${f T}$ HAI ${f J}$ OURNAL OF ${f M}$ ATHEMATICS Volume 9 (2011) Number 3: 597–603

www.math.science.cmu.ac.th/thaijournal Online ISSN 1686-0209

On $(LCS)_{2n+1}$ -Manifolds Satisfying Certain Conditions on the Concircular Curvature Tensor

Sunil Kumar Yadav †,1 , Praduman Kumar Dwivedi ‡ and Dayalal Suthar †

[†]Department of Mathematics Alwar Institute of Engineering & Technology North Ext., MIA, Alwar, Rajasthan, India e-mail: prof_sky16@yahoo.com, dd_suthar@yahoo.co.in

[‡]Department of Mathematics, Institute of Engineering & Technology North Ext., MIA, Alwar, Rajasthan, India e-mail: drpkdwivedi@yahoo.co.in

Abstract: We classify Lorentzian concircular structure manifolds, which satisfy the condition $C(\xi, X) \cdot C = 0$, $C(\xi, X) \cdot R = 0$, $C(\xi, X) \cdot S = 0$ and $C(\xi, X) \cdot C = 0$.

Keywords: $(LCS)_{2n+1}$ -manifold; Concircular curvature tensor; Weyl Con-

formal curvature tensor; Einstein manifolds.

2010 Mathematics Subject Classification: 53C25.

Introduction

An (2n+1)-dimensional Lorentzian manifold M is smooth connected para contact Hausdorff manifold with Lorentzian metric g, that is, M admits a smooth symmetric tensor field g of type (0,2) such that for each point $p \in M$, the tensor $g_p: T_pM \times T_pM \to R$ is a non degenerate inner

Copyright © 2011 by the Mathematical Association of Thailand. All rights reserved.

¹Corresponding author email: prof_sky16@yahoo.com (S.K. Yadav)

product of signature $(-,+,\ldots,+)$ where T_pM denotes the tangent space of M at p and R is the real number space. In a Lorentzian manifold (M,g) a vector field ρ defined by

$$g(X, \rho) = A(X)$$

for any vector field $X \in \chi(M)$ is said to be concircular vector field [1], if

$$(\nabla_X A)(Y) = \alpha \left[g(X, Y) + \omega(X) A(Y) \right]$$

where α is a non zero scalar function, A is a 1-form and ω is a closed 1-form. Let M be a Lorentzian manifold admitting a unit time like concircular vector field ξ , called the characteristic vector field of the manifold. Then we have

$$g(\xi, \xi) = -1 \tag{1.1}$$

Since ξ is the unit concircular vector field, there exists a non-zero 1-form such that

$$g(X,\xi) = \eta(X) \tag{1.2}$$

and hence the equation

$$(\nabla_X \eta)(Y) = \alpha \left[g(X, Y) + \eta(X) \eta(Y) \right] \quad (\alpha \neq 0) \tag{1.3}$$

holds for all vector field X, Y, where ∇ denotes the operator of covariant differentiation with respect to Lorentzian metric g and α is a non zero scalar function satisfying

$$(\nabla_X \alpha) = (X\alpha) = \rho \eta(X), \tag{1.4}$$

where ρ being a scalar function. If we put

$$\phi X = \frac{1}{\alpha} \nabla_X \xi \tag{1.5}$$

Then from (1.3) and (1.5), we have

$$\phi^2 X = X + \eta(X)\xi,\tag{1.6}$$

from which it follows that ϕ is a symmetric (1,1)-tensor. Thus the Lorentzian manifold M together with unit time like concircular vector field ξ , it's associate 1-form η and (1,1)-tensor field ϕ is said to be Lorentzian concircular structute manifolds (briefly $(LCS)_{2n+1}$ -manifold) [2]. In particular if $\alpha = 1$, then the manifold becomes LP-Sasakian structure of Matsumoto [3].

