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1 Introduction

The concept of asymptotically nonexpansiveness was introduced by Goebel
and Kirk [1] in 1972. In 2001, Noor [2, 3] have introduced the three-step iterations
and studied the approximate solutions of variational inclusion and variational in-
equalities in Hilbert spaces. Glowinski and Le Tallec [4] used three-step iterative
schemes to find the approximate solutions of the elastoviscoplasticity problem,
liquid crystal theory and eigenvalue computation. It has been shown in [4] that
the three-step iterative scheme gives better numerical results than the two-step
and one-step approximate iterations. In 1998, Haubruge et al. [5] studied the
convergence analysis of three-step schemes of Glowinski and Le Tallec [4] and ap-
plied these schemes to obtain new splitting-type algorithms for solving variation
inequalities, separable convex programming and minimization of a sum of convex
functions. They also proved that three-step iterations lead to highly parallelized
algorithms under certain conditions. Thus we conclude that three-step scheme
plays an important and significant part in solving various problems which arise in
pure and applied sciences.

In 2002, Xu and Noor [6] introduced and studied a three-step scheme to approx-
imate fixed points of asymptotically nonexpansive mappings. In 2005, Suantai [7]
extended their scheme to the modified Noor iterative scheme. Recently, Nilsrakoo
and Saejung [8, 9] defined and studied a new three-step mean value iterations to
approximate fixed points of asymptotically nonexpansive mappings which is an
extension of Suantai’s iterative scheme. See [10] and references therein for non-self
asymptotically nonexpansive mappings.

Inspired and motivated by these facts, we introduce and study a new iterative
scheme with errors for asymptotically nonexpansive mappings. Our results include
the Ishikawa, Mann and Noor iterative schemes for solving variational inclusions
(inequalities) as spacial cases. The scheme is defined as follows.

Let X be a normed space, C be a nonempty convex subset of X and T : C → C
be a given mapping.

Algorithm 1. For a given x1 ∈ C, compute the sequences {xn}, {yn} and {zn}
by the iterative schemes

zn = α(1)
n T nxn + α(2)

n xn + λnun,

yn = β(1)
n T nzn + β(2)

n T nxn + β(3)
n T 2nxn + β(4)

n xn + µnvn, n ≥ 1, (1.1)

xn+1 = γ(1)
n T nyn + γ(2)

n T nzn + γ(3)
n T nxn + γ(4)

n T 2nzn + γ(5)
n xn + νnwn,

where {un}, {vn} and {wn} are bounded sequences in C and {λn}, {µn}, {νn},

{α
(1)
n }, {α

(2)
n }, {β

(1)
n }, . . . , {β

(4)
n },{γ

(1)
n }, . . . , {γ

(5)
n } are appropriate real sequences

in [0, 1] such that λn + α
(1)
n + α

(2)
n = µn +

∑4
i=1 β

(i)
n = νn +

∑5
j=1 γ

(j)
n = 1.

If λn = µn = νn = β
(3)
n = γ

(4)
n ≡ 0, α

(2)
n = 1 − α

(1)
n , β

(4)
n = 1 − β

(1)
n − β

(2)
n and

γ
(5)
n = 1 − γ

(1)
n − γ

(2)
n − γ

(3)
n , then Algorithm 1 reduces to
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Algorithm 2. For a given x1 ∈ C, compute the sequences {xn}, {yn} and {zn}
by the iterative schemes

zn = α(1)
n T nxn + (1 − α(1)

n )xn,

yn = β(1)
n T nzn + β(2)

n T nxn + (1 − β(1)
n − β(2)

n )xn, n ≥ 1, (1.2)

xn+1 = γ(1)
n T nyn + γ(2)

n T nzn + γ(3)
n T nxn + (1 − γ(1)

n − γ(2)
n − γ(3)

n )xn,

where {α
(1)
n }, {β

(1)
n }, {β

(2)
n }, {β

(1)
n +β

(2)
n }, {γ

(1)
n }, {γ

(2)
n }, {γ

(3)
n } and {γ

(1)
n +γ

(2)
n +

γ
(3)
n } are appropriate real sequences in [0, 1]. The iterative scheme (1.2) is called

the three-step mean value iterative scheme defined by Nilsrakoo and Saejung [8, 9].

If λn = µn = νn = β
(3)
n = γ

(3)
n = γ

(4)
n ≡ 0, α

(2)
n = 1−α

(1)
n , β

(4)
n = 1−β

(1)
n −β

(2)
n

and γ
(5)
n = 1 − γ

(1)
n − γ

(2)
n , then Algorithm 1 reduces to

Algorithm 3. For a given x1 ∈ C, compute the sequences {xn}, {yn} and {zn}
by the iterative schemes

zn = α(1)
n T nxn + (1 − α(1)

n )xn,

yn = β(1)
n T nzn + β(2)

n T nxn + (1 − β(1)
n − β(2)

n )xn, n ≥ 1, (1.3)

xn+1 = γ(1)
n T nyn + γ(2)

n T nzn + (1 − γ(1)
n − γ(2)

n )xn,

where {α
(1)
n }, {β

(1)
n }, {β

(2)
n }, {β

(1)
n + β

(2)
n }, {γ

(1)
n }, {γ

(2)
n } and {γ

(1)
n + γ

(2)
n } are

appropriate real sequences in [0, 1]. The iterative scheme (1.3) is called the modified
Noor iterations defined by Suantai [7].

