} \sup \frac{M(2x)}{M(x)} < \infty$$

Two Orlicz functions M_1 and M_2 are said to be *equivalent* if there are positive constants α , β and x_0 such that

$$M_1(\alpha x) \le M_2(x) \le M_1(\beta x),$$

for all x with $0 \le x < x_0$.

Lindenstrauss and Tzafriri [4] used the idea of the Orlicz function to construct the sequence space:

$$\ell_M = \left\{ (x_k) \in w : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) < \infty, \text{ for some } \rho > 0 \right\}.$$

The space ℓ_M becomes a Banach space, with respect to the norm

$$||x|| = \inf\left\{\rho > 0 : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) \le 1\right\}$$

which is called an Orlicz sequence space. The space ℓ_M is closely related to the space ℓ_p which is an Orlicz sequence space with $M(t) = |t|^p$, for $1 \le p < \infty$.

Later on, Orlicz sequence spaces were investigated by Parashar and Choudhary [5], Maddox [6], Tripathy et al. [7–10] and many others.

2 Definitions and Notations

A sequence $\mathbf{M} = (M_k)$ of Orlicz functions is called a *Musielak-Orlicz function* (for details see [11, 12]). Also a Musielak-Orlicz function $\phi = (\phi_k)$ is called a *complementary function* of a Musielak-Orlicz function \mathbf{M} if

$$\phi_k(t) = \sup\{|t|s - M_k(s) : s \ge 0\}, \text{ for } k = 1, 2, 3, \dots$$

For a given Musielak-Orlicz function \mathbf{M} , the Musielak-Orlicz sequence space $l_{\mathbf{M}}$ and its subspace $h_{\mathbf{M}}$ are defined as follows:

$$l_{\mathbf{M}} = \{ x = (x_k) \in w : I_{\mathbf{M}}(cx) < \infty, \text{ for some } c > 0 \};$$
$$h_{\mathbf{M}} = \{ x = (x_k) \in w : I_{\mathbf{M}}(cx) < \infty, \text{ for all } c > 0 \},$$

where $I_{\mathbf{M}}$ is a convex modular defined by

$$I_{\mathbf{M}} = \sum_{k=1}^{\infty} M_k(x_k), x = (x_k) \in l_{\mathbf{M}}.$$

We consider $l_{\mathbf{M}}$ equipped with the Luxemburg norm

$$||x|| = \inf\left\{k > 0 : I_{\mathbf{M}}\left(\frac{x}{k}\right) \le 1\right\}$$

or equipped with the Orlicz norm

$$||x||^0 = \inf\left\{\frac{1}{k}(1+I_{\mathbf{M}}(kx)): k>0\right\}.$$

The main aim of this article is to introduce the following sequence spaces and examine some properties of the resulting sequence spaces. Let $p = (p_k)$ denote the sequences of positive real numbers, for all $k \in \mathbb{N}$. Let $\mathbb{M} = (M_k)$ be a Musielak-Orlicz function and $v = (v_k)$ be any sequence of non-zero complex numbers. Let X be a seminormed space over the field of complex numbers with the semi norm q and w(X) denotes the space of all sequences $x = (x_k)$, where $x_k \in X$. Then we define the following sequence spaces:

$$[N_{\xi}, \mathbf{M}, \Delta^{m}, p, q, v]_{1} = \left\{ (x_{k}) \in w(X) : \lim_{r \to \infty} h_{r}^{-1} \sum_{k \in I_{r}} \left[M_{k} \left(q \left(\frac{v_{k} \Delta^{m} x_{k} - L}{\rho} \right) \right) \right]^{p_{k}} \to 0,$$
for some $\rho > 0$ and $L \in \mathbf{C} \right\};$

$$[N_{\xi}, \mathbf{M}, \Delta^{m}, p, q, v]_{0} = \left\{ (x_{k}) \in w(X) : \lim_{r \to \infty} h_{r}^{-1} \sum_{k \in I_{r}} \left[M_{k} \left(q \left(\frac{v_{k} \Delta^{m} x_{k}}{\rho} \right) \right) \right]^{p_{k}} \to 0$$
for some $\rho > 0 \right\};$

$$[N_{\xi}, \mathbf{M}, \Delta^{m}, p, q, v]_{\infty} = \left\{ (x_{k}) \in w(X) : \sup_{r} h_{r}^{-1} \sum_{k \in I_{r}} \left[M_{k} \left(q \left(\frac{v_{k} \Delta^{m} x_{k}}{\rho} \right) \right) \right]^{p_{k}} < \infty,$$
for some $\rho > 0 \right\}.$

Definition 2.1. A sequence space *E* is said to be *solid* (or *normal*) if $(\alpha_k x_k) \in E$, whenever $(x_k) \in E$ and for all sequence (α_k) of scalars with $|\alpha_k| \leq 1$, for all $k \in \mathbb{N}$.