2 Preliminaries

A differentiable manifold M of dimension (2n + 1) is called $(LCS)_{2n+1}$ manifold if it admits a (1,1) -tensor ϕ , a contravarient vector field ξ , a
covariant vector field η and a Lorentzian metric g which satisfy the following

$$\eta(\xi) = -1,\tag{2.1}$$

$$\phi^2 = I + \eta \otimes \xi, \tag{2.2}$$

$$g(\phi X, \phi Y) = g(X, Y) + \eta(X)\eta(Y), \tag{2.3}$$

$$g(X,\xi) = \eta(X),\tag{2.4}$$

$$\phi \xi = 0, \ \eta(\phi X) = 0. \tag{2.5}$$

for all X, Y in TM. Also in a $(LCS)_{2n+1}$ -manifold the following relations are satisfied [4].

$$\eta(R(X,Y)Z) = (\alpha^2 - \rho) [g(Y,Z)\eta(X) - g(X,Z)\eta(Y)], \qquad (2.6)$$

$$R(X,Y)\xi = (\alpha^2 - \rho) \left[\eta(Y)X - \eta(X)Y \right], \tag{2.7}$$

$$R(\xi, X)Y = (\alpha^2 - \rho) [g(X, Y)\xi - \eta(Y)X], \qquad (2.8)$$

$$R(\xi, X)\xi = (\alpha^2 - \rho) \left[\eta(X)\xi + X \right], \tag{2.9}$$

$$(\nabla_X \phi)(Y) = \alpha \left[g(X, Y)\xi + 2\eta(X)\eta(Y)\xi + \eta(Y)X \right], \tag{2.10}$$

$$S(X,\xi) = 2n(\alpha^2 - \rho) \left[\eta(X) \right], \tag{2.11}$$

$$S(\phi X, \phi Y) = S(X, Y) + 2n(\alpha^2 - \rho)\eta(X)\eta(Y). \tag{2.12}$$

Definition 2.1. A Lorentzian concircular structure manifold is said to be η -Einstein [5] if the Ricci operator Q satisfies

$$Q = aId + b\eta \otimes \xi,$$

where a and b are smooth functions on the manifolds, In particular if b=0, then M is an Einstein manifolds.

Let (M, g) be an n-dimensional Riemannian manifold, then the Concircular curvature tensor C and the Weyl Conformal curvature tensor C are defined by [6]:

$$\tilde{C}(X,Y)Z = R(X,Y)Z - \frac{r}{n(n-1)} [g(Y,Z)X - g(X,Z)Y],$$
 (2.13)

$$C(X,Y)Z = R(X,Y)Z - \frac{1}{(n-2)}[S(Y,Z)X - S(X,Z)Y + g(Y,Z)QX - g(X,Z)QY] + \frac{r}{n(n-1)}[g(Y,Z)X - g(X,Z)Y], \quad (2.14)$$

for all $X, Y, Z \in TM$, respectively, where r is the scalar curvature of M.

3 Main Results

In this section, we obtain a necessary and sufficient condition for $(LCS)_{2n+1}$ -manifolds satisfying the derivation conditions $\tilde{C}(\xi,X)\cdot\tilde{C}=0, \tilde{C}(\xi,X)\cdot R=0, \tilde{C}(\xi,X)\cdot S=0$ and $\tilde{C}(\xi,X)\cdot C=0$.

Theorem 3.1. An (2n + 1)-dimensional Lorentzian concircular structure manifold M satisfies

$$\tilde{C}(\xi, X) \cdot \tilde{C} = 0$$

if and only if either the scalar curvature r of M is r = 2n(2n+1) or M is locally isometric to the Hyperbolic sphere $H^{2n+1}(\rho - \alpha^2)$.

Proof. In a Lorenzian concircular structure manifold M, we have

$$\tilde{C}(\xi, Y)Y = \left[(\alpha^2 - \rho) - \frac{r}{n(n-1)} \right] \left\{ g(X, Y)\xi - \eta(X)Y \right\},$$
 (3.1)

$$\tilde{C}(X,Y)\xi = \left[(\alpha^2 - \rho) - \frac{r}{n(n-1)} \right] \left\{ \eta(Y)X - \eta(X)Y \right\}. \tag{3.2}$$

The condition $\tilde{C}(\xi, X) \cdot \tilde{C} = 0$ implies that

$$\tilde{C}(\xi, U)\tilde{C}(X, Y)\xi - \tilde{C}(\tilde{C}(\xi, U)X, Y)\xi - \tilde{C}(X, \tilde{C}(\xi, U)Y)\xi = 0.$$

