
Thai Journal of Mathematics
Volume 9 (2011) Number 3 : 605–617

www.math.science.cmu.ac.th/thaijournal
Online ISSN 1686-0209

On the Fine Spectra of the Generalized

Forward Difference Operator ∆
v

Over the Sequence Space ℓ1

Javad Fathi
1

and Rahmatollah Lashkaripour

Department of Mathematics, Faculty of Mathematics,
University of Sistan and Baluchestan, Zahedan, Iran

e-mail : fathi756@gmail.com,
lashkari@hamoon.usb.ac.ir

Abstract : The main purpose of this paper is to determine the fine spectrum of
the forward difference operator over the sequence space ℓ1.

Keywords : Spectrum of an operator; Matrix mapping; Difference operator;
Sequence space.
2010 Mathematics Subject Classification : 47A10; 47B37.

1 Introduction

Srivastava and Kumar [1] introduced the generalized difference operator ∆v

on the sequence space c0 as follows: ∆v : c0 −→ c0 is defined by

∆vx = ∆v(xn) = (vnxn − vn−1xn−1)
∞
n=0 with x−1 = 0,

where (vk) is either constant or strictly decreasing sequence of positive real num-
bers satisfying

lim
k→∞

vk = v > 0 (1.1)

and

v0 ≤ 2v. (1.2)
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In this paper, we introduce a class of a generalized forward difference operator
∆v on the sequence space ℓ1 as follows: ∆v : ℓ1 −→ ℓ1 is defined by

∆vx = ∆v(xn) = (vnxn − vn+1xn+1)
∞
n=0.

It is easy to verify that the operator ∆v can be represented by the matrix,

∆v =















v0 −v1 0 0 0 · · ·
0 v1 −v2 0 0 · · ·
0 0 v2 −v3 0 · · ·
0 0 0 v3 −v4 · · ·
...

...
...

...
...

. . .















.

In functional analysis, the spectrum of an operator generalizes the notion of
eigenvalues for matrices. The spectrum of an operator over a Banach space is par-
titioned into three parts, which are the point spectrum, the continuous spectrum
and the residual spectrum. The calculation of three parts of the spectrum of an
operator is called calculating the fine spectrum of the operator. Several authors
have studied the spectrum and fine spectrum of linear operators defined by some
particular limitation matrices over some sequence spaces. We introduce knowledge
in the existing literature concerning the spectrum and the fine spectrum. The fine
spectrum of the Cesaro operator on the sequence space ℓp for (1 < p < ∞) has
been studied by Gonzalez [2]. Also, Wenger [3] examined the fine spectrum of the
integer power of the Cesaro operator over c, and Rhoades [4] generalized this re-
sult to the weighted mean methods. Reade [5] worked the spectrum of the Cesaro
operator over the sequence space c0. Okutoyi [6] computed the spectrum of the
Cesaro operator over the sequence space bv. The fine spectrum of the Rhally op-
erators on the sequence spaces c0 and c is studied by Yildirim [7]. The fine spectra
of the Cesaro operator over the sequence spaces c0 and bvp have determined by
Akhmedov and Basar [8, 9]. Akhmedov and Basar [10, 11] have studied the fine
spectrum of the difference operator ∆ over the sequence spaces ℓp, and bvp, where
(1 ≤ p < ∞). The fine spectrum of the Zweier matrix as an operator over the
sequence spaces ℓ1 and bv1 have been examined by Altay and Karakus [12]. Altay
and Basar [13, 14] have determined the fine spectrum of the difference operator
∆ over the sequence spaces c0, c and ℓp, where (0 < p < 1). The fine spectrum
of the difference operator ∆ over the sequence spaces ℓ1 and bv is investigated by
Kayaduman and Furkan [15]. Altun and Karakaya [16, 17] has been studied the
fine spectra of Lacunary Matrices and Fine spectra of upper triangular double-
band matrices. recently, Srivastava and Kumar [1, 18] has been examined the fine
spectrum of the generalized difference operator ∆v over the sequence spaces c0
and ℓ1.