Definition 2.2. A sequence space E is said to be *symmetric* if $(x_k) \in E$ implies $(x_{\pi(k)}) \in E$, where π is a permutation of **N**.

Definition 2.3. A sequence space E is said to be *convergence free* if $(y_k) \in E$ whenever $(x_k) \in E$ and $x_k = 0$ implies $y_k = 0$.

Let $K = \{k_1 < k_2 < \cdots\} \subset \mathbf{N}$ and E be a sequence space. A *K*-step space of E is a sequence space $\lambda_K^E = \{(x_{k_n}) \in w : (k_n) \in E\}$. A canonical preimage of a sequence $(x_{k_n}) \in \lambda_K^E$ is a sequence $\{y_n\} \in w$ defined by

$$y_n = \begin{cases} x_n, & \text{if } n \in K; \\ 0, & \text{otherwise} \end{cases}$$

A canonical preimage of a step space λ_K^E is a set of canonical preimages of all elements in λ_K^E , i.e. y is in canonical preimage of λ_K^E if and only if y is canonical preimage of some $x \in \lambda_K^E$.

Definition 2.4. A sequence space E is said to be *monotone* if it contains the canonical preimages of its step spaces.

The following results will be used for establishing some results of this article.

Lemma 2.5 (Kamthan and Gupta [13, p. 53]). A sequence space E is solid implies E is monotone.

Lemma 2.6 (Freedman et al. [3, Lemma 2.1]). In order to $|\sigma_1| \subseteq N_{\xi}$ it is necessary and sufficient that $\lim_r \inf \eta_r > 1$.

Lemma 2.7 (Freedman et al. [3, Lemma 2.2]). In order to $N_{\xi} \subseteq |\sigma_1|$ it is necessary and sufficient that $\lim_r \sup \eta_r < \infty$.

Lemma 2.8 (Et and Nuray [14, Theorem 2.2]). If X is a Banach space normed by ||.||, then $\Delta^m(X)$ is also a Banach space normed by

$$||x||_{\Delta} = \sum_{i=1}^{m} |x_i| + f(\Delta^m x)$$

3 Main Results

Theorem 3.1. Let $p = (p_k)$ in ℓ_{∞} of strictly positive real numbers and $\xi = (k_r)$ be a lacunary sequence. Then $[N_{\xi}, \mathbf{M}, \Delta^m, p, q, v]_1, [N_{\xi}, \mathbf{M}, \Delta^m, p, q, v]_0$ and $[N_{\xi}, \mathbf{M}, \Delta^m, p, q, v]_{\infty}$ are linear spaces.

Proof. The proof of the theorem is easy, so omitted.

Theorem 3.2. Let $\mathbf{M} = (M_k)$ be a Musielak-Orlicz function and $p = (p_k)$ in ℓ_{∞} of strictly positive real numbers and $\xi = (k_r)$ be a lacunary sequence. Then $[N_{\xi}, \mathbf{M}, \Delta^m, p, q, v]_0$ is a paranormed space (not totally paranormed) with the paranorm

$$g_{\Delta}(x) = \sum_{i=1}^{m} |x_i| + \inf\left\{\rho^{\frac{p_k}{H}} : \sup_{r} h_r^{-1} \sum_{k \in I_r} \left[M_k\left(q\left(\frac{v_k \Delta^m x_k}{\rho}\right)\right)\right] \le 1,$$

for some $\rho > 0$ and $r = 1, 2, 3, ... \right\},$

where $H = \max\{1, \sup p_k\}$.

Proof. Clearly $g_{\Delta}(x) = g_{\Delta}(-x)$. Since $M_k(0) = 0$, for all $k \in \mathbf{N}$, we get $g_{\Delta}(\bar{\theta}) = 0$, for $x = \bar{\theta}$. Let $x = (x_k)$ and $y = (y_k)$ be two elements in $[N_{\xi}, \mathbf{M}, \Delta^m, p, q, v]_0$ and let us choose $\rho_1 > 0$ and $\rho_2 > 0$ be such that

$$\sup_{r} h_{r}^{-1} \sum_{k \in I_{r}} \left[M_{k} \left(q \left(\frac{v_{k} \Delta^{m} x_{k}}{\rho_{1}} \right) \right) \right] \le 1, \ r = 1, 2, 3, \dots$$

and

$$\sup_{r} h_{r}^{-1} \sum_{k \in I_{r}} \left[M_{k} \left(q \left(\frac{v_{k} \Delta^{m} y_{k}}{\rho_{2}} \right) \right) \right] \le 1, \ r = 1, 2, 3, \dots$$