In view of (3.2), we get

$$0 = \left[(\alpha^2 - \rho) - \frac{r}{n(n+1)} \right] \times \left[g(U, \tilde{C}(X, Y)\xi)\xi - \tilde{C}(X, Y)\xi\eta(U) \right.$$
$$\left. - g(U, X)\tilde{C}(\xi, Y)\xi + \eta(X)\tilde{C}(U, Y)\xi - g(U, Y)\tilde{C}(X, \xi)\xi \right.$$
$$\left. + \eta(Y)\tilde{C}(X, U)\xi - \tilde{C}(X, Y)U \right].$$

Using (3.1), we have

$$0 = \left[(\alpha^2 - \rho) - \frac{r}{n(n+1)} \right]$$
$$\times \left[\tilde{C}(X,Y)U - \left((\alpha^2 - \rho) - \frac{r}{n(n+1)} \right) (g(U,Y)X - g(U,X)Y) \right].$$

Therefore either the scalar curvature $r = 2n(2n+1)(\alpha^2 - \rho)$ or

$$\left[\tilde{C}(X,Y)U - \left((\alpha^2 - \rho) - \frac{r}{n(n+1)}\right)(g(U,Y)X - g(U,X)Y)\right] = 0.$$

In view of (2.13), we get

$$R(X,Y)U = (\alpha^2 - \rho) \left[g(Y,U)X - g(X,U)Y \right]$$

This equation implies that M is of constant curvature $(\rho - \alpha^2)$. Consequently it is locally isometric to the Hyperbolic space $H^{2n+1}(\rho - \alpha^2)$.

Conversely, if it has the scalar curvature $r = 2n(2n+1)(\alpha^2 - \rho)$ then from (3.2) it follows that $\tilde{C}(\xi, X) = 0$. Similarly, in the second case, since constant $r = 2n(2n+1)(\alpha^2 - \rho)$, therefore again we get $\tilde{C}(\xi, X) = 0$.

Using the fact $\tilde{C}(\xi, X) \cdot R = 0$, $\tilde{C}(\xi, X)$ is acting as a derivation, we have the following a corollary.

Corollary 3.2. An (2n+1)-dimensional Lorentzian concircular structure manifold M satisfies

$$\tilde{C}(\xi, X) \cdot R = 0$$

if and only if either M is locally isometric to the Hyperbolic sphere $H^{2n+1}(\rho - \alpha^2)$ or M has the scalar curvature r = 2n(2n+1).

Theorem 3.3. Let (M,g) be an(2n+1)-dimensional Riemannian manifold. Then $R \cdot \tilde{C} = R \cdot R$

Proof. Let $X, Y, U, V, W \in TM$. Then

$$(R(X,Y)\tilde{C})(U,V,W) = R(X,Y)\tilde{C}(U,V)W - \tilde{C}(R(X,Y)U,V)W - \tilde{C}(U,R(X,Y)V)W - \tilde{C}(U,V)R(X,Y)W.$$

From (2.13) and symmetric properties of the curvature tensor R, we have

$$(R(X,Y)\tilde{C})(U,V,W) = R(X,Y)R(U,V)W - R(R(X,Y)U,V)W$$
$$-R(U,R(X,Y)V)W - R(U,V)R(X,Y)W$$
$$= (R(X,Y) \cdot R)(U,V,W).$$

which proves the Theorem 3.3.

Theorem 3.4. An (2n + 1)-dimensional Lorentzian concircular structure manifold M satisfies

$$\tilde{C}(\xi, X) \cdot S = 0$$

if and only if either M has the scalar curvature $r = 2n(2n+1)(\alpha^2 - \rho)$ or is an Einstein manifold with the scalar curvature $r = 2n(2n+1)(\alpha^2 - \rho)$.