In this work, our purpose is to determine the fine spectra of the generalized
forward difference operator ∆v as an operator over the sequence space ℓ1.
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2 Preliminaries

By w, we denote the space of all real or complex valued sequences. Any vector
subspace of w is called a sequence space. Let µ and ν be two sequence spaces
and A = (an,k) be an infinite matrix operator of real or complex numbers an,k,
where n, k ∈ {0, 1, 2, . . .}. We say that A defines a matrix mapping from µ into
ν and denote it by A : µ −→ ν, if for every sequence x =

(

xk

)

∈ µ the sequence

Ax =
(

(Ax)n

)

, the A-transform of x, is in ν, where (Ax)n =
∑∞

k=0
an,kxk.

Let X and Y be Banach spaces and T : X −→ Y, also be a bounded linear
operator. By R(T ), we denote the range of T , i.e.,

R(T ) = {y ∈ Y : y = Tx, x ∈ X}.

By B(X), we denote the set of all bounded linear operator on X into itself.
If X is any Banach space and T ∈ B(X) then the adjoint T ∗ of T is a bounded
linear operator on the dual X∗ of X defined by (T ∗ψ)(x) = ψ(Tx) for all ψ ∈ X∗

and x ∈ X with ‖T ‖ = ‖T ∗‖.
Let X 6= Θ be a complex normed space and T : D(T ) −→ X, also be a

bounded linear operator with domain D ⊆ X . With T , we associate the operator
Tλ = T −λI, where λ is a complex number and I is the identity operator on D(T ),
if Tλ has an inverse, which is linear, we denote it by T−1

λ , that is

T−1

λ = (T − λI)−1

and call it the resolvent operator of T .
The name resolvent is appropriate, since T−1

λ helps to solve the equation Tλx =
y. Thus, x = T−1

λ y provided T−1

λ exists. More important, the investigation of
properties of T−1

λ will be basic for an understanding of the operator T itself.
Naturally, many properties of Tλ and T−1

λ depend on λ, and spectral theory is
concerned with those properties. For instance, we shall be interested in the set of
all λ in the complex plane such that T−1

λ exists. Boundedness of T−1

λ is another
property that will be essential. We shall also ask for what λ the domain of T−1

λ is
dense in X , to name just a few aspects. For our investigation of T , Tλ and T−1

λ ,
we shall need some basic concepts in spectral theory which are given as follows
(see [19, pp. 370–371]).

Definition 2.1. Let X 6= Θ be a complex normed space and T : D(T ) −→ X, be
a linear operator with domain D ⊆ X . A regular value of T is a complex number
λ such that

(R1) T−1

λ exists;

(R2) T−1

λ is bounded;

(R3) T−1

λ is defined on a set which is dense in X .

The resolvent set ρ(T,X) of T is the set of all regular value λ of T . Its
complement σ(T,X) = C− ρ(T,X) in the complex plane C is called the spectrum
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of T . Furthermore, the spectrum σ(T,X) is partitioned into three disjoint sets
as follows: The point spectrum σp(T,X) is the set of all λ ∈ C such that T−1

λ

dose not exist. The element of σp(T,X) is called eigenvalue of T . The continuous

spectrum σc(T,X) is the set of all λ ∈ C such that T−1

λ exists and satisfies (R3)
but not (R2), that is, T−1

λ is unbounded. The residual spectrum σr(T,X) is the
set of all λ ∈ C such that T−1

λ exists but do not satisfy (R3), that is, the domain
of T−1

λ is not dense in X . The condition (R2) may or may not holds good.

Goldberg’s classification of operator Tλ = (T −λI) (see [20, pp. 58–71]): Let
X be a Banach space and Tλ = (T − λI) ∈ B(X), where λ is a complex number.
Again let R(Tλ) and T−1

λ be denote the range and inverse of the operator Tλ,
respectively. Then following possibilities may occur:

(A) R(Tλ) = X ,

(B) R(Tλ) 6= R(Tλ) = X ,

(C) (C) R(Tλ) 6= X ,

and

(1) Tλ is injective and T−1

λ is continuous,

(2) Tλ is injective and T−1

λ is discontinuous,

(3) Tλ is not injective.