The purpose of this paper is to establish weak and strong convergence theorems
of iterative scheme (1.1) for asymptotically nonexpansive mappings in a uniformly
convex Banach space. The results presented in this paper extend and improve
the corresponding ones announced by Xu and Noor [6], Suantai [7], Nilsrakoo and
Saejung [8, 9] and many others.

2 Preliminaries

In this section, we recall the well-known concepts and results. For convenience,
we use the notations limn ≡ limn→∞, lim infn ≡ lim infn→∞ and lim supn ≡
lim supn→∞. Let C be a nonempty subset of normed space X . A mapping T :
C → C is said to be asymptotically nonexpansive if there exists a sequence {rn}
in [0,∞) with limn rn = 0 such that

‖T nx − T ny‖ ≤ (1 + rn)‖x − y‖

for all x, y ∈ C and each n ≥ 1. By passing to the sequence {r′n}, we may always
assume that {rn} is decreasing, where r′n = supm≥n rm. If rn ≡ 0, then T is known
as a nonexpansive mapping.
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The mapping T is said to be uniformly L-Lipschitzian if there exists a constant
L > 0 such that

‖T nx − T ny‖ ≤ L‖x − y‖

for all x, y ∈ C and each n ≥ 1. It is easy to see that if T is asymptotically non-
expansive, then it is uniformly L-Lipschitzian with the uniform Lipschitz constant
L = sup{1 + rn : n ≥ 1}. It is known [1] that if X is a uniformly convex Ba-
nach space and T is an asymptotically nonexpansive self-mapping of a nonempty
bounded closed convex subset C of X , then F (T ) 6= ∅ where F (T ) denotes the set
of all fixed points of T .

The mapping T : C → C with F (T ) 6= ∅ is said to satisfy Condition (A)
with respect to the sequence {xn} [11] if there exists a nondecreasing function
f : [0,∞) → [0,∞) with f(0) = 0 and f(r) > 0 for all r ∈ (0,∞) such that

f(d(xn, F (T ))) ≤ ‖xn − Txn‖

for each n ≥ 1 where d(x, F (T )) = inf{‖x − y‖ : y ∈ F (T )}.
The following example provides an example of asymptotically nonexpansive

mapping satisfying Condition (A) which is not nonexpansive.

Example 2.1. Let X = R, C = [0, 1] and define

T (x) =

{

0 if x ∈ [0, 1/2],
(3/2)x − 3/4 if x ∈ (1/2, 1].

It is easy to verify that F (T ) = {0}, T nx = 0 for all x ∈ C and each n ≥ 3.
Therefore, T is asymptotically nonexpansive with r1 = 1/2, r2 = 5/4 and rn = 0
for all n ≥ 3, but T is not nonexpansive. Also, T satisfies Condition (A) with
the function f(t) = t/4. Note that d(x, F (T )) = x and ‖x − Tx‖ = x − Tx ≥
x − (3/4)x = (1/4)x for all x ∈ C.

It is well known that every completely continuous mapping satisfies Condition
(A) [11]. Thus we shall use Condition (A) instead the complete continuity of the
mapping T to study the strong convergence of {xn} defined in (1.1).

In the sequel, the following lemmas are needed to prove our main results.

Lemma 2.2 ([12, Lemma 1]). Let {an}, {bn} and {δn} be sequences of nonnegative
real numbers satisfying the inequality

an+1 ≤ (1 + δn)an + bn, ∀n ≥ 1.

If
∑∞

n=1 δn < ∞ and
∑∞

n=1 bn < ∞, then limn an exists.

By Schu’s lemma [13, Schu’s Lemma], we have the following lemma.

Lemma 2.3 ([8, Lemma 5]). Let {xn}, {yn} and {zn} be sequences in a uni-
formly convex Banach space X with lim supn ‖xn‖ ≤ a, lim supn ‖yn‖ ≤ a and
lim supn ‖zn‖ ≤ a for some a ≥ 0. Suppose that {αn}, {βn} and {γn} be sequences
in [0, 1] with αn + βn + γn = 1 for all n ≥ 1 and limn ‖αnxn + βnyn + γnzn‖ = a.
If lim infn αn > 0 and lim infn βn > 0, then limn ‖xn − yn‖ = 0.
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By using mathematical induction in Lemma 2.3, we immediately obtain the
following.