Let $\rho = \rho_1 + \rho_2$, then we have

$$\begin{split} \sup_{r} h_{r}^{-1} \sum_{k \in I_{r}} \left[M_{k} \left(q \left(\frac{v_{k} \Delta^{m} (x_{k} + y_{k})}{\rho} \right) \right) \right] \\ &\leq \left(\frac{\rho_{1}}{\rho_{1} + \rho_{2}} \right) \sup_{r} h_{r}^{-1} \sum_{k \in I_{r}} \left[M_{k} \left(q \left(\frac{v_{k} \Delta^{m} x_{k}}{\rho_{1}} \right) \right) \right] \\ &+ \left(\frac{\rho_{2}}{\rho_{1} + \rho_{2}} \right) \sup_{r} h_{r}^{-1} \sum_{k \in I_{r}} \left[M_{k} \left(q \left(\frac{v_{k} \Delta^{m} y_{k}}{\rho_{2}} \right) \right) \right] \\ &\leq 1. \end{split}$$

Since $\rho > 0$, we have

$$\begin{split} g_{\Delta}(x+y) &= \sum_{i=1}^{m} |x_i + y_i| + \inf \left\{ \rho^{\frac{p_k}{H}} : \sup_{r} h_r^{-1} \sum_{k \in I_r} \left[M_k \left(q \left(\frac{v_k \Delta^m (x_k + y_k)}{\rho} \right) \right) \right] \le 1, \\ &\quad r = 1, 2, 3, \ldots \right\} \\ &\leq \sum_{i=1}^{m} |x_i| + \inf \left\{ \rho_1^{\frac{p_k}{H}} : \sup_{r} h_r^{-1} \sum_{k \in I_r} \left[M_k \left(q \left(\frac{v_k \Delta^m x_k}{\rho_1} \right) \right) \right] \le 1, \\ &\quad \text{for some } \rho_1 > 0 \text{ and } r = 1, 2, 3, \ldots \right\} \\ &\quad + \sum_{i=1}^{m} |y_i| + \inf \left\{ \rho_2^{\frac{p_k}{H}} : \sup_{r} h_r^{-1} \sum_{k \in I_r} \left[M_k \left(q \left(\frac{v_k \Delta^m y_k}{\rho_2} \right) \right) \right] \le 1, \\ &\quad \text{for some } \rho_2 > 0 \text{ and } r = 1, 2, 3, \ldots \right\} \\ &\quad = g_{\Delta}(x) + g_{\Delta}(y), \end{split}$$

i.e. $g_{\Delta}(x+y) \leq g_{\Delta}(x) + g_{\Delta}(y)$.

Finally, let λ be a given non-zero scalar in **C**. Then the continuity of the product follows from the following expression.

$$g_{\Delta}(\lambda x) = \sum_{i=1}^{m} |\lambda x_i| + \inf\left\{\rho^{\frac{p_k}{H}} : \sup_r h_r^{-1} \sum_{k \in I_r} \left[M_k\left(q\left(\frac{v_k \Delta^m(\lambda x_k)}{\rho}\right)\right)\right] \le 1,$$

for some $\rho > 0$ and $r = 1, 2, 3, ...\right\}$
$$= \lambda \sum_{i=1}^{m} |x_i| + \inf\left\{(|\lambda|\eta)^{\frac{p_k}{H}} : \sup_r h_r^{-1} \sum_{k \in I_r} \left[M_k\left(q\left(\frac{v_k \Delta^m x_k}{\eta}\right)\right)\right] \le 1,$$

for some $\rho > 0$ and $r = 1, 2, 3, ...\right\}$

where $\eta = \frac{\rho}{|\lambda|} > 0$. This completes the proof of the theorem.

The proof of the following theorem is easy, so omitted.

Theorem 3.3. Let $\mathbf{M} = (M_k)$ and $\phi = (\phi_k)$ be two Musielak-Orlicz functions and $p = (p_k) \in \ell_{\infty}$ of strictly positive real numbers. Then

- (i) $[N_{\xi}, \mathbf{M}, \Delta^m, p, q, v]_Z \subseteq [N_{\xi}, \phi, \mathbf{M}, \Delta^m, p, q, v]_Z$
- (*ii*) $[N_{\xi}, \mathbf{M}, \Delta^m, p, q, v]_Z \cap [N_{\xi}, \phi, \Delta^m, p, q, v]_Z \subseteq [N_{\xi}, \phi + \mathbf{M}, \Delta^m, p, q, v]_Z$, where $Z = 0, 1, \infty$.