If these possibilities are combined in all possible ways, nine different states are
created. These are labelled by: A1, A2, A3, B1, B2, B3, C1, C2 and C3. If λ is a
complex number such that Tλ ∈ A1 or Tλ ∈ B1, then λ is in the resolvent set
ρ(T,X) of T on X . The other classifications give rise to the fine spectrum of T .
We use λ ∈ B2σ(T,X) means the operator Tλ ∈ B2, i.e. R(Tλ) 6= R(Tλ) = X and
Tλ is injective but T−1

λ is discontinuous. Similarly others.

Lemma 2.2 ([20, pp. 59]). A linear operator T has a dense range if and only if

the adjoint T ∗ is one to one.

Lemma 2.3 ([20, pp. 60]). The adjoint operator T ∗ is onto if and and only if T
has a bounded inverse.

Lemma 2.4. The matrix A = (ank) gives rise to a bounded linear operator T ∈
B(ℓ1) from ℓ1 to itself if and only if the supremum of ℓ1 norms of the columns of

A is bounded.

3 Main Results

In this section, we compute spectrum, the point spectrum, the continuous
spectrum and the residual spectrum of the generalized forward difference operator
∆v over the sequence space ℓ1.
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Theorem 3.1. The operator ∆v : ℓ1 −→ ℓ1 is a bounded linear operator and

‖∆v‖ = 2 sup
k

(vk).

Proof. It is elementary.

Theorem 3.2. Point spectrum of the operator ∆v over ℓ1 is given by

σp(∆
v, ℓ1) = {λ ∈ C : |λ− v| < v}.

Proof. The proof of this theorem is divided into two cases.
Cases(i): Suppose (vk) is a constant sequence, say vk = v for all k. Consider

∆vx = λx, for x 6= 0 = (0, 0, 0, . . .) in ℓ1, which gives

v0x0 − v1x1 = λxo

v1x1 − v2x2 = λx1

v2x2 − v3x3 = λx2

...

vkxk − vk+1xk+1 = λxk

...

If x0 = 0, then xk = 0 for all k. Hence x0 6= 0 and solving the equation above, we
get

xk =

(

v − λ

v

)k

x0, k ∈ N.

Hence λ ∈ σp(∆
v, ℓ1) if and only if |λ− v| < v.

Cases(ii): Suppose (vk) is a strictly decreasing sequence. Consider ∆vx = λx,
for x 6= 0 = (0, 0, 0, . . .) in ℓ1, which gives system of equations above, solving this
equations, we get

xn =
n
∏

i=1

(

vi−1 − λ

vi

)

x0 for all n ∈ N.

Now suppose λ ∈ C with |λ− v| < v, then limn→∞ |vn−1−λ

vn
| < 1. Therefore

lim
n→∞

∣

∣

∣

∣

xn+1

xn

∣

∣

∣

∣

= lim
n→∞

∣

∣

∣

∣

vn − λ

vn+1

∣

∣

∣

∣

< 1.

This means that (xn) ∈ ℓ1, and consequently

{λ ∈ C : |λ− v| < v} ⊆ σp(∆
v, ℓ1).
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Conversely it is required to show

σp(∆
v, ℓ1) ⊆ {λ ∈ C : |λ− v| < v}.

Let λ ∈ C with |λ − v| ≥ v. Clearly, λ = v as well as λ = vk, for all k do not

satisfied. So, λ 6= v and λ 6= vk, for all k. Then limn→∞ |vn−1−λ

vn
| ≥ 1. This means

that |vn−1−λ

vn
| ≥ 1 for large n, and consequently

lim
n→∞

|xn| = lim
n→∞

∣

∣

∣

∣

(v0 − λ)(v1 − λ) · · · (vn−1 − λ)

v1v2 · · · vn

∣

∣

∣

∣

x0 6= 0.

This shows that σp(∆
v, ℓ1) ⊆ {λ ∈ C : |λ − v| < v}. And this completes the

proof.