Lemma 2.4. Let k ≥ 2 and {x
(1)
n }, . . . , {x

(k)
n } be sequences in a uniformly convex

Banach space X with lim supn ‖x
(i)
n ‖ ≤ a for each i ∈ {1, 2, . . . , k} and for some

a ≥ 0. Suppose {α
(1)
n }, . . . , {α

(k)
n } be sequences in [0, 1] such that

∑k

i=1 α
(i)
n = 1

and limn ‖
∑k

i=1 α
(i)
n x

(i)
n ‖ = a. If lim infn α

(i)
n > 0 and lim infn α

(j)
n > 0, then

limn ‖x
(i)
n − x

(j)
n ‖ = 0.

3 Main Results

In this section, we establish weak and strong convergence theorems of iterative
scheme (1.1) for asymptotically nonexpansive mappings. Note that the proof given
below is different from that of Xu and Noor, Suantai, Nilsrakoo and Saejung.
Throughout this section, we assume that

∑∞

n=1 λn < ∞,
∑∞

n=1 µn < ∞ and
∑∞

n=1 νn < ∞. In order to prove our main result, the following lemma is needed.

Lemma 3.1. Let X be a real Banach space, C be a nonempty convex subset of
X and T : C → C be an asymptotically nonexpansive mapping with the nonempty
fixed point set F (T ) and the sequence {rn} such that

∑∞

n=1 rn < ∞. Let {xn} be
the sequence defined by Algorithm 1. Then we have the following conclusions.

(i) limn ‖xn − p‖ exists for all p ∈ F (T ).

(ii) limn d(xn, F (T )) exists.

(iii) If lim infn γ
(1)
n > 0, then limn ‖yn − p‖ = limn ‖xn − p‖ for all p ∈ F (T ).

(iv) If lim infn(γ
(1)
n β

(1)
n + γ

(2)
n + γ

(4)
n ) > 0, then limn ‖zn − p‖ = limn ‖xn − p‖

for all p ∈ F (T ).

(v) If limn ‖T nxn − xn‖ = 0, then limn ‖Txn − xn‖ = 0.

Proof. (i) Let p ∈ F (T ). For each n ≥ 1, we note that

‖zn − p‖ =
∥

∥

∥
α(1)

n T nxn + α(2)
n xn + λnun − p

∥

∥

∥

≤ α(1)
n ‖T nxn − p‖ + α(2)

n ‖xn − p‖ + λn‖un − p‖

≤ α(1)
n (1 + rn)‖xn − p‖ + α(2)

n (1 + rn)‖xn − p‖ + λn‖un − p‖

≤ (1 + rn)‖xn − p‖ + λn‖un − p‖

= (1 + rn)‖xn − p‖ + an, (3.1)

where an = λn‖un − p‖. Since {un} is bounded and
∑∞

n=1 λn < ∞, we see that
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∑∞

n=1 an < ∞. It follows from (3.1) that

‖yn − p‖ ≤ β(1)
n ‖T nzn − p‖ + β(2)

n ‖T nxn − p‖ + β(3)
n ‖T 2nxn − p‖

+ β(4)
n ‖xn − p‖ + µn‖vn − p‖

≤ β(1)
n (1 + rn)‖zn − p‖

+
(

β(2)
n (1 + rn) + β(3)

n (1 + r2n) + β(4)
n

)

‖xn − p‖ + µn‖vn − p‖

≤ β(1)
n (1 + rn)((1 + rn)‖xn − p‖ + an)

+ (1 + rn)
(

β(2)
n + β(3)

n + β(4)
n

)

‖xn − p‖ + µn‖vn − p‖

≤ (1 + rn)2
(

β(1)
n + β(2)

n + β(3)
n + β(4)

n

)

‖xn − p‖ + (1 + rn)an

+ µn‖vn − p‖

≤ (1 + rn)2‖xn − p‖ + bn, (3.2)

where bn = (1 + rn)an + µn‖vn − p‖. Since {vn} is bounded,
∑∞

n=1 µn < ∞ and
∑∞

n=1 an < ∞, we have
∑∞

n=1 bn < ∞. Moreover, we see that

‖xn+1 − p‖ ≤ γ(1)
n (1 + rn)‖yn − p‖ +

(

γ(2)
n (1 + rn) + γ(4)

n (1 + r2n)
)

‖zn − p‖

+
(

γ(3)
n (1 + rn) + γ(5)

n

)

‖xn − p‖ + νn‖wn − p‖

≤ γ(1)
n (1 + rn)

(

(1 + rn)2‖xn − p‖ + bn

)

+ (1 + rn)2
(

γ(2)
n + γ(4)

n

)

((1 + rn)‖xn − p‖ + an)

+ (1 + rn)3
(

γ(3)
n + γ(5)

n

)

‖xn − p‖ + νn‖wn − p‖

≤ (1 + rn)3
(

γ(1)
n + · · · + γ(5)

n

)

‖xn − p‖ + (1 + rn)2(an + bn)

+ νn‖wn − p‖

≤ (1 + rn)3‖xn − p‖ + cn, (3.3)

where cn = (1 + rn)2(an + bn) + νn‖wn − p‖, so that
∑∞

n=1 cn < ∞. By Lemma
2.2, we get limn ‖xn − p‖ exists.