Theorem 3.4. The inclusion $[N_{\xi}, \mathbf{M}, \Delta^{m-1}, q]_Z \subseteq [N_{\xi}, \mathbf{M}, \Delta^m, q]_Z$ holds, for $m \geq 1$. In general $[N_{\xi}, \mathbf{M}, \Delta^i, q]_Z \subseteq [N_{\xi}, \mathbf{M}, \Delta^m, q]_Z$, for i = 0, 1, 2, ..., m-1 and the inclusions are strict, where $Z = 0, 1, \infty$.

Proof. Let $(x_k) \in [N_{\xi}, \mathbf{M}, \Delta^{m-1}, q]_0$. Then there exists $\rho > 0$ such that

$$\lim_{r \to \infty} h_r^{-1} \sum_{k \in I_r} \left[M_k \left(q \left(\frac{\Delta^{m-1} x_k}{\rho} \right) \right) \right] \to 0.$$

Since **M** is nondecreasing and convex, we have

$$\begin{split} h_{r}^{-1} \sum_{k \in I_{r}} \left[M_{k} \left(q \left(\frac{\Delta^{m} x_{k}}{2\rho} \right) \right) \right] \\ &= h_{r}^{-1} \sum_{k \in I_{r}} \left[M_{k} \left(q \left(\frac{\Delta^{m-1} x_{k} - \Delta^{m-1} x_{k+1}}{2\rho} \right) \right) \right] \\ &\leq h_{r}^{-1} \left\{ \sum_{k \in I_{r}} \left[M_{k} \left(q \left(\frac{\Delta^{m-1} x_{k}}{2\rho} \right) \right) \right] + \sum_{k \in I_{r}} \left[M_{k} \left(q \left(\frac{\Delta^{m-1} x_{k+1}}{2\rho} \right) \right) \right] \right\} \\ &\leq h_{r}^{-1} \sum_{k \in I_{r}} \frac{1}{2} \left[M_{k} \left(q \left(\frac{\Delta^{m-1} x_{k}}{\rho} \right) \right) \right] + h_{r}^{-1} \sum_{k \in I_{r}} \frac{1}{2} \left[M_{k} \left(q \left(\frac{\Delta^{m-1} x_{k+1}}{\rho} \right) \right) \right] \\ &< h_{r}^{-1} \sum_{k \in I_{r}} \left[M_{k} \left(q \left(\frac{\Delta^{m-1} x_{k}}{\rho} \right) \right) \right] + h_{r}^{-1} \sum_{k \in I_{r}} \left[M_{k} \left(q \left(\frac{\Delta^{m-1} x_{k+1}}{\rho} \right) \right) \right]. \end{split}$$

Taking limit $r \to \infty$, we have

$$h_r^{-1} \sum_{k \in I_r} \left[M_k \left(q \left(\frac{\Delta^m x_k}{\rho} \right) \right) \right] \to 0,$$

i.e. $(x_k) \in [N_{\xi}, \mathbf{M}, \Delta^m, q]_0$. The rest of the cases can be proved in the similar way. By using induction, we have $[N_{\xi}, \mathbf{M}, \Delta^i, q]_Z \subseteq [N_{\xi}, \mathbf{M}, \Delta^m, q]_Z$, for i = 0, 1, 2, ..., m - 1.

The above inclusion is strict follows from the following example.

Example 3.5. Let $M_k(x) = x^2$, for all $x \in [0, \infty)$, $\xi = (2^r)$, for all $k \in \mathbb{N}$ and q(x) = |x|. Consider a sequence (x_k) defined by

$$(x_k) = (k^{m-1}, k^{m-1}, k^{m-1}, \dots).$$

Then $\Delta^m x_k = 0$, but $\Delta^{m-1} x_k = (-1)^{m-1} (m-1)!$, for all $n \in \mathbf{N}$. Thus $(x_k) \in [N_{\xi}, \mathbf{M}, \Delta^m, q]_0$, but $(x_k) \notin [N_{\xi}, \mathbf{M}, \Delta^{m-1}, q]_0$.