If T : ℓ1 −→ ℓ1 is a bounded linear operator with matrix A, then it is known
that the adjoint operator T ∗ : ℓ∗1 −→ ℓ∗1 is defined by the transpose of the matrix
A. The dual space of ℓ1 is isomorphic to ℓ∞, the space of all bounded sequences,
with the norm ‖x‖ = supk |xk|. We now obtain spectrum of the dual operator
(∆v)∗ of ∆v over the space ℓ∗1.

Theorem 3.3. The point spectrum of the operator over ℓ∗1 is

σp((∆
v)∗, c∗0) = ∅.

Proof. The proof of this theorem is divided into two cases.
Cases(i): Suppose (vk) is a constant sequence, say vk = v for all k. Consider

(∆v)∗f = λf , for f 6= 0 = (0, 0, 0, . . .) in ℓ∗1
∼= ℓ∞, where

(∆v)∗ =















v0 0 0 0 0 · · ·
−v1 v1 0 0 0 · · ·
0 −v2 v2 0 0 · · ·
0 0 −v2 v3 0 · · ·
...

...
...

...
...

. . .















and f =











f0
f1
f2
...











this gives

v0f0 = λfo

−v1f0 + v1f1 = λf1

−v2f1 + v2f2 = λf2

...

−vkfk−1 + vkfk = λfk

...
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Let fm be the first non-zero entry of the sequence (fn). So we get −vfm1 +
vfm = λfm which implies λ = v and from the equation −vfm + vfm+1 = λfm+1

we get fm = 0, which is a contradiction to our assumption. Therefore,

σp((∆
v)∗, ℓ∗1) = ∅.

Cases(ii): Suppose (vk) is a strictly decreasing sequence. Consider (∆v)∗f = λf ,
for f 6= 0 = (0, 0, 0, . . .) in ℓ∗1

∼= ℓ∞, which gives above system of equations. Hence,
for all λ /∈

{

v0, v1, v2, . . .
}

, we have fk = 0 for all k, which is a contradiction. So
λ /∈ σp((∆

v)∗, ℓ∗1). This shows that

σp((∆
v)∗, ℓ∗1) ⊆

{

v0, v1, v2, . . .
}

.

Let λ = vm for some m. Then f0 = f1 = · · · = fm−1 = 0. Now if fm = 0, then
fk = 0 for all k, which is a contradiction. Also if fm 6= 0, then

fk+1 =
vk+1

vk+1 − vm

fk, for all k ≥ m,

and hence,
∣

∣

∣

∣

fk+1

fk

∣

∣

∣

∣

=

∣

∣

∣

∣

vk+1

vk+1 − vm

∣

∣

∣

∣

> 1 for all k ≥ m,

since v0 ≤ 2v. Then, f /∈ ℓ∗1. Thus σp((∆
v)∗, ℓ∗1) = ∅.

Theorem 3.4. For any λ ∈ C, ∆v
λ : ℓ1 −→ ℓ1 has a dence range.

Proof. By Theorem 3.3, σp((∆
v)∗, ℓ∗1) = ∅. Hence (∆v)∗ − λI is one to one for all

λ. By applying Lemma 2.2, we get the result.

Corollary 3.5. Residual spectrum σr(∆
v, ℓ1) of operator ∆v over ℓ1 is

σr(∆
v, ℓ1) = ∅

Theorem 3.6. The spectrum of ∆v on ℓ1 is given by

σ(∆v, ℓ1) = {λ ∈ C : |λ− v| ≤ v}.

Proof. The proof of this theorem is divided into two cases.
Cases(i): Suppose (vk) is a constant sequence, say vk = v for all k, and let

f ∈ ℓ∞. Consider (∆v
λ)∗x = f . Then we have the linear system of equations

(v − λ)x0 = fo

−vx0 + (v − λ)x1 = f1

−vx1 + (v − λ)x2 = f2

...

−vfk−1 + (v − λ)xk = fk

...
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solving the equations, we get

xk =
1

v − λ

k
∑

i=0

(

v

v − λ

)k−i

fi

for all k. Therefore

|xk| ≤
1

|v − λ|

∞
∑

i=0

∣

∣

∣

∣

v

v − λ

∣

∣

∣

∣

i

||f ||∞.