(ii) It follows from (i) that {xn} is bounded. Using (3.1), we have

‖zn − p‖ ≤ (1 + rn)
(

α(1)
n + α(2)

n

)

‖xn − p‖ + λn‖un − p‖

≤ (1 + rn)
(

α(1)
n + α(2)

n

)

‖xn − p‖ + (1 + rn)λn(‖un − xn‖ + ‖xn − p‖)

= (1 + rn)‖xn − p‖ + a′
n (3.4)

for all p ∈ F (T ), where a′
n = (1 + rn)λn‖un − xn‖. Since {un} and {xn} are

bounded, limn rn = 0 and
∑∞

n=1 λn < ∞, we see that
∑∞

n=1 a′
n < ∞. Note that

{a′
n} does not depend on p. Again, by continuing this process, we may obtain
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a sequence of nonnegative real numbers {c′n} such that it is independent of p,
∑∞

n=1 c′n < ∞ and

‖xn+1 − p‖ ≤ (1 + rn)3‖xn − p‖ + c′n (3.5)

for all n ≥ 1 and p ∈ F (T ). Taking infimum over all p in F (T ), we obtain

d(xn+1, F (T )) ≤ (1 + rn)3d(xn, F (T )) + c′n.

Again, by Lemma 2.2, we get limn d(xn, F (T )) exists.

(iii) Let p ∈ F (T ). Since limn ‖xn − p‖ exists, it follows from (3.2) that
lim supn ‖yn − p‖ ≤ limn ‖xn − p‖. Also, by (3.2) and (3.3) we have

‖xn+1 − p‖ ≤ γ(1)
n (1 + rn)‖yn − p‖ +

(

γ(2)
n (1 + rn) + γ(4)

n (1 + r2n)
)

‖zn − p‖

+
(

γ(3)
n (1 + rn) + γ(5)

n

)

‖xn − p‖ + νn‖wn − p‖

≤ (1 + rn)
[

γ(1)
n ‖yn − p‖ +

(

γ(2)
n + γ(4)

n

)

((1 + rn)‖xn − p‖ + an)

+
(

1 − γ(1)
n − γ(2)

n − γ(4)
n

)

‖xn − p‖
]

+ νn‖wn − p‖

≤ (1 + rn)2
[

γ(1)
n ‖yn − p‖ +

(

1 − γ(1)
n

)

‖xn − p‖
]

+ a′′
n

for all n ≥ 1, where a′′
n = (1 + rn)an + νn‖wn − p‖. Since lim infn γ

(1)
n > 0, then

‖xn+1 − p‖ − (1 + rn)2‖xn − p‖

γ
(1)
n (1 + rn)2

+ ‖xn − p‖ ≤ ‖yn − p‖ +
a′′

n

γ
(1)
n (1 + rn)2

for sufficiently large numbers n. By taking lim infn in both sides, we obtain

lim
n

‖xn − p‖ ≤ lim inf
n

‖yn − p‖.

(iv) It follows from (3.1) that lim supn ‖zn − p‖ ≤ limn ‖xn − p‖. For conve-

nience, we take βn = γ
(1)
n β

(1)
n + γ

(2)
n + γ

(4)
n . Using (3.2) and (3.3), we obtain

‖xn+1 − p‖ ≤ γ(1)
n (1 + rn)‖yn − p‖ +

(

γ(2)
n (1 + rn) + γ(4)

n (1 + r2n)
)

‖zn − p‖

+
(

γ(3)
n (1 + rn) + γ(5)

n

)

‖xn − p‖ + νn‖wn − p‖

≤ γ(1)
n (1 + rn)2

[

β(1)
n ‖zn − p‖ +

(

β(2)
n + β(3)

n + β(4)
n

)

‖xn − p‖
]

+ (1 + rn)µn‖vn − p‖ +
(

γ(2)
n + γ(4)

n

)

(1 + rn)2‖zn − p‖

+
(

γ(3)
n + γ(5)

n

)

(1 + rn)2‖xn − p‖ + νn‖wn − p‖

≤ (1 + rn)2
([

γ(1)
n β(1)

n + γ(2)
n + γ(4)

n

]

‖zn − p‖

+
[

γ(1)
n

(

β(2)
n + β(3)

n + β(4)
n

)

+ γ(3)
n + γ(5)

n

]

‖xn − p‖
)

+ b′′n
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≤ (1 + rn)2
(

βn‖zn − p‖ +
[

γ(1)
n

(

1 − β(1)
n

)

+
(

1 − γ(1)
n − γ(2)

n − γ(4)
n

)]

‖xn − p‖
)

+ b′′n

= (1 + rn)2(βn‖zn − p‖ + (1 − βn)‖xn − p‖) + b′′n

for all n ≥ 1, where b′′n = (1 + rn)µn‖vn − p‖+ νn‖wn − p‖. Since lim infn βn > 0,
we have

‖xn+1 − p‖ − (1 + rn)2‖xn − p‖

βn(1 + rn)2
+ ‖xn − p‖ ≤ ‖zn − p‖ +

b′′n
βn(1 + rn)2

for sufficiently large numbers n. By taking lim infn in both sides, we get

lim
n

‖xn − p‖ ≤ lim inf
n

‖zn − p‖.