Theorem 3.6. Let $\xi = (k_r)$ be a lacunary sequence and let $\mathbf{M} = (\mathbf{M}_k)$ be a Musielak-Orlicz function. Then

- (i) $[N_{\xi}, \mathbf{M}, \Delta^m, p, q, v]_0 \subseteq [N_{\xi}, \mathbf{M}, \Delta^m, p, q, v]_1 \subseteq [N_{\xi}, \mathbf{M}, \Delta^m, p, q, v]_{\infty}$, and the inclusion is strict.
- (ii) If $|v_k| \leq 1$, then $[N_{\xi}, \mathbf{M}, \Delta^m, p, q, v]_Z \subseteq [N_{\xi}, \mathbf{M}, \Delta^m, p, q,]_Z$, for $Z = 0, 1, \infty$.

Proof. (i) The inclusion $[N_{\xi}, \mathbf{M}, \Delta^m, p, q, v]_0 \subseteq [N_{\xi}, \mathbf{M}, \Delta^m, p, q, v]_1$ is obvious. Let (x_k) be an element of $[N_{\xi}, \mathbf{M}, \Delta^m, p, q, v]_1$. Then there exists $\rho > 0$ such that

$$\lim_{r \to \infty} h_r^{-1} \sum_{k \in I_r} \left[M_k \left(q \left(\frac{v_k \Delta^m x_k - L}{\rho} \right) \right) \right]^{p_k} \to 0.$$

Since M_k is non decreasing and convex for all $k \in \mathbf{N}$, we have

$$h_r^{-1} \sum_{k \in I_r} \left[M_k \left(q \left(\frac{v_k \Delta^m x_k}{\rho} \right) \right) \right]^{p_k} \le D h_r^{-1} \sum_{k \in I_r} \left[M_k \left(q \left(\frac{v_k \Delta^m x_k - L}{\rho} \right) \right) \right]^{p_k} + D \max \left[1, M_k \left(q \left(\frac{L}{\rho} \right) \right) \right]^H,$$

where $G = \sup_k p_k, D = \max\{1, 2^{G-1}\}.$

Thus the sequence (x_k) belongs to $[N_{\xi}, \mathbf{M}, \Delta^m, p, q, v]_{\infty}$.

The inclusions are strict follows from the following example.

Example 3.7. Let

$$p_k = \begin{cases} 4, & \text{if } k \text{ is even;} \\ 5, & \text{if } k \text{ is odd.} \end{cases}$$

Let $m \ge 0$ be given. Let $v_k = k$, $M_k(x) = x^2$, for all $k \in \mathbb{N}$ and q(x) = |x|. Let $\xi = (2^r)$ be a lacunary sequence. Consider a sequence (x_k) defined by

$$(x_k) = (k^m, k^m, k^m, \dots).$$

Thus the sequence (x_k) belongs to $[N_{\xi}, \mathbf{M}, \Delta^m, p, q, v]_1$, but (x_k) does not belong to $[N_{\xi}, \mathbf{M}, \Delta^m, p, q, v]_0$.

The proof of the part (ii) is easy, so omitted.

Theorem 3.8. Let $\mathbf{M} = (M_k)$ and $\phi = (\phi_k)$ be two Musielak-Orlicz functions. If M_k and ϕ_k are equivalent for each $k \in \mathbf{N}$ and $\xi = (k_r)$ be a lacunary sequence. Then

$$[N_{\xi}, \mathbf{M}, \Delta^m, p, q, v]_Z = [N_{\xi}, \phi, \Delta^m, p, q, v]_Z,$$

where $Z = 0, 1, \infty$.

Proof. The proof of the theorem is easy, so omitted.

Theorem 3.9. Let $\mathbf{M} = (M_k)$ be any Musielak-Orlicz function and let q_1 and q_2 be two semi norms. Then

Some Lacunary Difference Sequence Spaces defined by ...

- (*i*) $[N_{\xi}, \mathbf{M}, \Delta^{m}, p, q_{1}, v]_{Z} \cap [N_{\xi}, \mathbf{M}, \Delta^{m}, p, q_{2}, v]_{Z} \subseteq [N_{\xi}, \mathbf{M}, \Delta^{m}, p, q_{1} + q_{2}, v]_{Z};$
- (ii) if q_1 is stronger than q_2 , $[N_{\xi}, \mathbf{M}, \Delta^m, p, q_1, v]_Z \subseteq [N_{\xi}, \mathbf{M}, \Delta^m, p, q_2, v]_Z$, where $Z = 0, 1, \infty$.

Proof. The proof of the theorem is easy, so omitted.

We give the following two propositions without proof.

