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1 Introduction

An (2n + 1)-dimensional Lorentzian manifold M is smooth connected
para contact Hausdorff manifold with Lorentzian metric g, that is, M ad-
mits a smooth symmetric tensor field g of type (0,2) such that for each
point p € M, the tensor g, : T,M x T,M — R is a non degenerate inner
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product of signature (—,+,...,+) where T,M denotes the tangent space
of M at p and R is the real number space. In a Lorentzian manifold (M, g)
a vector field p defined by

9(X,p) = A(X)
for any vector field X € x (M) is said to be concircular vector field [1], if
(VxA)(Y) = ag(X,Y) + w(X)A(Y)]

where « is a non zero scalar function, A is a 1-form and w is a closed 1-form.

Let M be a Lorentzian manifold admitting a unit time like concircular
vector field &, called the characteristic vector field of the manifold. Then
we have

9(&¢) =—1 (1.1)

Since £ is the unit concircular vector field, there exists a non-zero 1-form
such that

9(X,¢) = n(X) (1.2)

and hence the equation

(Vxn)(Y) = a[g(X,Y) +n(X)n(Y)] (o #0) (1.3)

holds for all vector field X,Y, where V denotes the operator of covariant
differentiation with respect to Lorentzian metric g and « is a non zero scalar
function satisfying

(Vxa) = (Xa) = pn(X), (1.4)

where p being a scalar function. If we put
1
X = EV x§ (1.5)
Then from (1.3) and (1.5), we have

¢*X = X +n(X)E, (1.6)

from which it follows that ¢ is a symmetric (1, 1)-tensor. Thus the Lorentzian
manifold M together with unit time like concircular vector field &, it’s as-
sociate 1-form 7 and (1,1)-tensor field ¢ is said to be Lorentzian concir-
cular structute manifolds (briefly (LC'S)ay,+1-manifold) [2]. In particular
if &« =1, then the manifold becomes LP-Sasakian structure of Matsumoto

[3].
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2 Preliminaries

A differentiable manifold M of dimension (2n + 1) is called (LC'S)2p+1-
manifold if it admits a (1,1) -tensor ¢, a contravarient vector field &, a
covariant vector field 7 and a Lorentzian metric g which satisfy the following

n(&) = -1, (2.1)
¢*=I+n®¢, (2.2)
9(6X,¢Y) = g(X,Y) +n(X)n(Y), (2.3)
9(X,§) = n(X), (2.4)

¢§ =0, n(¢X) = 0. (2.5)

for all X,Y in TM. Also in a (LCS)2,+1-manifold the following relations
are satisfied [4].

N(R(X,Y)Z) = (® = p) [g(Y, Z)n(X) — g(X, Z)n(Y)],  (2.6)
R(X,Y)¢ = (o — p) [n(Y)X = n(X)Y], (2.7)
R(&,X)Y = (o® = p) [9(X,Y)E = n(Y)X], (2.8)
R(&,X)E = (a® — p) [n(X)E + X], (2.9)
(Vx9)(Y) = afg(X,Y)E + 2n(X)n(Y)E +n(Y)X], (2.10)
S(X,€) = 2n(a® — p) [n(X)], (2.11)

S(¢X,9Y) = S(X,Y) + 2n(a® — p)n(X)n(Y). (2.12)

Definition 2.1. A Lorentzian concircular structure manifold is said to be
n-Einstein [5] if the Ricci operator @ satisfies

Q=ald + bn®¢,

where a and b are smooth functions on the manifolds, In particular if b = 0,
then M is an Einstein manifolds.

Let (M, g) be an n-dimensional Riemannian manifold, then the Concir-
cular curvature tensor C' and the Weyl Conformal curvature tensor C' are

defined by [6]:
,

C(X,Y)Z =R(X,Y)Z — YO

[9(Y, 2)X —g(X, 2)Y],  (2.13)

C(X,Y)Z=R(X,Y)Z - [S(Y, 2)X — S(X, 2)Y + g(Y, Z)QX

1
(n—2)

—g(X,Z)QY]—I— [Q(KZ)X_Q(sz)Y]’ (2'14)

r
n(n —1)
for all X,Y,Z € T M, respectively, where r is the scalar curvature of M.
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3 Main Results

In this section, we obtain a necessary and sufﬁcient cqnditiorg for (LC'S)op41-
manifolds satisfying the derivation conditions C'(§, X)-C = 0,C(§, X)-R =
0,C(&,X)-S=0and C(&,X)-C=0.

Theorem 3.1. An (2n + 1)-dimensional Lorentzian concircular structure
manifold M satisfies . .

ceg,x)-Cc=0
if and only if either the scalar curvature r of M isr =2n(2n+1) or M s
locally isometric to the Hyperbolic sphere H*"1(p — o?).