(v) Using (1.1), we have

‖zn − xn‖ ≤ α(1)
n ‖T nxn − xn‖ + λn‖un − xn‖ → 0, (3.6)

‖T nzn − xn‖ ≤ ‖T nzn − T nxn‖ + ‖T nxn − xn‖

≤ (1 + rn)‖zn − xn‖ + ‖T nxn − xn‖ → 0,

‖yn − xn‖ ≤ β(1)
n ‖T nzn − xn‖ + β(2)

n ‖T nxn − xn‖

+ β(3)
n ‖T 2nxn − xn‖ + µn‖vn − xn‖

≤ β(1)
n ‖T nzn − xn‖ +

(

β(2)
n + β(3)

n (2 + rn)
)

‖T nxn − xn‖

+ µn‖vn − xn‖ → 0, (3.7)

‖T nyn − xn‖ ≤ ‖T nyn − T nxn‖ + ‖T nxn − xn‖

≤ (1 + rn)‖yn − xn‖ + ‖T nxn − xn‖ → 0

and so

‖xn+1 − xn‖ ≤ γ(1)
n ‖T nyn − xn‖ +

(

γ(4)
n (1 + rn) + γ(2)

n

)

‖T nzn − xn‖

+
(

γ(3)
n + γ(4)

n

)

‖T nxn − xn‖ + νn‖wn − xn‖ → 0. (3.8)

Also,

‖Txn − xn‖ ≤ ‖xn+1 − xn‖ + ‖T n+1xn+1 − xn+1‖ + ‖T n+1xn − T n+1xn+1‖

+ ‖Txn − T n+1xn‖

≤ (2 + rn+1)‖xn+1 − xn‖ + ‖T n+1xn+1 − xn+1‖

+ (1 + r1)‖xn − T nxn‖.

This together with (3.8) implies that limn ‖Txn − xn‖ = 0. This completes the
proof.
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The following lemmas are the important ingredients for proving our main
results.

Lemma 3.2. Let X be a uniformly convex Banach space, C be a nonempty convex
subset of X and T : C → C be an asymptotically nonexpansive mapping with the
nonempty fixed point set F (T ) and the sequence {rn} such that

∑∞

n=1 rn < ∞.

Let {xn} be the sequence defined by Algorithm 1 and γn = γ
(1)
n + γ

(2)
n + γ

(3)
n + γ

(4)
n

for all n ≥ 1. Then we have the following conclusions.

(i) If 0 < lim infn γ
(1)
n ≤ lim supn γn < 1, then limn ‖T nyn − xn‖ = 0.

(ii) If 0 < lim infn γ
(2)
n ≤ lim supn γn < 1, then limn ‖T nzn − xn‖ = 0.

(iii) If 0 < lim infn γ
(3)
n ≤ lim supn γn < 1, then limn ‖T nxn − xn‖ = 0.

(iv) If lim infn γ
(1)
n > 0 and 0 < lim infn β

(1)
n ≤ lim supn(β

(1)
n + β

(2)
n + β

(3)
n ) < 1,

then limn ‖T nzn − xn‖ = 0.

(v) If lim infn(γ
(1)
n β

(1)
n +γ

(2)
n +γ

(4)
n ) > 0 and 0 < lim infn α

(1)
n ≤ lim supn α

(1)
n <

1, then limn ‖T nxn − xn‖ = 0.

Proof. Let p ∈ F (T ). It follows from Lemma 3.1(i) that limn ‖xn − p‖ exists. Let
limn ‖xn−p‖ = a for some a ≥ 0. Since

∑∞

n=1 νn < ∞ and ‖xn−p+νn(wn−xn)‖ ≤
‖xn − p‖ + νn‖wn − xn‖, we have

lim sup
n

‖xn − p + νn(wn − xn)‖ ≤ a. (3.9)

Also,

lim sup
n

‖T nxn − p‖ ≤ lim sup
n

(1 + rn)‖xn − p‖ = lim
n

‖xn − p‖ = a.

Next, we observe that ‖T nxn − p + νn(wn − xn)‖ ≤ ‖T nxn − p‖ + νn‖wn − xn‖.
Thus,

lim sup
n

‖T nxn − p + νn(wn − xn)‖ ≤ a. (3.10)

It follows from (3.2) that ‖yn − p‖ ≤ (1 + rn)2‖xn − p‖ + bn for all n ≥ 1, where
{bn} is a nonnegative real sequence such that

∑∞

n=1 bn < ∞. Taking lim supn in
both sides, we obtain

lim sup
n

‖yn − p‖ ≤ lim sup
n

((1 + rn)2‖xn − p‖ + bn) = lim
n

‖xn − p‖ = a.