Proposition 3.10. Let $\xi = (k_r)$ be a lacunary sequence. Then the followings hold:

(i) If $\liminf_r \eta_r > 1$, then for any Musielak-Orlicz function $\mathbf{M} = (M_k)$, for all $k \in \mathbf{N}$,

$$[W, \mathbf{M}, \Delta^m, p, q, v]_0 \subseteq [N_{\xi}, \mathbf{M}, \Delta^m, p, q, v]_0,$$

where

$$[W, \mathbf{M}, \Delta^m, p, q, v]_0 = \left\{ (x_k) \in w(X) : \lim_{n \to \infty} \sum_{k=1}^n \left[M_k \left(q \left(\frac{v_k \Delta^m x_k}{\rho} \right) \right) \right]^{p_k} \to 0,$$

for some $\rho > 0 \right\}.$

(ii) If $\limsup_r \eta_r < \infty$, then for any Musielak-Orlicz function $\mathbf{M} = (M_k)$, for all $k \in \mathbf{N}$,

$$[N_{\xi}, \mathbf{M}, \Delta^m, p, q, v]_0 \subseteq [W, \mathbf{M}, \Delta^m, p, q, v]_0.$$

Proposition 3.11. Let $\xi = (k_r)$ be a lacunary sequence, with $0 < \liminf_r \eta_r \le \limsup_r \eta_r < \infty$, then for any Musielak-Orlicz function $\mathbf{M} = (M_k)$, for all $k \in \mathbf{N}$,

$$[N_{\xi}, \mathbf{M}, \Delta^m, p, q, v]_0 = [W, \mathbf{M}, \Delta^m, p, q, v]_0.$$

Property 3.12. The spaces $[N_{\xi}, \mathbf{M}, p, q, v]_0$ and $[N_{\xi}, \mathbf{M}, p, q, v]_{\infty}$ are solid as well as monotone. The spaces $[N_{\xi}, \mathbf{M}, \Delta^m, p, q, v]_Z$ are not solid in general, for $Z = 0, 1, \infty$.

Proof. Let $(x_k) \in [N_{\xi}, \mathbf{M}, p, q, v]_0$. Then there exists $\rho > 0$ such that

$$\lim_{r \to \infty} h_r^{-1} \sum_{k \in I_r} \left[M_k \left(q \left(\frac{v_k x_k}{\rho} \right) \right) \right]^{p_k} \to 0.$$

Let (α_k) be a sequence of scalars such that $|\alpha_k| \leq 1$, for all $k \in \mathbf{N}$. Since

$$|\alpha_k| \le \max(1, |\alpha_k|^G) \le 1$$
, for all $k \in \mathbf{N}$, where $G = \sup_k p_k < \infty$.

Then for each r, we have

$$h_r^{-1} \sum_{k \in I_r} \left[M_k \left(q \left(\frac{\alpha_k(v_k x_k)}{\rho} \right) \right) \right]^{p_k} \le h_r^{-1} \sum_{k \in I_r} \left[M_k \left(q \left(\frac{v_k x_k}{\rho} \right) \right) \right]^{p_k}.$$
(3.1)

Therefore $(\alpha_k x_k) \in [N_{\xi}, \mathbf{M}, p, q, v]_0$. Hence $[N_{\xi}, \mathbf{M}, p, q, v]_0$ is solid.

By the Lemma 2.5, it follows that the space $[N_{\xi}, \mathbf{M}, p, q, v]_0$ is monotone. Again by the inequality (3.1) and the Lemma 2.5, we can proved that the space $[N_{\xi}, \mathbf{M}, p, q, v]_{\infty}$ is solid as well as monotone. In order to prove that the spaces $[N_{\xi}, \mathbf{M}, \Delta^m, p, q, v]_1$ and $[N_{\xi}, \mathbf{M}, \Delta^m, p, q, v]_{\infty}$ are not solid in general, we consider the following example.

Example 3.13. Let $M_k(x) = x^t$, for all $k \in \mathbb{N}$ and $t \ge 1$. Let $p_k = \frac{1}{k}$, $v_k = k$, for all $k \in \mathbb{N}$ and q(x) = |x|. Let $\xi = (2^r)$ be a lacunary sequence, for all $k \in \mathbb{N}$. Consider a sequence (x_k) defined by

$$x_k = k^2$$
, for all $k \in \mathbf{N}$.

Then (x_k) belongs to $[N_{\xi}, \mathbf{M}, \Delta^m, p, q, v]_1$ and $[N_{\xi}, \mathbf{M}, \Delta^m, p, q, v]_{\infty}$, for m = 1. Let $(\alpha_k) = (-1)^k$, for all $k \in \mathbf{N}$. Then $(\alpha_k x_k)$ does not belong to the spaces $[N_{\xi}, \mathbf{M}, \Delta^m, p, q, v]_1$ and $[N_{\xi}, \mathbf{M}, \Delta^m, p, q, v]_{\infty}$. Hence the spaces $[N_{\xi}, \mathbf{M}, \Delta^m, p, q, v]_1$ and $[N_{\xi}, \mathbf{M}, \Delta^m, p, q, v]_{\infty}$ are not solid.