Now for |v| < |λ− v|, we can see that

‖x‖∞ ≤
1

|v − λ| − |v|
‖f‖∞.

Hence, for |v| < |λ − v|, (∆v
λ)∗ is onto, and by Lemma 2.3, ∆v

λ has a bounded
inverse. This means that

σc(∆
v, ℓ1) ⊆ {λ ∈ C : |λ− v| ≤ v}.

Combining this with Theorem 3.2 and Corollary 3.5, we get

{λ ∈ C : |λ− v| < v} ⊆ σ(∆v, ℓ1) ⊆ {λ ∈ C : |λ− v| ≤ v}.

Since the spectrum of any bounded operator is closed, we have

σ(∆v , ℓ1) = {λ ∈ C : |λ− v| ≤ v}.

Cases(ii): Suppose (vk) is a strictly decreasing sequence, and let f ∈ ℓ∞. Consider
(∆v

λ)∗x = f . Then we have the linear system of equations

(v0 − λ)x0 = fo

−v1x0 + (v1 − λ)x1 = f1

−v2x1 + (v2 − λ)x2 = f2

...

−vkfk−1 + (vk − λ)xk = fk

...

solving the equations, for x = (xk) in terms of f , we get

xk =
v1v2 · · · vk

(v0 − λ)(v1 − λ) · · · (vk − λ)
f0 +

v2v3 · · · vk

(v1 − λ)(v2 − λ) · · · (vk − λ)
f1

+ · · · +
vk

(vk−1 − λ)(vk − λ)
fk−1 +

1

vk − λ
fk, for all k.
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Then |xk| ≤ Sk‖f‖∞, where

Sk =
1

|vk − λ|
+

vk

|vk−1 − λ||vk − λ|
+

vk−1vk

|vk − λ||vk−1 − λ||vk−2 − λ|

+ · · · +
v1v2 · · · vk

|v0 − λ||v1 − λ| · · · |vk − λ|
.

Clearly, each Sk is finite. Now we prove that supk Sk is finite. Since

lim
n→∞

|
vk

vk−1 − λ
| =

v

|v − λ|
= p < 1.

Then, there exists k ∈ N such that vn

|vn−1−λ| < p0 < 1, for all n ≥ k+ 1 and so we
get

Sn+k ≤
1

|vn+k − λ|
×

(

v1v2 · · · vk

|v0 − λ||v1 − λ| · · · |vk−1 − λ|
pn
0

+
v2v3 · · · vk

|v1 − λ| · · · |vk−1 − λ|
pn−1

0 + · · · + p0 + 1

)

.

If we put M = max{ vjvj+1···vk

|vj−1−λ||vj−λ|···|vk−λ| : 1 ≤ j ≤ k}, then we have

Sn+k ≤
M

|vn+k − λ|

(

1 + p0 + p2
0 + · · · + pn

0

)

≤
M

|vn+k − λ|

(

1 + p0 + p2
0 + · · ·

)

.

But, for large n, we have 1

|vn+k−λ| < d < 1

v
and so Sn+k ≤ Md

1−p0
, for all n ≥ k+ 1.

Thus, supk Sk < ∞. This shows that ||x||∞ ≤ supk Sk||f ||∞ < ∞. Therefore
x ∈ ℓ∞. Hence, for v < |λ − v|, (∆v

λ)∗ is onto, and by Lemma 2.3, ∆v
λ has a

bounded inverse. This means that

σc(∆
v, ℓ1) ⊆ {λ ∈ C : |λ− v| ≤ v}.

Combining this with Theorem 3.2 and Corollary 3.5, we get

{λ ∈ C : |λ− v| < v} ⊆ σ(∆v , ℓ1) ⊆ {λ ∈ C : |λ− v| ≤ v}.

Since the spectrum of any bounded operator is closed, we have

σ(∆v, ℓ1) = {λ ∈ C : |λ− v| ≤ v}.

Theorem 3.7. Continuous spectrum σc(∆
v, ℓ1) of operator ∆v over ℓ1 is

σc(∆
v, ℓ1) = {λ ∈ C : |λ− v| = v}.