So that

lim sup
n

‖T nyn − p‖ ≤ lim sup
n

(1 + rn)‖yn − p‖ = lim sup
n

‖yn − p‖ ≤ a.

Thus, we have

lim sup
n

‖T nyn − p + νn(wn − xn)‖ ≤ a. (3.11)
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By using (3.1) and the similar method as above, we have

lim sup
n

‖T nzn − p + νn(wn − xn)‖ ≤ a (3.12)

and

lim sup
n

‖T 2nzn − p + νn(wn − xn)‖ ≤ a. (3.13)

Since γn = γ
(1)
n + γ

(2)
n + γ

(3)
n + γ

(4)
n , we note that

a = lim
n

‖xn+1 − p‖

= lim
n

∥

∥

∥
γ(1)

n T nyn + γ(2)
n T nzn + γ(3)

n T nxn + γ(4)
n T 2nzn + γ(5)

n xn + νnwn − p
∥

∥

∥

= lim
n

∥

∥

∥
γ(1)

n T nyn + γ(2)
n T nzn + γ(3)

n T nxn + γ(4)
n T 2nzn

−
(

γ(1)
n + γ(2)

n + γ(3)
n + γ(4)

n

)

p + (1 − γn)(xn − p) + νnwn − νnxn

∥

∥

∥

= lim
n

∥

∥

∥
γ(1)

n (T nyn − p) + γ(2)
n (T nzn − p) + γ(3)

n (T nxn − p)

+γ(4)
n (T 2nzn − p) + (1 − γn)(xn − p) − νnxn + νnwn

∥

∥

∥

= lim
n

∥

∥

∥
γ(1)

n (T nyn − p) + γ(2)
n (T nzn − p) + γ(3)

n (T nxn − p) + γ(4)
n (T 2nzn − p)

+ γnνnwn − γnνnxn + (1 − γn)(xn − p) − νnxn + νnwn + γnνnxn − γnνnwn

∥

∥

∥

= lim
n

∥

∥

∥
γ(1)

n (T nyn − p + νn(wn − xn)) + γ(2)
n (T nzn − p + νn(wn − xn))

+ γ(3)
n (T nxn − p + νn(wn − xn)) + γ(4)

n (T 2nzn − p + νn(wn − xn))

+ (1 − γn)(xn − p + νn(wn − xn))
∥

∥

∥
.

This together with (3.9)-(3.13) and Lemma 2.4 implies that (i), (ii) and (iii) are

satisfied. Next, we shall prove (iv). Since lim infn γ
(1)
n > 0, it follows from Lemma

3.1(iii) that limn ‖yn − p‖ = a. From (3.1) we know that lim supn ‖zn − p‖ ≤ a
and hence

lim sup
n

‖T nzn − p‖ ≤ lim sup
n

(1 + rn)‖zn − p‖ ≤ a.

Thus, we have

lim sup
n

‖T nzn − p + µn(vn − xn)‖ ≤ a. (3.14)

Also, we observe that

lim sup
n

‖xn − p + µn(vn − xn)‖ ≤ a, (3.15)
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lim sup
n

‖T nxn − p + µn(vn − xn)‖ ≤ a (3.16)

and

lim sup
n

‖T 2nxn − p + µn(vn − xn)‖ ≤ a. (3.17)

Next, we note that

a = lim
n

‖yn − p‖ = lim
n

∥

∥

∥
β(1)

n T nzn + β(2)
n T nxn + β(3)

n T 2nxn + β(4)
n xn + µnvn − p

∥

∥

∥

= lim
n

∥

∥

∥
β(1)

n (T nzn − p + µn(vn − xn)) + β(2)
n (T nxn − p + µn(vn − xn))

+ β(3)
n (T 2nxn − p + µn(vn − xn))

+
(

1 − β(1)
n − β(2)

n − β(3)
n

)

(xn − p + µn(vn − xn))
∥

∥

∥
. (3.18)

This together with (3.14)-(3.17) and Lemma 2.4 implies that limn ‖T nzn−xn‖ = 0.
This completes the proof of (iv). By using the same argument as in proof of (iv),
we can get (v).

Lemma 3.3. Let X, C, γn and T be as in Lemma 3.2 and {xn} be the sequence
defined by Algorithm 1 such that the parameters satisfy one of the following control
conditions:

(C1) 0 < lim infn γ
(1)
n ≤ lim supn γn < 1 and one of the following holds:

(a) lim supn(β
(1)
n + β

(2)
n + β

(3)
n ) < 1;

(b) lim infn γ
(2)
n > 0 and lim supn(β

(2)
n + 2β

(3)
n ) < 1;

(C2) lim infn γ
(1)
n > 0 and one of the following holds:

(a) 0 < lim infn β
(1)
n ≤ lim supn(β

(1)
n +β

(2)
n +β

(3)
n ) < 1 and lim supn α

(1)
n <

1;

(b) 0 < lim infn β
(2)
n ≤ lim supn(β

(1)
n + β

(2)
n + β

(3)
n ) < 1;

(C3) 0 < lim infn γ
(2)
n ≤ lim supn γn < 1 and lim supn α

(1)
n < 1;

(C4) 0 < lim infn γ
(3)
n ≤ lim supn γn < 1;

(C5) lim infn(γ
(1)
n β

(1)
n +β

(2)
n +γ

(4)
n ) > 0 and 0 < lim infn α

(1)
n ≤ lim supn α

(1)
n < 1.