Therefore by the Lemma 2.5, it follows that the spaces $[N_{\xi}, \mathbf{M}, \Delta^m, p, q, v]_1$ and $[N_{\xi}, \mathbf{M}, \Delta^m, p, q, v]_{\infty}$ are not monotone.

Next to show that the space $[N_{\xi}, \mathbf{M}, \Delta^m, p, q, v]_0$ is not solid in general. We consider the following example.

Example 3.14. Under the restrictions on \mathbf{M}, p, v, m, q and ξ as in Example 3.7. We consider a sequence (x_k) defined by

$$x_k = 2$$
, for all $k \in \mathbf{N}$.

Let $(\alpha_k) = (-1)^k$, for all $k \in \mathbf{N}$. Then $(\alpha_k x_k)$ does not belong to $[N_{\xi}, \mathbf{M}, \Delta^m, p, q, v]_0$. Hence the space $[N_{\xi}, \mathbf{M}, \Delta^m, p, q, v]_0$ is not solid.

Therefore by the Lemma 2.5, it follows that the space $[N_{\xi}, \mathbf{M}, \Delta^m, p, q, v]_0$ is not monotone.

Property 3.15. The space $[N_{\xi}, \mathbf{M}, p, q, v]_1$ is neither solid nor monotone.

Proof. The space $[N_{\xi}, \mathbf{M}, p, q, v]_1$ is not monotone follows from the following example.

Example 3.16. Let $p_k = 1 + \frac{1}{k^2}$ and $v_k = k$, for all $k \in \mathbf{N}$. Let $M_k(x) = x^t$, for all $k \in \mathbf{N}$ and $t \ge 1$ and q(x) = |x|. Let $\xi = (2^r)$ be a lacunary sequence for all $k \in \mathbf{N}$. Consider a sequence (x_k) defined by

$$(x_k) = (2, 2, 2, ...), \text{ for all } k \in \mathbf{N}.$$

Consider the K^{th} -step space E_K for a sequence space E and defined a sequence (y_k) as follows:

$$y_k = \begin{cases} x_k, & \text{if } k \text{ is even;} \\ 0, & \text{otherwise.} \end{cases}$$

Then (y_k) does not belong to the K^{th} -step space E_K of the sequence space E. Hence the space $[N_{\mathcal{E}}, \mathbf{M}, p, q, v]_1$ is not monotone.

Some Lacunary Difference Sequence Spaces defined by ...

Therefore by the Lemma 2.5, it follows that the space $[N_{\xi}, \mathbf{M}, p, q, v]_1$ is not solid.

Property 3.17. The spaces $[N_{\xi}, \mathbf{M}, \Delta^m, p, q, v]_Z$ are not monotone in general, for $Z = 0, 1, \infty$.

Proof. The proof of the result follows from the Examples 3.13 and 3.14, by considering the K^{th} - step space E_K for a sequence space E and defined a sequence (y_k) as follows:

$$y_k = \begin{cases} x_k, & \text{if k is even;} \\ 0, & \text{otherwise.} \end{cases}$$

Then the sequence (x_k) defined in the Example 3.13 belongs to $[N_{\xi}, \mathbf{M}, \Delta^m, p, q, v]_Z$, but (y_k) does not belong to $[N_{\xi}, \mathbf{M}, \Delta^m, p, q, v]_Z$, for $Z = 1, \infty$.

Similarly, (x_k) defined in the Example 3.14 belongs to $[N_{\xi}, \mathbf{M}, \Delta^m, p, q, v]_0$, but (y_k) does not belong to $[N_{\xi}, \mathbf{M}, \Delta^m, p, q, v]_0$. Hence the spaces $[N_{\xi}, \mathbf{M}, \Delta^m, p, q, v]_Z$ are not monotone, for $Z = 0, 1, \infty$.

Property 3.18. The spaces $[N_{\xi}, \mathbf{M}, \Delta^m, p, q, v]_Z$ are not symmetric in general, for $Z = 0, 1, \infty$.

Proof. The proof of the result follows from the following example.

Example 3.19. Let $M_k(x) = x^2$, $p_k = k$ and $v_k = k^2$, for all $k \in \mathbf{N}$. and q(x) = |x|. Let $\xi = (2^r)$ be a lacunary sequence for all $k \in \mathbf{N}$. Consider a sequence (x_k) defined by

$$x_k = k^3$$
, for all $k \in \mathbf{N}$.