Proof. In a Lorenzian concircular structure manifold M, we have

(e, Y)Y = [(az P } X Y)E—n(X)Y},  (31)

n(n —1)

O(X.V)E = [<a2 -

n(n —1)

The condition C(£,X) - C = 0 implies that

] MOOX — XYy, (32)

CEU)C(X,Y)E-C(CE U)X, Y)E-C(X,CEU)Y)E=0.

In view of (3.2), we get

0= [t~ )~ — s | X a0, OO V96 - OV )en(D)
— 9(U, X)C (£, V)6 +n(X)C(U,Y )¢ - g(U,Y)C(X, €)¢
+n(Y)C(X,U)¢ — C(X,Y)U].
Using (3.1), we have
0= |t =~ 5]

< [O(X.Y)U (<a2 o) - ) (9(U,Y)X — g(U, X)V).

”
n(n+1)
Therefore either the scalar curvature r = 2n(2n + 1)(a? — p) or
r
(n+1)

O = (@2 =) = L) (U)X = g0 X)) <o
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In view of (2.13), we get
R(X,Y)U = (a® = p) [9(Y, U)X — g(X,U)Y]

This equation implies that M is of constant curvature (p — a?). Conse-
quently it is locally isometric to the Hyperbolic space H*"1(p — o?).
Conversely, if it has the scalar curvature r = 2n(2n + 1)(a? — p) then
from (3.2) it follows that C(&, X) = 0. Similarly, in the second case, since
constant 7 = 2n(2n + 1)(a? — p), therefore again we get C(£,X) =0. O

Using the fact é(f,X) -R =0, é(g,X) is acting as a derivation, we
have the following a corollary.

Corollary 3.2. An (2n + 1)-dimensional Lorentzian concircular structure
manifold M satisfies
C(E,X)-R=0

if and only if either M is locally isometric to the Hyperbolic sphere H*" 1 (p—
a?) or M has the scalar curvature r = 2n(2n + 1).

Theorem 3.3. Let (M, g) be an(2n+1)-dimensional Riemannian manifold.
Then R-C=R-R

Proof. Let X, Y, U,V,W € TM. Then
(R(X,Y)O)U,V,W) = R(X,Y)C(U, V)W — C(R(X,Y)U, V)W
— C(U,R(X,Y)V)W — C(U,V)R(X,Y)W.
From (2.13) and symmetric properties of the curvature tensor R, we have

(R(X,Y)C)U,V,W) = R(X,Y)R(U, V)W — R(R(X,Y)U, V)W
— R(U,R(X,Y)V)W — R(U,V)R(X,Y)W
= (R(X,Y) - R)(U,V,W).

which proves the Theorem 3.3. O

Theorem 3.4. An (2n + 1)-dimensional Lorentzian concircular structure
manifold M satisfies

if and only if either M has the scalar curvature r = 2n(2n + 1)(a® — p) or
is an Einstein manifold with the scalar curvature r = 2n(2n + 1)(a® — p).
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Proof. The condition C (&,X) - S =0 implies that
S(C(& X)Y,€) + S(Y,C(¢, X)€) = 0.

In view of (3.2), it gives
Rt
x [9(X,Y)5(¢,€) = S(X,&)n(Y) + SV, &)n(X) + S(X, )] = 0.

By the use of (2.11), we have

r

(@ =) = L [S0Y) — 20(a? - (X, ¥)] = 0.

Therefore, either the scalar curvature of M is r = 2n(2n + 1)(a® — p) or
S(X,Y) = 2n(a®—p)g(X,Y) which implies that M is an Einstein manifold
with the scalar curvature r = 2n(2n+1)(a? — p), which proves the Theorem
3.4. O

Theorem 3.5. An (2n + 1)-dimensional Lorentzian concircular structure
manifold M satisfies )

if and only if either M has the scalar curvature r = 2n(2n + 1)(a® — p) or
is an n-FEinstein manifold.

Proof. The condition C(¢, X) - C = 0 implies that
[C(E )XW = C(CE U)X, Y)W = C(X, C(UY)W| =0

Thus in view of (3.2) gives

o= -0-
— (U, X)CEYIW +(X)CY. U)W = g(U.Y)C(X.OW
+n(YV)C(X, U)W 4+ n(W)C(X, Y)W — g(U,W)C(X,Y)E].

X [C(X, Y)W, U)§ —n(C(X,Y)W)U

So either the scalar curvature of M is r = 2n(2n+1)(a? —p) or the equation
+n(W)C(X, Y)W — g(U,W)C(X,Y)E



n (L C S)ap+1-Manifolds Satisfying Certain Conditions on the Concircular ... 603

holds on M. Taking the inner product of this equation with &, we get
+n(X)n(CY, U)W) — g(U, Y )n(C(X, )W) (3.3)

+n(Y)n(C(X, U)W) +n(W)n(C(X,Y)W) — g(U,W)n(C(X,Y)E).
Using (2.6), (2.11) and (2.14) in (3.3), we get
S(Y,W)
= |(a®—p) — m] g(Y, W) + [(042 —p)+ Inn 1 1) n(Y )n(W),
which proves the Theorem 3.5. O
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