Then limn ‖T nxn − xn‖ = 0, and so by Lemma 3.1(v), limn ‖Txn − xn‖ = 0.

Proof. By using (1.1), we have

‖T nxn − xn‖ ≤ ‖T nxn − T nyn‖ + ‖T nyn − xn‖

≤ (1 + rn)‖xn − yn‖ + ‖T nyn − xn‖

≤ (1 + rn)
(

β(1)
n ‖T nzn − xn‖ + β(2)

n ‖T nxn − xn‖

+β(3)
n ‖T 2nxn − xn‖ + µn‖vn − xn‖

)

+ ‖T nyn − xn‖ (3.19)
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and

‖T nxn − xn‖ ≤ ‖T nxn − T nzn‖ + ‖T nzn − xn‖

≤ (1 + rn)‖xn − zn‖ + ‖T nzn − xn‖

≤ (1 + rn)
(

α(1)
n ‖T nxn − xn‖ + λn‖un − xn‖

)

+ ‖T nzn − xn‖. (3.20)

Proof of (C1−a). It follows from Lemma 3.2(i) that limn ‖T nyn−xn‖ = 0. To
show that limn ‖T nxn − xn‖ = 0, let {mj} be a subsequence of {n}. It suffices to
show that there is a subsequence {nk} of {mj} such that limk ‖T nkxnk

−xnk
‖ = 0.

Take p ∈ F (T ) and consider Lemma 3.2.

If lim infj β
(1)
mj > 0 and lim infj β

(3)
mj > 0, then it follows from (3.14)-(3.18) and

Lemma 2.4 that limj ‖T mjzmj
− xmj

‖ = limj ‖T 2mjxmj
− xmj

‖ = 0.

If lim infj β
(1)
mj > 0 and lim infj β

(3)
mj = 0, again by (3.14)-(3.18) and Lemma

2.4 we obtain limj ‖T mjzmj
− xmj

‖ = 0 and we may extract subsequence {nk} of

{mj} such that limk β
(3)
nk

= 0.

If lim infj β
(1)
mj = 0, then we may extract subsequence {n′

i} of {mj} such

that limi β
(1)
n′

i

= 0. Now if lim infi β
(3)
n′

i

> 0, then limi ‖T 2n′

ixn′

i
− xn′

i
‖ = 0 and

if lim infi β
(3)
n′

i
= 0, then we may extract subsequence {nk} of {n′

i} such that

limk β
(3)
nk

= 0.
In any case, it follows from (3.19) that

lim
k

(1 − (1 + rnk
)β(2)

nk
)‖T nkxnk

− xnk
‖ = 0

for some subsequence {nk} of {mj}. Since lim supn β
(2)
n < 1, then limk ‖T nkxnk

−
xnk

‖ = 0. By Double Extract Subsequence Principle, we obtain limn ‖T nxn −
xn‖ = 0.

Proof of (C1 − b). It follows from (3.19) that

‖T nxn − xn‖ ≤ (1 + rn)
(

β(1)
n ‖T nzn − xn‖ +

(

β(2)
n + β(3)

n (2 + rn)
)

‖T nxn − xn‖

+µn‖vn − xn‖) + ‖T nyn − xn‖.

By using (i) and (ii) of Lemma 3.2, we obtain

lim
n

(

1 − (1 + rn)
(

β(2)
n + β(3)

n (2 + rn)
))

‖T nxn − xn‖ = 0.

Since lim supn(β
(2)
n + 2β

(3)
n ) < 1, then limn ‖T nxn − xn‖ = 0.

Proof of (C2 − a). By Lemma 3.2(iv), limn ‖T nzn − xn‖ = 0. Using (3.20),

we have limn(1 − (1 + rn)α
(1)
n )‖T nxn − xn‖ = 0. Since lim supn α

(1)
n < 1, then

limn ‖T nxn − xn‖ = 0.



A New Three-Step Mean Value Iterations with Errors for Asymptotically ... 643

(C2−b) is immediate consequence of (3.14)-(3.18) and Lemma 2.4. Also, (C3)
follows from Lemma 3.2(ii) and (3.20). Finally, (C4) and (C5) follow respectively
from (iii) and (v) of Lemma 3.2. This completes the proof of lemma.

Now, we state and prove the strong convergence theorem.