Then (x_k) belongs to $[N_{\xi}, \mathbf{M}, \Delta^m, p, q, v]_0$, for m = 1. Consider the sequence (y_k) which is the rearrangement of the sequence (x_k) defined by

$$(y_k) = (x_1, x_2, x_4, x_3, x_9, x_5, x_{16}, x_6, x_{25}, x_7, \ldots).$$

Then (y_k) does not belong to $[N_{\xi}, \mathbf{M}, \Delta^m, p, q, v]_Z$.

Hence the spaces
$$[N_{\xi}, \mathbf{M}, \Delta^m, p, q, v]_Z$$
 are not symmetric in general.

Property 3.20. The space $[N_{\xi}, \mathbf{M}, \Delta^m, p, q, v]_0$ is not convergence free.

Proof. The proof of the result follows from the following example.

Example 3.21. Let $M_k(x) = x$, $p_k = k$, $v_k = k$, for all $k \in \mathbf{N}$. and q(x) = |x|. Let $\xi = (2^r)$ be a lacunary sequence for all $k \in \mathbf{N}$. Consider a sequence (x_k) defined by

$$x_k = \begin{cases} 2, & \text{if } k \text{ is even;} \\ 0, & \text{if } k \text{ is odd.} \end{cases}$$

Then (x_k) belongs to $[N_{\xi}, \mathbf{M}, \Delta^m, p, q, v]_0$, for m = 2. Consider the sequence (y_k) defined by

$$y_k = \begin{cases} k^2, & \text{if } k \text{ is even;} \\ 0, & \text{if } k \text{ is odd.} \end{cases}$$

Then (y_k) deos not belong to $[N_{\xi}, \mathbf{M}, \Delta^m, p, q, v]_0$.

Hence the space $[N_{\xi}, \mathbf{M}, \Delta^m, p, q, v]_0$ is not convergence free.

Acknowledgement : The author thanks the reviewers for the comments on the first draft of the paper.

References

- [1] H. Kizmaz, On certain sequence spaces, Cand. Math. Bull. 24 (1981) 169–176.
- [2] M. Et, R. Colak, On generalized difference sequence spaces, Soochow J. Math. 21 (4) (1995) 377–386.
- [3] A.R. Freedman, J.J. Sember, M. Raphael, Some Cesàro-type summability spaces, Proc. London Math. Soc. 37 (1978) 508–520.
- [4] J. Lindenstrauss, L. Tzafriri, On Orlicz sequence spaces, Israel J. Math. 101 (1971) 379–390.
- [5] S.D. Parashar, B. Choudhary, Sequence spaces defined by Orlicz functions, Indian J. Pure Appl. Math. 25 (1995) 419–428.
- [6] I.J. Maddox, Spaces of strongly summable sequences, Quart. J. Math. 18 (1967) 345–355.
- [7] B.C. Tripathy, M. Et, Y. Altin, B. Choudhary, On some classes of sequences defined by sequences of Orlicz functions, Jour. Anal. Appl. 1 (3) (2003) 175– 192.
- [8] B.C. Tripathy, S. Mahanta, On a class of generalized lacunary difference sequence spaces defined by Orlicz functions, Acta Math. Appl. Sinica Eng. Series 20 (2) (2004) 231–238.
- [9] B.C. Tripathy, M. Et, Y. Altin, Generalized difference sequence spaces defined by Orlicz functions in a locally convex space, Jour. Anal. Appl. 1 (3) (2003) 179–192.
- [10] B.C. Tripathy, S. Mahanta, M. Et, On generalized lacunary difference vector valued paranormed sequences defined by Orlicz functions, Internat. Jour. Math. Sci. 4 (2) (2005) 341–355.
- [11] Y.A. Cui, On some geometric properties in Musielak-Orlicz sequence spaces, Lecture note in pure and applied mathematics, Marcel Dekker, Inc., New York and Basel 213, 2000.
- [12] V.A. Khan, Q.M.D. Lohani, Some new difference sequence spaces defined by Musielak-Orlocz function, Thai J. Math. 6 (1) (2008) 215–223.
- [13] P.K. Kamthan, M. Gupta, Sequence spaces and Series, Marcel Dekker, 1980.

[14] M. Et, F. Nuray, Δ^m -statistical convergence, Indian J. Pure Appl. Math. 32 (6) (2001) 961–969.

(Received 24 November 2010) (Accepted 24 August 2011)

 $T{\rm HAI}~J.~M{\rm ATH}.~Online~@~{\rm http://www.math.science.cmu.ac.th/thaijournal}$