Proof. The condition $\tilde{C}(\xi, X) \cdot S = 0$ implies that

$$S(\tilde{C}(\xi, X)Y, \xi) + S(Y, \tilde{C}(\xi, X)\xi) = 0.$$

In view of (3.2), it gives

$$\left[(\alpha^2 - \rho) - \frac{r}{n(n-1)} \right] \times \left[g(X,Y)S(\xi,\xi) - S(X,\xi)\eta(Y) + S(Y,\xi)\eta(X) + S(X,\xi) \right] = 0.$$

By the use of (2.11), we have

$$\left[(\alpha^2 - \rho) - \frac{r}{n(n-1)} \right] \left[S(X,Y) - 2n(\alpha^2 - \rho)g(X,Y) \right] = 0.$$

Therefore, either the scalar curvature of M is $r = 2n(2n+1)(\alpha^2 - \rho)$ or $S(X,Y) = 2n(\alpha^2 - \rho)g(X,Y)$ which implies that M is an Einstein manifold with the scalar curvature $r = 2n(2n+1)(\alpha^2 - \rho)$, which proves the Theorem 3.4.

Theorem 3.5. An (2n + 1)-dimensional Lorentzian concircular structure manifold M satisfies

$$\tilde{C}(\xi, X) \cdot C = 0$$

if and only if either M has the scalar curvature $r = 2n(2n+1)(\alpha^2 - \rho)$ or is an η -Einstein manifold.

Proof. The condition $\tilde{C}(\xi, X) \cdot C = 0$ implies that

$$\left[\tilde{C}(\xi,U)C(X,Y)W-C(\tilde{C}(\xi,U)X,Y)W-C(X,\tilde{C}(,U)Y)W\right]=0$$

Thus in view of (3.2) gives

$$0 = \left[(\alpha^2 - \rho) - \frac{r}{n(n-1)} \right] \times \left[C(X,Y)W, U \right) \xi - \eta(C(X,Y)W)U$$
$$- g(U,X)C(\xi,Y)W + \eta(X)C(Y,U)W - g(U,Y)C(X,\xi)W$$
$$+ \eta(Y)C(X,U)W + \eta(W)C(X,Y)W - g(U,W)C(X,Y)\xi \right].$$

So either the scalar curvature of M is $r = 2n(2n+1)(\alpha^2 - \rho)$ or the equation

$$0 = C(X,Y)W, U)\xi - \eta(C(X,Y)W)U - g(U,X)C(\xi,Y)W + \eta(X)C(Y,U)W - g(U,Y)C(X,\xi)W + \eta(Y)C(X,U)W + \eta(W)C(X,Y)W - g(U,W)C(X,Y)\xi$$

holds on M. Taking the inner product of this equation with ξ , we get

$$0 = -C(X, Y, W, U) - C(X, Y)W)\eta(U) - g(U, X)\eta(C(\xi, Y)W) + \eta(X)\eta(C(Y, U)W) - g(U, Y)\eta(C(X, \xi)W) + \eta(Y)\eta(C(X, U)W) + \eta(W)\eta(C(X, Y)W) - g(U, W)\eta(C(X, Y)\xi).$$
(3.3)

Using (2.6), (2.11) and (2.14) in (3.3), we get

S(Y, W)

$$= \left[(\alpha^2 - \rho) - \frac{r}{2n(2n+1)} \right] g(Y, W) + \left[(\alpha^2 - \rho) + \frac{r}{2n(2n+1)} \right] \eta(Y) \eta(W),$$

which proves the Theorem 3.5.

Acknowledgement: The authors are thankful to the referee for his comments in the improvement of this paper.

References

- [1] M. Kon, Invariant sub manifolds in Sasakian manifolds, Mathematische Annalen 219 (1976) 277–290.
- [2] A.A.Shaikh, Lorentzian almost paracontact manifolds with structure of concircular type, Kyungpook Math. J. 43 (2003) 305–314.
- [3] K. Matsumoto, On Lorentzian paracontact manifolds, Bull of Yamagata Univ. Nat. Soci. 12 (1989) 151–156.
- [4] A.A. Shaikh, T. Basu, S.Eyasmin, On the existence of ϕ -recurrent $(LCS)_n$ -manifolds, Extracta Mathematicae 231 (2008) 305–314.
- [5] T. Adati, T. Miyasawa, On P-Sasakian manifolds satisfying certain conditions, Tensor (N.S.) 33 (1979) 173–178.
- [6] K. Yano, M. Kon, Structure on Manifolds, Series in Pure Math., Vol.3, World Sci., 1984.

(Received 28 January 2011) (Accepted 18 August 2011)

THAI J. MATH. Online @ http://www.math.science.cmu.ac.th/thaijournal