Theorem 3.4. Let X be a uniformly convex Banach space, C be a nonempty closed
convex subset of X and T : C → C be an asymptotically nonexpansive mapping
with the nonempty fixed point set F (T ) and the sequence {rn} such that

∑∞

n=1 rn <
∞. Let {xn} be as in Algorithm 1 satisfying one of the control conditions in Lemma
3.3. If T satisfies Condition (A) with respect to the sequence {xn}, then {xn}, {yn}
and {zn} converge strongly to a fixed point of T .

Proof. By Lemma 3.1(ii), we know that limn d(xn, F (T )) exists. Now by combined
effect Condition (A) and Lemma 3.3, we get

lim
n

f(d(xn, F (T ))) ≤ lim
n

‖Txn − xn‖ = 0.

Since f is nondecreasing function with f(r) > 0 for all r ∈ (0,∞) and f(0) = 0,
we have limn d(xn, F (T )) = 0. Then there exist a subsequence {xnk

} of {xn} and
a sequence {yk} in F (T ) such that ‖xnk

− yk‖ < 1/2k. It follows from the proof
of Tan and Xu [12] that {yk} is a Cauchy sequence in F (T ) and so yk → y for
some y ∈ F (T ). It follows that xnk

→ y. Since limn ‖xn − y‖ exists, then xn → y.
By (3.6) and (3.7) we have limn ‖yn − xn‖ = limn ‖zn − xn‖ = 0. It follows that
limn yn = limn zn = y. This completes the proof.

In the next result, we prove weak convergence of Algorithm 1 for asymptoti-
cally nonexpansive mapping in a uniformly convex Banach space. To do this, we
need the following lemmas.

Lemma 3.5 ([14, Lemma 1.6]). Let X be a uniformly convex Banach space, C
be a nonempty closed convex subset of X and T : C → C be an asymptotically
nonexpansive mapping. Then (I − T ) is demiclosed at 0, i.e., if xn → x weakly
and xn − Txn → 0 strongly, then x ∈ F (T ).

A Banach space X is said to satisfy Opial’s condition [15] if for any sequence
{xn} in X , xn → x weakly implies that lim supn ‖xn − x‖ < lim supn ‖xn − y‖ for
all y ∈ X with y 6= x.

Lemma 3.6 ([7, Lemma 2.7]). Let X be a Banach space which satisfies Opial’s
condition and let {xn} be a sequence in X. Let u, v ∈ X be such that limn ‖xn−u‖
and limn ‖xn − v‖ exist. If {xnk

} and {xmk
} are subsequences of {xn} which

converge weakly to u and v, respectively, then u = v.

Theorem 3.7. Let X be a uniformly convex Banach space which satisfies Opial’s
condition, C be a nonempty closed convex subset of X and T : C → C be an
asymptotically nonexpansive mapping with the nonempty fixed point set F (T ) and
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the sequence {rn} such that
∑∞

n=1 rn < ∞. Let {xn} be as in Algorithm 1 sat-
isfying one of the control conditions in Lemma 3.3. Then {xn}, {yn} and {zn}
converge weakly to a fixed point of T .

Proof. It follows from Lemma 3.3 that limn ‖Txn−xn‖ = 0. Since X is uniformly
convex and {xn} is bounded, there exists a subsequence {xnk

} of {xn} such that
xnk

→ u weakly as k → ∞. By Lemma 3.5, we have u ∈ F (T ). Suppose that
{xmk

} be an arbitrary subsequence of {xn} converging weakly to v. Again, from
Lemma 3.5, v ∈ F (T ). By Lemma 3.1(i), limn ‖xn − u‖ and limn ‖xn − v‖ exist.
It follows from Lemma 3.6 that u = v. Therefore {xn} converges weakly to u. By
(3.6) and (3.7) we have limn ‖yn − xn‖ = limn ‖zn − xn‖ = 0. It follows that {yn}
and {zn} converge weakly to u.

Remark 3.8. When λn = µn = νn = β
(3)
n = γ

(4)
n ≡ 0, α

(2)
n = 1 − α

(1)
n , β

(4)
n =

1−β
(1)
n −β

(2)
n and γ

(5)
n = 1−γ

(1)
n −γ

(2)
n −γ

(3)
n in Theorem 3.4 and Theorem 3.7, we

obtain weak and strong convergence theorems of Algorithm 2 [9, Theorem 9 and
Theorem 10].

Remark 3.9. When λn = µn = νn = β
(3)
n = γ

(3)
n = γ

(4)
n ≡ 0, α

(2)
n = 1 − α

(1)
n ,

β
(4)
n = 1− β

(1)
n − β

(2)
n and γ

(5)
n = 1− γ

(1)
n − γ

(2)
n in Theorem 3.4 and Theorem 3.7,

we obtain weak and strong convergence theorems of Algorithm 3 [7, Theorem 2.3

and Theorem 2.8] without the restrictions lim infn bn > 0 (bn replaced by β
(1)
n in

our definition) and the boundedness of C.
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