Proof. Since σr(∆
v, ℓ1) = ∅, σp(∆

v, ℓ1) = {λ ∈ C : |λ − v| < v} and σ(∆v, ℓ1)
is the disjoint union of the parts σp(∆

v, ℓ1), σr(∆
v, ℓ1) and σc(∆

v, ℓ1), we deduce
that σc(∆

v, ℓ1) = {λ ∈ C : |λ− v| = v}.
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Theorem 3.8. If |λ− v| < v, then λ ∈ A3σ(∆v, ℓ1).

Proof. Let |λ − v| < v. Then by Theorem 3.2, λ ∈ (3) it remains to prove that
∆v

λ is surjective when |λ − v| < v. Let y = (y0, y1, y2, . . .) ∈ ℓ1 and consider the
equation ∆v

λx = y. Then we have the linear system of equations

(v0 − λ)x0 − v1x1 = yo

(v1 − λ)x1 − v2x2 = y1

(v2 − λ)x2 − v3x3 = y2

...

(vk − λ)xk − vk+1xk+1 = yk

...

Now, set x0 = 0 and by solving these equations, we get x1 = − 1

v1
y0 and

xk =
−1

vk





k−2
∑

i=0





k−1
∏

j=i+1

(

1 −
λ

vj

)



 yi + yk−1



 for all k ≥ 2.

Then
∑

k |xk| ≤
∑

k Sk|yk|, where

Sk =
1

vk+1

+
1

vk+2

|vk+1 − λ|

vk+1

+
1

vk+3

|vk+1 − λ|

vk+1

|vk+2 − λ|

vk+2

+ · · · , for all k.

Let

Sn,k =
1

vk+1

+
1

vk+2

|vk+1 − λ|

vk+1

+
1

vk+3

|vk+1 − λ|

vk+1

|vk+2 − λ|

vk+2

+ · · · +
1

vk+n+1

|vk+1 − λ|

vk+1

|vk+2 − λ|

vk+2

· · ·
|vk+n − λ|

vk+n

for all k, n.

Then

Sn = lim
k→∞

Sn,k =
1

v
+

|v − λ|

v2
+

|v − λ|2

v3
+ · · · +

|v − λ|n

vn+1
.

Now for |λ− v| < v, we can see that

S = lim
n→∞

Sn =
1

v
+

|v − λ|

v2
+

|v − λ|2

v3
+ · · · <∞,

hence (Sk) is a sequence of positive real numbers which has a lim S. Therefore,
(Sk) is bounded and supk Sk <∞. Thus

∑

k

|xk| ≤ sup
k

Sk

∑

k

|yk| <∞.

This shows that x ∈ ℓ1.
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Theorem 3.9. Let vk be a constant sequence and |λ − v| = v. Then λ ∈
B2σ(∆v, ℓ1).

Proof. Suppose vk = v for all k. By Theorem 3.7, λ ∈ A2 ∪B2. To prove λ ∈ B2,
we need to show that ∆v is not surjective when λ satisfies |λ − v| = v. Define
y = (y0, y1, y2, . . .) ∈ ℓ1 by

yk =

(

v − λ

v

)k
1

k2 + 1
.

Suppose x ∈ ℓ1 with ∆v
λx = y. Then we have the linear system equations

(v − λ)x0 − vx1 = 1

(v − λ)x1 − vx2 =

(

v − λ

v

)

1

12 + 1

(v − λ)x2 − vx3 =

(

v − λ

v

)2
1

22 + 1

...

solving xn by means of x0, we get

xn −

(

v − λ

v

)n

x0 = −
1

v

(

v − λ

v

)n−1
(

1 +
1

2
+

1

5
+ · · · +

1

(n− 1)
2

+ 1

)

.

Now, By taking absolute value of both sides and using the triangle inequality we
get

1

v

(

1 +
1

2
+

1

5
+ · · · +

1

(n− 1)
2

+ 1

)

≤ |x0| + |xn|.

Then we have limn→∞ |xn| 6= 0, which contradicts the fact that x ∈ ℓ1. Hence,
there is no x ∈ ℓ1 satisfying ∆v

λx = y. So, ∆v
λ is not surjective.
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